
Master Thesis on Formal Verification Methods for
the TACC Framework

Background
TACC is a programming language and framework that is widely used at Arista Networks to
implement components of its Extensible Operating System (EOS). It is based on the
attribute-oriented programming approach by Prof. David Cheriton. Its fundamental model of
computation is based on defining and implementing constrainers which enforce constraints
between input and output data entities. Changes in attributes of the input entities cause the
activation of a reactor of the constrainer. A reactor is an imperative piece of code that modifies
the attributes of output entities such that the constraint is re-established. For example, consider
the following constrainer which may be used to enforce the constraint “a+b==c”. By declaring
reactors to input attributes a and b, the constrainer can update output attribute c to re-establish
the constraint.

The input and output relationships are described in the TACC language which the TACC
compiler translates into C++ boilerplate code. Combined with reactor implementations that are
written as C++ methods, a C++ compiler generates the final executable. A typical process in
EOS consists of hundreds of distinct constrainers with dynamic lifetime.

Typical industry best practice embraced at Arista is to validate implementation correctness with
extensive automated testing in a testing hierarchy, including unit tests, process-level,
system-level and network-level integration tests. Software engineers are used to testing
strategies, but the key drawback always remains that edge cases may be overlooked. This
problem could be solved by applying formal verification.

Goals of the Thesis
The objective of this project is to explore applicability of formal verification methods to formally
prove that constrainer implementations satisfy their specifications, for a relevant subset of the
TACC language. The idea is to adapt or extend some of the standard formal verification tools

http://www.arista.com/

that have been developed in academia, for instance Frama-C and Why3, to analyze TACC
code. A few simple examples as well as a real-world constrainer implementation together with
their informal specifications will be provided by Arista, as well as an informal specification of
relevant TACC semantics. Formal specifications will need to be formulated from those. At the
end of the project, the given implementations will be formally proven correct against the formal
specifications in a semi-automated way.

Relevant Background and Courses
Knowledge in compiler construction, formal methods, and logic will be required for this project.
Those topics are partly covered in the following courses at Uppsala University; additional
reading material will be provided to get a more complete background.

● 1DL321, Compiler Design I
● 1DT034, Programming Theory
● 1DL481, Algorithms and Data Structures III
● 1DL500, Automata and Logic (currently not given)

Practical Things
This project can be carried out by one or multiple students, and we will adapt the scope and
project goals accordingly. Since the company Arista Networks is currently not able to host
students, due to the Corona crisis, the work will be carried out at the IT Department, or by the
students working from home. Supervision will be provided through regular meetings with
supervisors at Arista Networks and at the IT Department:

● Contacts at IT Department: Zafer Esen (zafer.esen@it.uu.se) and Philipp Rümmer
(philipp.ruemmer@it.uu.se)

● Contact at Arista Networks: Martin Stigge (mstigge@arista.com)

If you are interested in this project, please contact the above people; your application should
include a CV.

https://frama-c.com/
http://why3.lri.fr/
mailto:zafer.esen@it.uu.se
mailto:philipp.ruemmer@it.uu.se
mailto:mstigge@arista.com

