
A Parametric Tool for Applied Process Calculi

Johannes Borgström Ramūnas Gutkovas Ioana Rodhe Björn Victor
Department of Information Technology

Uppsala University
Email: {johannes.borgstrom, ramunas.gutkovas, ioana.rodhe, bjorn.victor}@it.uu.se

Abstract—
High-level formalisms for concurrency are often defined as

extensions of the the pi-calculus; a growing number is geared
towards particular applications or computational paradigms.
Psi-calculi is a parametric framework that can accommodate
a wide spectrum of such calculi. It allows the definition of
process calculi that extend the pi-calculus with arbitrary data,
logic and logical assertions. All such calculi inherit machine-
checked proofs of the meta-theory such as compositionality and
bisimulation congruence.

We present a generic tool for implementing instances of psi-
calculi, and for analysing psi-calculus processes using symbolic
execution and bisimulation techniques for both unicast and
wireless broadcast communication. We illustrate the tool by
examples from pi-calculus and the area of wireless sensor
networks.

Keywords-Process Calculi; Symbolic semantics; Wireless
Sensor Networks

I. INTRODUCTION

The development of concurrent systems is greatly helped
by the use of precise and formal models of the system. There
are many different formalisms for concurrent systems, often
in specialized versions for particular application areas. Tool
support for the formalism is necessary for constructing and
reasoning about models of non-trivial systems.

Psi-calculi [2], based on the pi-calculus [16], is a paramet-
ric semantic framework, where the data language and logic
can be tailored for each application. The framework provides
a variety of features, such as lexically scoped local names
for resources, both unicast and broadcast communication [5],
first-order and higher-order communication [17] etc. Psi-
calculi can capture the same phenomena as other proposed
extensions of the pi-calculus such as the applied pi-calculus,
the spi-calculus, the fusion calculus, the concurrent con-
straint pi-calculus, and calculi with polyadic communication
channels or pattern matching. A major advantage is that
all meta-theoretical results, including algebraic laws and
congruence properties of bisimilarity, apply to any valid
instantiation of the framework. Additionally, most of these
results have been proved with certainty, using the Nominal
Isabelle theorem prover. These features of psi-calculi save a
lot of effort for anyone using it — psi-calculi is a reusable
framework.

This paper describes the Psi-Calculi Workbench (PWB)
which is a generic tool for implementing psi-calculus in-

stances, and for analysing processes in the resulting in-
stances. Like psi-calculi, it is parametric: it is based on
core functionality for bisimulation equivalence checking and
symbolic simulation (or execution) of processes, but mod-
ules implementing the parameters for the particular instance
of psi-calculi are supplied by the user. The implementation is
facilitated by functionality in PWB. PWB thus has two types
of users: the user analysing systems in an existing instance,
and the instance implementor.

We illustrate the tool firstly by implementing the pi-
calculus and showing bisimulation equivalence checking,
and secondly in the more complex example of a protocol
from the area of wireless sensor networks, incorporating
specialized data structures, logics, and both unicast and
broadcast communication.

II. PSI-CALCULI

This section is a brief recapitulation of psi-calculi, that
mainly serves to introduce a few notions used in the ex-
amples below. For a more extensive treatment including
motivations and examples see [2], [5], [10], [11].

We assume a countably infinite set of atomic names N
ranged over by a, b, . . . , z. A nominal set [6], [18] is a set
equipped with a formal notion of what it means for a name
a to occur (free) in an element X of the set, written a ∈
n(X). We write X̃ for a sequence X1, . . . , Xn for some n.
A psi calculus is parametric in data M and a logic with an
entailment relation Ψ ` ϕ.

Definition 1 (Psi-calculus parameters). A psi-calculus is de-
fined by three data types: the (data) terms T, ranged over by
M,N , the conditions C, ranged over by ϕ, the assertions A,
ranged over by Ψ , and six equivariant operators:
.↔ : T× T→ C Unicast Channel Equivalence
.
≺ : T× T→ C Broadcast Output Connectivity
.
� : T× T→ C Broadcast Input Connectivity
⊗ : A× A→ A Assertion Composition
1 : A Unit Assertion
` ⊆ A× C Logical Entailment

and substitution functions [ã :=M̃ ] that substitute terms for
names on each of T, C and A.

We impose certain requisites on these operators. In brief,
channel equivalence must be symmetric and transitive, ⊗



must be compositional, and the assertions with (⊗,1) form
an abelian monoid.

Definition 2 (Psi-calculus agents). Given psi-calculus pa-
rameters as in Definition 1, the psi-calculus agents, ranged
over by P,Q, . . ., are of the following forms.

π . P Prefix
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P | Q Parallel
!P Replication
(|Ψ |) Assertion
A〈M̃〉 Invocation

where the prefixes π are given by

π ::=M Ñ |M(x̃) |M !Ñ |M?(x̃)

denoting (polyadic) unicast output and input, and broadcast
output and input, respectively. Restriction binds a in P
and input prefixes bind x̃ in the suffix. We identify alpha-
equivalent agents.

Case agents are sometimes abbreviated as if ϕ then P
when n = 1, or as 0 or nothing when n = 0. To simplify
the implementation of PWB and improve usability, we use
polyadic rather than monadic communication (in contrast
to [11]) and distinguish between unicast and broadcast
prefixes (in contrast to [5]).

The actions ranged over by α are of the following kinds:
Input M Ñ denotes the reception of data Ñ on channel M .
Output M (νã)Ñ represents an action sending Ñ along M
and opening the scopes of the names ã (similarly to the
polyadic pi-calculus). Silent actions τ result from internal
communication. We also treat synchronous non-blocking
lossy (wireless) broadcast communication, with correspond-
ing input (M? Ñ ) and output (M ! (νã)Ñ ) actions.

A concrete transition is written Ψ � P
α−→ P ′, meaning

that in environment Ψ agent P can do an α to become P ′.

III. SYMBOLIC SEMANTICS

When a process performs an input action M Ñ , there are
related transitions for all other possible received values Ñ .
To avoid this infinite branching, we use a symbolic seman-
tics [11] extended with rules for broadcast communication.
Symbolic transitions are of the form P

α−→
C

P ′ where C is
a constraint (similar to those for the pi-calculus [4], [12]). In
psi-calculi the context can enable a transition if it contains
an assertion, such as (|x = 3|). Therefore a solution of a
constraint contains both a substitution (representing earlier
inputs) and an assertion (representing the parallel context).

Definition 3. A solution is a pair (σ, Ψ) where σ is a
substitution of terms for names, and Ψ is an assertion. The

transition constraints, ranged over by C and their solutions,
sol(C) are defined by:

Constraint Solutions
C ::= true {(σ, Ψ)}

false ∅
(νã){|Ψ ` ϕ|} {(σ, Ψ ′) : ∃b̃.̃b#σ, Ψ ′, Ψ, ϕ ∧

((ã b̃) · Ψ)σ ⊗ Ψ ′ ` ((ã b̃) · ϕ)σ}
C ∧ C ′ sol(C) ∩ sol(C ′)

The symbolic semantics are fully abstract w.r.t. the con-
crete semantics: P α−→

C
P ′ iff Ψ � Pσ

ασ−−→ P ′σ where
(Ψ, σ) ∈ sol(C).

IV. IMPLEMENTATION

The Psi-Calculi Workbench (PWB) is implemented in the
Standard ML programming language and compiles under the
Poly/ML compiler [19] version 5.4 and later. PWB is open
source and freely available from [8].

PWB is a modular implementation of psi-calculi, and can
be viewed both as a modelling tool and as a library for
building tools for particular instances of psi-calculi. Used
as a modelling tool, the user interacts with a command
interpreter that provides commands for process definitions
(manually or from files), manipulation of the process en-
vironment, stepping through symbolic (strong and weak)
transitions of a process, and symbolic bisimilarity checking
(strong and weak).

A. Psi-Calculus Instantiation

Section PWB implements a number of helper libraries for
the instance implementor. We show the architecture of PWB
in Figure 1. In this figure, the dependency relation goes
from right to left: each component may depend only on
components that are above it or to its left. All components
build on the supporting library that provides the basic data
structures and core algorithms for psi-calculi. The instance
implementor provides definitions for the parameters of an
instance, constraint solvers, and parsing and pretty-printing
code. These user-implemented components are then called
by the different algorithms implemented by the tool and by
the command interpreter. Not all components are required
to be implemented: for instance, the bisimulation constraint
solver is only needed for bisimularity checking.

The parameters of an instance (Definition 1) are imple-
mented as types name, term, condition and assertion corre-
sponding to N , T, C and A respectively, and user-defined
functions of the following types for the operators.

v a l chaneq : te rm ∗ t e rm −> c o n d i t i o n
v a l b r R e c e i v e : te rm ∗ t e rm −> c o n d i t i o n
v a l b r T r a n s m i t : t e rm ∗ t e rm −> c o n d i t i o n
v a l compose : a s s e r t i o n ∗ a s s e r t i o n −> a s s e r t i o n
v a l u n i t : a s s e r t i o n
v a l e n t a i l s : a s s e r t i o n ∗ c o n d i t i o n −> bool



Figure 1. Psi-Calculi Workbench Architecture

The parser for process terms makes calls to the user-
specified parser for each data type; terms, assertions and
conditions that are not representable as alphanumeric strings
need to be quoted, as in ”data (n)”(x).0 . The agent syntax is
the same as given in Definition 2, except for these changes:
(νx) is spelled as (new x), the output prefix M Ñ is written
as ’M<N1,...,Nk>, and the input prefix M(x̃) as M(x1 ,..., xk).

B. Symbolic Execution

Symbolic execution of processes is a useful tool to explore
the properties of a process, or indeed the model itself. Here
values input by the process are represented by variables, and
constraints are collected along the derivation of a transition.
In this way, it is easy to see under which conditions
transitions are possible, deferring instantiation of variables
as long as possible. PWB provides symbolic execution using
the symbolic semantics described in Section III. Both strong
and weak (ignoring τ -transitions) semantics are available.

In order to concretize the conditions under which a
transition may take place, the instance implementor may
provide a constraint solver for the transition constraints.
Since the connectives of Definition 3 are all positive, a
simple unification-based solver often suffices. The solver
should return either a list of combinations of unsatisfiable
constraints, or a list of solutions each consisting of a
substitution and an assertion.

v a l s o l v e : c o n s t r a i n t −>
( c o n d i t i o n l i s t l i s t ,

( ( name∗ t e rm ) l i s t ∗ a s s e r t i o n ) l i s t ) e i t h e r

C. Symbolic Bisimulation

PWB can also be used to check bisimulation equivalence
of processes. To this end, we implement the bisimulation
algorithm of [11] (with some minor corrections and opti-
mizations). This algorithm takes two processes and yields
a constraint in an extended constraint language; the two
processes are bisimilar under all solutions to the constraint.
The extended language for constraints additionally includes
conjunction, disjunction and implication as well as con-
straints for term equality {|M = N |}, freshness {|a#X|}, and
static implication between frames {|(νã)Ψ1 ≤ (νc̃)Ψ2|}. In

order to simplify the development of a constraint solver
for this richer language, PWB contains an SMT solver
library with suitable helper functions. Unless the assertion
language is trivial (A = {1}), most of the additional
effort in extending a solver for transition constraints to one
for bisimulation constraints lies in properly treating static
implication constraints.

V. EXAMPLES

We demonstrate the use of PWB on two examples. First,
we show how to encode the pi-calculus as a psi-calculus
instance, and how to implement this instance in PWB.
Second, we define a calculus for studying data collection
in wireless sensor networks, and define and study a simple
algorithm. This example highlights the flexibility of the
parameterization of PWB.

A. The pi-calculus

As an example of a simple psi-calculus instance, we
present our implementation of the pi-calculus in PWB. In
the Pi instance the terms are names; conditions are equalities
between names and the ’true’ condition >. We only have the
unit assertion ∗.

T , N
C , {a = b : a, b ∈ N} ∪ {>}
A , {∗}

Two names are channel equivalent iff they are equal; the
’true’ condition always holds.

a
.↔ b , a = b

1 , ∗
1⊗ 1 , 1

1 ` >
1 ` a = a

1) Implementation: The implementation of psi-calculus
parameters is straightforward. We instantiate the types of
the signature given in Section IV-A with
type name = s t r i n g
type t e rm = name
data type c o n d i t i o n = Eq of t e rm ∗ t e rm | T
data type a s s e r t i o n = Uni t

and implement the operators



fun chaneq ( a , b ) = Eq ( a , b )
v a l u n i t = Un i t
fun compose ( , ) = Un i t
fun e n t a i l s ( Uni t , Eq ( a , b ) ) = ( a = b )
| e n t a i l s ( Uni t , T ) = t r u e

The broadcast parameters br. . . simply throw an exception,
to avoid using broadcast prefixes in agents by mistake.

2) Sample Transition: For example, we check whether
the agent P(a,b) = a(x) | ’b<b> has a τ -transition. Upon
running sstep P(a ,b), the symbolic simulator of PWB yields
three transitions: one output, one input, and one τ -transition
(shown below).

−−| t a u |−−>
Source : ( a ( x ) ) | ( ’ b<b>)
C o n s t r a i n t : { | ” b = a ” | }
S o l u t i o n : ( [ a := b ] , 1 )
D e r i v a t i v e : ( 0 ) | ( 0 )

The transition constraint is that names a and b are equal; one
solution of the constraint is the substitution of b for a.

3) Bisimulation Checking: To check if
the agent P(c,b) = c(x) | b(x) is bisimilar to
Q(a,b) = case T: a(x ). b(x) [] T: b(x ). a(x) (which represents a
nondeterministic choice between a(x ). b(x) and b(x ). a(x)), we
run symbolic bisimulation checker by giving the command
P(c,b) ˜ Q(a,b). The bisimulation algorithm computes a
necessary and sufficient constraint for bisimilarity, which
has a solution ([ a := c ], 1). Applying the substitution
[a := c] to P(c,b) and Q(a,b) yields bisimilar agents.

4) Constraint Solvers: The transition constraint solver
attempts to find a satisfying substitution to a transition con-
straint. It performs unification, implemented as a transition
system (given below). The nodes in the transition system are
either a pair of a conjunction of atomic constraints (ranged
over by C) and a substitution σ, or the failed state 2.

(νã){|a = a|} ∧ C, σ → C, σ (νã){|>|} ∧ C, σ → C, σ

(νã){|a = b|} ∧ C, σ →2 if a 6= b ∧ (a ∈ ã ∨ b ∈ ã)
(νã){|a = b|} ∧ C, σ → C[b := a], σ[b := a] otherwise

The bisimulation constraint solver treats a richer con-
straint language, including disjunction and implication, and
is therefore more complex. First, it simplifies and pre-solves
the constraint by term rewriting on the constraint, supported
by built-in helper functions. Second, PWB transforms the
constraint into conjunctive normal form (CNF). Third, the
CNF is passed to the built-in SMT solver of PWB, for which
the instance implementor needs to provide a suitable theory.

B. Data collection in a Wireless Sensor Network

A wireless sensor network consists of numerous sensor
nodes that sense environmental data. A special node, called
the sink, is used to collect data from the network. Collection
often uses multi-hop communication, building a routing
tree rooted at the sink [15]. As wireless communication is
unreliable, different trees may be built in each protocol run.

sink

1 2

(a) Topology.

sink

1 2

(b) Possible routing
tree

sink

1 2

(c) Possible routing
tree

Figure 2. A simple topology with a sink and two sensor nodes where (a)
shows the connectivity and (b)-(c) show some possible routing trees.

We present a simple algorithm to build a routing tree: the
sink starts the tree building by broadcasting a special init
message 〈Sink , q〉 containing its id Sink and some query
q. When a node ni first receives an init message, it sets its
parent parentni to the sender of the message, and broadcasts
a new init message 〈ni, q〉 containing its own id to continue
building the next level of the tree. The response datum to the
query is sent by each node to its parent. Moreover, each node
forwards such response messages to its parent, ensuring that
they eventually reach the sink.

1) Psi-calculus instance and protocol model: We present
a model for the tree building and data collection protocol in
a custom Psi-calculus instance. For simplicity, we abstract
from the query. We assume a static topology Top ∈ P(N×
N); the topology in Figure 2(a) would be represented by
Top = {(0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1)} where the
sink has id 0. We then define

T , {init(M), data(M) :M ∈ T} ∪ N ∪N
C , {K

.
�M,M

.
≺ K,M .↔ N :M,N,K ∈ T}

A , {Top}
1 , Top.

Channels are of two kinds: broadcast channels init(M)
and unicast channels data(M). We define ` as follows.

Ψ ` data(M)
.↔ data(N) iff M = N ∈ N

Ψ ` init(M)
.
≺ init(N) iff M = N ∈ N

Ψ ` init(M)
.
� init(N) iff (M,N) ∈ Ψ

Here broadcast channels contain the node id of the sender
(second line above), and can be received by any node
connected to it (third line). The behaviour of the sink and
the other nodes is given by the processes below.

Sink ( nodeId , bsChan ) <=
’ ” i n i t ( nodeId ) ” !<bsChan> .
! ” d a t a ( bsChan ) ” ( x ) ;

Node ( nodeId , nodeChan , datum ) <=
” i n i t ( nodeId ) ” ? ( pChan ) .
’ ” i n i t ( nodeId ) ” !<nodeChan> .
’ ” d a t a ( pChan ) ”<datum> .
NodeForwardData<nodeChan , pChan> ;

NodeForwardData ( nodeChan , pChan ) <=
! ” d a t a ( nodeChan ) ” ( x ) . ’ ” d a t a ( pChan ) ”<x> ;



2) Sample Transition: To illustrate the use of the tool, we
consider a small system with a sink and two sensor nodes.
Each node has a unique channel that is used for response
messages.
System3 ( d1 , d2 ) <=

( new chanS ) Sink <0, chanS> |
( new chan1 ) Node<1, chan1 , d1> |
( new chan2 ) Node<2, chan2 , d2>

We will show a possible transition sequence in PWB, using
the topology shown in Figure 2(a). Below, we regard the sys-
tem as closed and disregard reception from the environment.
We thus only consider transitions labelled with broadcast
output and unicast communication actions.

The following initial transition is obtained by executing
the symbolic simulator of PWB on System3<d1,d2> and corre-
sponds to the routing tree shown in Figure 2(b). It is one of
seven possible initial transitions produced by PWB, of which
three represent broadcast reception from the environment,
and the other three situations where not all nodes receive the
broadcast message. The transition label gna!(\bsChan)bsChan,
represents the channel with a fresh name gna. The generated
constraint requires init(0)

.
≺ gna , gna

.
� init(1) and

gna
.
� init(2), or “node 0 is output connected to some

channel gna which is input connected to nodes 1 and 2”.
The constraint solver finds a solution to the constraint, which
substitutes init(0) for gna .
−−|gna ! (\ bsChan ) bsChan|−−>
Source :

System3<d1 , d2>
C o n s t r a i n t :

( new chan1 , chan2 , chanS ) { | ” i n i t (0)< gna ” | } /\
( new chanS , chan2 , chan1 ) { | ” gna> i n i t ( 1 ) ” | } /\
( new chanS , chan1 , chan2 ) { | ” gna> i n i t ( 2 ) ” | }

S o l u t i o n :
( [ gna := ” i n i t ( 0 ) ” ] , 1 )

D e r i v a t i v e :
( ! ( ” d a t a ( chanS ) ” ( x ) ) ) |

( ( ( new chan1 ) (
’ ” i n i t ( 1 ) ” !<chan1 >.

’ ” d a t a ( chanS ) ”<d1>.
NodeForwardData<chan1 , chanS>

) ) |
( ( new chan2 ) (

’ ” i n i t ( 2 ) ” !<chan2 >.
’ ” d a t a ( chanS ) ”<d2>.

NodeForwardData<chan2 , chanS>
) ) )

In the derivative the Sink successfully communicated its
unicast channel chanS to both nodes.

From this point the system can evolve in two symmetrical
ways: either of the nodes broadcasts an init message, but
since no node in the (closed) system is listening on a broad-
cast channel, the message is not received. The following
transition is for node 1.
−−|gna ! (\ chan1 ) chan1|−−>
Source :

The same as the above derivative
C o n s t r a i n t :

( new chan2 , chan1 ) { | ” i n i t (1)< gna ” | }

S o l u t i o n :
( [ gna := ” i n i t ( 1 ) ” ] , 1 )

D e r i v a t i v e :
( ! ( ” d a t a ( chanS ) ” ( x ) ) ) |

( ( ’ ” d a t a ( chanS ) ”<d1>.
NodeForwardData<chan1 , chanS>) |

( ( new chan2 ) (
’ ” i n i t ( 2 ) ” !<chan2 >.

’ ” d a t a ( chanS ) ”<d2>.
NodeForwardData<chan2 , chanS>

) ) )

The system is now in the state where node 1 can send
data to the sink. By following the analogous transition for
node 2, we get the system where both nodes are ready to
communicate the data.

−−|gna ! (\ chan2 ) chan2|−−>
Source :

The same as the above derivative
C o n s t r a i n t :

( new chan2 ) { | ” i n i t (2)< gna ” | }
S o l u t i o n :

( [ gna := ” i n i t ( 2 ) ” ] , 1 )
D e r i v a t i v e :

( ! ( ” d a t a ( chanS ) ” ( x ) ) ) |
( ( ’ ” d a t a ( chanS ) ”<d1>.

NodeForwardData<chan1 , chanS>) |
( ’ ” d a t a ( chanS ) ”<d2>.

NodeForwardData<chan2 , chanS >))

3) Implementation: We define the terms, condition, as-
sertions and unit in the tool as:
data type t e rm = I n i t of t e rm | Data of t e rm

| Name of name | I n t of i n t
data type c o n d i t i o n = OutputConn of t e rm ∗ t e rm

| InputConn of t e rm ∗ t e rm
| ChEq of t e rm ∗ t e rm

data type a s s e r t i o n = Top
v a l u n i t = Top

And the logical entailment relation as:
fun e n t a i l s ( p s i , OutputConn (m, n ) ) = m = n
| e n t a i l s ( p s i , InputConn (m, n ) ) =

L s t . member (m, n ) t o p o r e l s e L s t . member ( n ,m) t o p
| e n t a i l s ( , ChEq ( Name a , Name b ) ) = a = b
| e n t a i l s ( , ChEq ( , ) ) = f a l s e

4) Constraint Solver for Symbolic Transitions: Transition
constraints are conjunctions of conditions. The constraints
are solved in two phases, corresponding to the unicast
connectivity constraints and the broadcast connectivity con-
straints, respectively. To simplify the solver, we treat all free
names in the processes as distinct (cf. distinctions [16]).
For unicast constraints, we thus fail if the constraint is not
satisfied.

(νã){|data(a) .↔ data(b)|} ∧ C � C if a = b
(νã){|data(a) .↔ data(b)|} ∧ C � 2 if a 6= b

During the second phase, the constraint solver checks for
broadcast connectivity in the given topology. Let O be the
output constraints {|init(n)

.
≺ a|} and I the input constraints

{|a
.
� init(n)|}. We distinguish four different cases:

1) if I = ∅ and O = {{|init(n)
.
≺ a|}}, then the solution

is [a := init(n)].



2) if I 6= ∅ and O = {{|init(n)
.
≺ a|}}, and we have

(n,m) ∈ Top for every constraint {|a
.
� init(m)|} in

I , then the solution is [a := init(n)]. Otherwise the
constraint is unsatisfiable, i.e. 2.

3) if I 6= ∅ and O = ∅, then the constraint solver finds
n such that for every {|a

.
� init(m)|} ∈ I we have

(n,m) ∈ Top. For each such n, [a := init(n)] is a
possible solution.

4) if I = ∅ and O = ∅, then the broadcast part of the
constraint is trivially true.

VI. RELATED WORK

ProVerif [3] is a specialised tool for security protocol
verification. It accepts protocol specifications in a version
of the applied pi-calculus [1]. The tool is parametric in a
term language equipped with equations and unidirectional
rewrite rules, but works in a fixed logic (predicate logic with
equality). ProVerif does not include a symbolic simulator
or a bisimulation checker. mCRL2 for ACP [7] allows
higher order sorted free algebras and equational logics, and
PAT3 [14] includes a CSP] [20] module where actions built
over types like booleans, integers are extended with C] like
programs.

Our symbolic semantics and bisimulation generation al-
gorithm (slight variations of our previous work [11]) are to
a large extent based on the pioneering work by Hennessy
and Lin [9] for value-passing CCS, later specialised for the
pi-calculus by Boreale and De Nicola [4] and independently
by Lin [12], [13].

Acknowledgement: This work has been supported by
the ProFun project.

REFERENCES

[1] M. Abadi and C. Fournet, “Mobile values, new names, and
secure communication,” in Proceedings of POPL ’01. ACM,
Jan. 2001, pp. 104–115.

[2] J. Bengtson, M. Johansson, J. Parrow, and B. Victor, “Psi-
calculi: A framework for mobile processes with nominal data
and logic,” Logical Methods in Computer Science, vol. 7,
no. 1, 2011.

[3] B. Blanchet, “Using Horn clauses for analyzing security
protocols,” in Formal Models and Techniques for Analyzing
Security Protocols, ser. Cryptology and Information Security
Series, V. Cortier and S. Kremer, Eds. IOS Press, Mar. 2011,
vol. 5, pp. 86–111.

[4] M. Boreale and R. De Nicola, “A symbolic semantics for the
π-calculus,” Information and Computation, vol. 126, no. 1,
pp. 34–52, 1996.

[5] J. Borgström, S. Huang, M. Johansson, P. Raabjerg, B. Victor,
J. Åman Pohjola, and J. Parrow, “Broadcast psi-calculi with
an application to wireless protocols,” in Proc. SEFM 2011,
ser. LNCS, vol. 7041. Springer, 2011, pp. 74–89.

[6] M. J. Gabbay and A. M. Pitts, “A new approach to abstract
syntax with variable binding,” Formal Aspects of Computing,
vol. 13, pp. 341–363, 2001.

[7] J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko,
and M. van Weerdenburg, “The formal specification lan-
guage mCRL2,” in Methods for Modelling Software Systems
(MMOSS), ser. Dagstuhl Seminar Proceedings, no. 06351.
Dagstuhl, Germany: IBFI, 2007.

[8] R. Gutkovas, “Psi Calculi Workbench,” 2013, a tool
for Psi-calculi, developed at Department of Information
Technology, Uppsala University. [Online]. Available: http:
//www.it.uu.se/research/group/mobility/applied/psiworkbench

[9] M. Hennessy and H. Lin, “Symbolic bisimulations,” Theoret-
ical Computer Science, vol. 138, no. 2, pp. 353–389, 1995.

[10] M. Johansson, J. Bengtson, J. Parrow, and B. Victor, “Weak
equivalences in psi-calculi,” in Proc. of LICS 2010. IEEE,
2010, pp. 322–331.

[11] M. Johansson, B. Victor, and J. Parrow, “Computing strong
and weak bisimulations for psi-calculi,” Journal of Logic and
Algebraic Programming, vol. 81, no. 3, pp. 162–180, 2012.

[12] H. Lin, “Symbolic transition graph with assignment,” in
Proceedings of CONCUR ’96, ser. Lecture Notes in Computer
Science, U. Montanari and V. Sassone, Eds., vol. 1119.
Springer, 1996, pp. 50–65.

[13] ——, “Computing bisimulations for finite-control pi-
calculus,” Journal of Computer Science and Technology,
vol. 15, no. 1, pp. 1–9, 2000.

[14] Y. Liu, J. Sun, and J. S. Dong, “PAT 3: An extensible
architecture for building multi-domain model checkers,” in
ISSRE ’11, T. Dohi and B. Cukic, Eds. IEEE, 2011, pp.
190–199.

[15] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TAG: a Tiny AGgregation service for ad-hoc sensor net-
works,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 131–
146, Dec. 2002.

[16] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile
processes, part I/II,” Information and Computation, vol. 100,
pp. 1–77, Sep. 1992.

[17] J. Parrow, J. Borgström, P. Raabjerg, and J. Åman Pohjola,
“Higher-order psi-calculi,” 2012, to appear in MSCS. Avail-
able from http://www.it.uu.se/research/group/mobility.

[18] A. M. Pitts, “Nominal logic, a first order theory of names and
binding,” Information and Computation, vol. 186, pp. 165–
193, 2003.

[19] “Poly/ML,” 2013, a full implementation of Standard ML.
[Online]. Available: http://www.polyml.org

[20] J. Sun, Y. Liu, J. S. Dong, and C. Chen, “Integrating speci-
fication and programs for system modeling and verification,”
in Proc. TASE ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 127–135.

http://www.it.uu.se/research/group/mobility/applied/psiworkbench
http://www.it.uu.se/research/group/mobility/applied/psiworkbench
http://www.it.uu.se/research/group/mobility
http://www.polyml.org

	Introduction
	Psi-calculi
	Symbolic Semantics
	Implementation
	Psi-Calculus Instantiation
	Symbolic Execution
	Symbolic Bisimulation

	Examples
	The pi-calculus
	Implementation
	Sample Transition
	Bisimulation Checking
	Constraint Solvers

	Data collection in a Wireless Sensor Network
	Psi-calculus instance and protocol model
	Sample Transition
	Implementation
	Constraint Solver for Symbolic Transitions


	Related work
	References

