
Extending TriCera to parse ACSL annotations

Background
Formal methods are becoming increasingly common in the industry and in the design and
verification of embedded systems. Unlike testing, formal verification aims to prove the ​absence
of bugs in a system. The widely used DO-178C standard of the avionics industry and the
ISO26262 standard used in the automotive industry both recommend formal verification of
safety critical systems to supplement testing.

One approach to formal verification is ​model checking​. ​TriCera is a model checker for C
programs, and it attempts the formal verification of a given C program with respect to some
specifications. These specifications can be both implicit (e.g., memory and type safety) and
explicit (through assertions and annotations).

TriCera takes a subset of C programs and encodes them in Horn clauses (see ​this thesis for
details), which are then fed into a Horn solver such as ​Eldarica which checks if the generated
clauses are solvable. If the clauses are concluded to be unsafe, a counterexample trace is
provided as justification.

ACSL (ANSI/ISO C Specification Language) is used when specifying functional properties of C
programs in the ​Frama-C framework. These are added as annotations to C programs in order
to specify ​pre/post-conditions of functions, ​loop invariants​, and ​assertions ​at specific program
locations.

https://en.wikipedia.org/wiki/Formal_methods
https://en.wikipedia.org/wiki/Model_checking
https://github.com/uuverifiers/tricera
http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1373067&dswid=-1708
https://github.com/uuverifiers/eldarica
https://frama-c.com/

/*@ ensures \result >= x && \result >= y;

ensures \result == x || \result == y;

*/

int max (int x, int y) { return (x > y) ? x : y; }

(example is from ​https://frama-c.com/download/acsl-tutorial.pdf​)

These annotations are only used during verification and are not part of the compiled program.
See Frama-C and ​ACSL documentation​ for more details and tutorials.

Goals of the Thesis
The main goal is to extend TriCera so that it can parse (a subset of) ACSL annotations
appearing in C source code.

The motivations for this work are

- to be able to directly verify ACSL annotated programs in TriCera with some advantages,
such as not requiring the specification of ​loop invariants​,

- to pave the way for future work such as automatic generation of (missing) annotations
and loop invariants to be used by deductive verification tools.

The work will require you to get familiar with the C parser and Horn encoder of TriCera, and
extend them with correct translations from ACSL annotations into Horn clauses. The
performance of the implementation should be evaluated using benchmarks.

Relevant Background and Courses
Knowledge in compiler construction, formal methods, and logic will be required for this project.
Those topics are partly covered in the following courses at Uppsala University; additional
reading material will be provided to get a more complete background.

● 1DL321, Compiler Design I
● 1DL330, Functional Programming I
● 1DT034, Programming Theory
● 1DL481, Algorithms and Data Structures III
● 1DL500, Automata and Logic (currently not given)

TriCera is written in Scala, so knowledge of Scala and functional programming concepts would
be helpful.

https://frama-c.com/download/acsl-tutorial.pdf
https://frama-c.com/html/acsl.html
https://en.wikipedia.org/wiki/Loop_invariant

Practical Things
This project can be carried out by one student. The work will be carried out at the IT
Department, or by the student working from home. Supervision will be provided through regular
meetings with supervisors at the IT Department:

Contacts: Zafer Esen (​zafer.esen@it.uu.se​) and Philipp Rümmer (​philipp.ruemmer@it.uu.se​)

If you are interested in this project, please contact the above people; your application should
include a CV.

mailto:zafer.esen@it.uu.se
mailto:philipp.ruemmer@it.uu.se

