
Automatic Veri�cation of Real{Time Communicating Systems by

Constraint{Solving �

Wang Yi, Paul Pettersson and Mats Daniels

Department of Computer Systems, Uppsala University, Box 325, S751 05, Uppsala,
Sweden. Email: fyi,paupet,matsdg@docs.uu.se

In this paper, an algebra of timed processes with real{valued clocks is presented, which
serves as a formal description language for real{time communicating systems. We show
that requirements such as \a process will never reach an undesired state" can be veri�ed
by solving a simple class of constraint systems on the clock{variables. A complete method
for reachability analysis associated with the language is developed, and implemented as an
automatic veri�cation tool based on constraint{solving techniques. Finally as examples,
we study and verify the safety{properties of Fischer's mutual exclusion protocol and a
railway crossing controller.

1. INTRODUCTION

Correct timing plays an important role in ensuring the correct operation of real{time
systems. Since such systems are often embedded in safety{critical environments, it is
important to formally verify that certain crucial requirements are always met by the
systems. This creates a need for formalisms to describe the abstract behavior of timed
systems (i.e. modeling) and to check logical properties of the abstract descriptions (i.e.
veri�cation). During the past few years, researchers have developed various formal tech-
niques for modeling and verifying real{time systems, e.g. automaton based, [1{3, 14]
and process algebra based [24, 7, 9, 15, 22, 17, 13, 20, 29]. One of the most successful
approaches is timed automata due to Alur and Dill [3], which are the classical �nite-state
automata extended with variables modeling system clocks.
In this paper, we study real-time communicating systems. Such a system may consist

of a number of components with their own or shared clocks. The components may com-
municate with each other, and the environment through channels according to the timing
constraints on the values of the clocks. Naturally, we can use timed automata to describe
the components. However, it is not obvious how to combine the component descriptions
to achieve the whole system description. Originally, the parallel composition of timed
automata is interpreted as logical conjunction, which is similar to the strong (multi{)
synchronization operator from process algebras, de�ned by the rule:

P
a
�! P 0 Q

a
�! Q0

P&Q
a
�! P 0&Q0

�This research is supported in part by the Swedish Board for Technical Development (NUTEK), project
No. 93-3244.

Intuitively, it means that the whole system described by P&Q may make a move (i.e.
doing a) only if the components described by P and Q can do the same. That is, all
components of a concurrent system must synchronize on every action at every time point.
Otherwise, the system will be deadlocked. This seems to be a strong restriction for
practical application of timed automata, as real systems are often highly distributed and in
many cases, a system component may only want to communicate with the environment or
a particular component, without synchronizing with the others. Therefore, we introduce
a CCS{like parallel composition operator for timed automata, to describe one{to{one
communication and interleaving.
As the �rst contribution of this paper, we present an algebra of timed automata, which

provides a number of algebraic operators including the parallel composition operator to
model communication and concurrency. The operators can be used to construct complex
automata (i.e. complex system descriptions) in terms of simpler ones (i.e. component
descriptions). Thus, the algebra may serve as a structural description language for real{
time communicating systems.
As the second contribution of the paper, we develop a veri�cation tool based on

constraint{solving techniques, for the type of systems described above. There have been
a number of veri�cation techniques developed for timed automata, e.g. [2, 1, 14]. How-
ever, most of the existing algorithms are based on the notion of region graphs, which
always construct the whole reachability graph for a given automaton �rst and then check
properties of the graph. Though there have been e�cient algorithms to construct min-
imal reachability graphs such as [2], the problem of state{explosion is still an obstacle
for automatic veri�cation. In particular, when the systems to be analyzed include many
components, it would be impossible to construct the whole reachability graph even in the
untimed setting.
It has been pointed out in [12] and elsewhere that the practical goal of veri�cation of

real{time systems is to verify simple logical properties, which does not need the whole
power of model{checking (e.g. for timed CTL). We shall only consider simple safety{
properties, which can be veri�ed without constructing the whole reachability graph of a
timed system. For instance, a railway control system (see section 4) should guarantee
that \at most one train can cross a critical point at the same time". This is a typical
safety{property meaning that bad things can never happen. However, we can also verify
properties requiring that a good thing will eventually happen within a certain time limit.
For example, \a train should be able to pass a critical point (such as a bridge), within a
bounded delay". We will show that such properties can be veri�ed by solving a simple
class of linear constraint systems.
The rest of the paper will be organized as follows: In section 2, we present an algebra

of timed processes, in which a syntactical term describes a timed automaton; any timed
automaton can be expressed in the algebra. In section 3, we study the reachability
problems associated with the algebra. An algorithm is presented, and proved to be sound
(i.e. it always provides the right answer) and complete (i.e. it always terminates). It
is implemented as a tool, based on an existing constraint{solving program. In section
4, as examples, we study a variant of the railway crossing problem and Fischer's mutual
exclusion protocol. Finally, in section 5 we give some concluding remarks.

2. AN ALGEBRA OF PROCESSES WITH CLOCKS

Process algebras provide a clean and general paradigm for compositional speci�cation
of communicating processes. We present an algebra of timed automata, serving as a
structural description language for real-time communicating systems. The idea is to use
algebraic operators to construct complex system descriptions in terms of simpler ones
(or component descriptions). Following the tradition of process algebra, we shall call the
algebraic terms processes instead of timed automata.

2.1. Syntax

Traditionally, a pre�x expression �:P in process algebras like CCS describes a process
which may perform an �-transition and then continue with P . But no timing information
is given on when the transition may be taken.
Following Alur and Dill [3], we assume a set of clocks to specify timing constraints

on transitions. Conceptually, the clocks may be considered as the system clocks of a
concurrent system, owned or shared by processes in the system. The processes may test
the clocks by comparing the clock values with integer constants and reset the clocks (i.e.
assigning clock values to 0). Further, assume that all clocks proceed at the same rate and
measure the amount of time that has been elapsed since they were reset or started.
We extend the action pre�x �:P to the form (g; �; �):P where g is a predicate over the

clock values and � is a subset of clocks to be reset. Intuitively, (g; �; �):P describes a
timed process which may perform an �-transition instantaneously when g is true of the
current clock values and then continue with P with the clocks in � being reset (and the
other clocks will proceed with their old values).
Enabling Conditions. We use C to denote the set of clocks, ranged over by x; y; z.

An enabling condition g is a logical formula generated by the following syntax:

g ::= tt j � j A j g ^ g

where A is an atomic formula of the form: x � n for �2 f�;�; <;>g and n being a
natural number. We could allow a more general form of formulas such as disjunction
g _ f . However, it will not give more expressive power to the description language we are
going to develop. In fact, logical disjunction can be modeled by the behavioural choice
operator.
The language is essentially CCS extended with the timed action pre�x (g; �; �):P . As

in CCS, we assume a set � = � [��2 with ��� = � for all � 2 �, ranged over by �; �

representing external actions, and a distinct symbol � representing internal actions. We
use Act to denote the set � [f�g ranged over by a; b; c representing both internal and
external actions. Further, assume a set of process variables ranged over by X;Y (and
sequences of letters).
We shall see that the algebraic structure of a process expression P represents the

control{structure of a process. This will be clear when we present the operational se-
mantics. We adopt a two-phase syntax according to two types of control{structures:
regular and concurrent.

2The action �� is called the co-action of �. In our example, we shall use �! instead of �� to denote an
output event and �? instead of � to denote an input event.

Processes with Regular Control-Structure. We start with processes whose control-
structure is regular in the sense that no concurrency is involved. The regular process
expressions are generated by the following grammar:

E ::= nil X (g; a; �):E E + F X
def
= E

We shall restrict expressions to be well-guarded in the following sense:

De�nition 2.1 X is well-guarded in E if and only if every free occurrence of X in E is
within a subexpression (a guard) of the pre�x form (g; a; �):F in E. E is well-guarded if
and only if every free variable in E is well-guarded in E, and for every subexpression of

the form X
def
= F in E, X is well-guarded in F . 2

Let A denote the set of closed and well-guarded expressions generated by the grammar
above. We call A regular timed processes. Note that if we consider the pre�x (g; a; �)
to be a single guard (or structured action), A corresponds precisely to the set of CCS
regular processes.
Processes with Concurrent Control-Structure. We shall study concurrent pro-

cesses in the form:

(P1j:::jPn)nL

where Pi 2 A describing the components and L � � representing the set of internal
channels connecting the components.
We use P to denote the set of timed concurrent processes, ranged over by P;Q and

R. For simplicity, we have ignored the relabelling operator. The results of this paper
can easily be extended to more general types of processes modeled by the combination of
parallel composition, restriction and relabelling.

2.2. Semantics

We interpret P in terms of clock assignments. A clock assignment � : C �! R+0 is a
function mapping each clock x to a non-negative real �(x). We assume that a process is
always started with an initial clock assignment.
Before going further, we need to de�ne some notation. Assume that d is a non{negative

real and � is a set of clocks. We use � + d to denote the clock assignment which maps
each clock x to �(x) + d, and �[�] to denote the clock assignment which maps x to 0 if
x 2 � or �(x) otherwise. Furthermore, given a predicate g over C, we write g(�) to mean
the truth value of g, relative to assignment �.
A global state (or a con�guration) of a process is a pair (P; �) where P 2 P stands for

the current control-state and � denotes the current clock values. A process may make two
types of transitions from state to state:

� Timed transition: (P; �)
d
;(P; �+ d) following the rules given in de�nition 2.2.

� Action transition: (P; �)
a
;(P 0; �0) following the rules given in de�nition 2.3.

The timed transition relation describes the pure passing of time; the action transition
relation describes the instantanesous occurrence of actions and, possibly, the resetting of
clocks.

De�nition 2.2 (time transition relation)

d �M(E; �)

(E; �)
d
;(E; �+ d)

where M(E; �) is the maximal delay of (E; �), de�ned inductively as follows:

M(nil; �) = 1
M((g; a; �):E; �) = supftjg(�+ t)g

M(E + F; �) = maxfM(E; �);M(F; �)g

M(X; �) = M(E; �) if X
def
= E

M(EjF; �) = minfM(E; �);M(F; �)g
M(EnL; �) = M(E; �)

2

For example, assume �(x) = 0:4 and g � x < 1. Then supftjg(� + t)g = 0:6 and
M((g; a; �):E; �) = 0:6.
Intuitively,M(P; �) is the maximal time that (P; �) may stay in the same control-state

i.e. P before it must switch to another control-state. This is also assumed by the maximal
progress assumption adopted in timed process algebras [9, 29]. For example, the control-

state of X
def
= (x < 1; �; fg):Q will become Q by doing the �{action before the clock

value of x proceeds to 1. However, when the value of x is larger than, or equal to 1, the

control-state of Y
def
= (x < 1; �; fg):Q + (x � 1; a; fxg):R will remain the same, i.e. Y ,

but �{action will be disabled and a{action will be enabled.

De�nition 2.3 (action transition relation)

g(�)

((g; �; �):E; �)
a
;(E;�[�])

(E; �)
a
;(E 0; �[�])

(E + F; �)
a
;(E0; �[�])

(F; �)
a
;(F 0; �[�])

(E + F; �)
a
;(F 0; �[�])

(E; �)
a
;(E0; �[�])

(X; �)
a
;(E0; �[�])

[X
def
= E]

(E; �)
a
;(E 0; �[�])

(EjF; �)
a
;(E0jF; �[�])

(F; �)
a
;(F 0; �[�])

(EjF; �)
a
;(EjF 0; �[�])

(E; �)
a
;(E0; �[�]) (F; �)

�a
;(F 0; '[�])

(EjF; �)
�
;(E 0jF 0; (� [')[�])

(E; �)
a
;(E0; �[�])

(EnL; �)
a
;(E 0nL; �[�])

[a; �a 62 L]

2

3. VERIFYING SAFETY{PROPERTIES OF PROCESSES

The language developed in the previous section can be used as a tool to construct the
abstract model of an existing system or a system to be designed. In this section, we
discuss how to verify properties of such systems in terms of their abstract models.

3.1. Veri�cation by Reachability Analysis

It has been pointed out in [12] and elsewhere that the practical goal of veri�cation
of real{time systems, in particular safety{critical systems is to verify simple safety{
properties. The type of properties is usually formalized as temporal logic formulas in
the form 2:F read as \it is impossible that F will be true in the future". Here, F
describes a certain undesired situation or logical property. For example, to verify a rail-
way control system, the �rst question to ask would be: is it possible that two trains are
crossing a certain critical point at the same time? For �nite{state systems, this kind of
properties can be veri�ed simply by checking all reachable states whether they satisfy F

or not, that is, by \reachability analysis". Unfortunately, the systems concerned here are
in�nite{state because the clock values range over the reals.

De�nition 3.1 (Simple Reachability Problem) Assume P0; Pf 2 P and �0; �f are clock
assignments. We say that (Pf ; �f) is reachable from (P0; �0) i� there is a natural number
n and a sequence of transitions starting from (P0; �0) and ending up with (Pf ; �f), i.e.
(P0; �0)

�1
;(P1; �1):::(Pn�1; �n�1)

�n
;(Pf ; �f) for �i 2 Act [R+0. 2

More generally, we will consider the reachability problem for sets of clock assignments.

De�nition 3.2 (General Reachability Problem) Assume P0; Pf 2 P and D0;Df are sets
of clock assignments. We say that (Pf ;Df) is reachable from (P0;D0) i� there exists
�0 2 D0, and �f 2 Df such that (Pf ; �f) is reachable from (P0; �0). 2

We shall develop an algorithm based on constraint{solving techniques, for solving the
General Reachability Problem.

3.2. Reachability Analysis by Constraint{Solving

Given a process to be analyzed, we assume that its clocks are ordered as a vector
< x1; x2; :::; xn >. Then a clock assignment can be considered as a vector of reals or a
point in the n-dimensional space Rn

+0. We shall use linear constraint systems to describe
regions of points in such a space (as their solution sets), and solve the reachability problems
by manipulating a simple class of linear constraint systems.

3.2.1. A Class of Linear Constraint Systems

By a linear constraint system, we simply mean a set of linear inequalities over a set of
variables ranging over R+0 (in our case, the clock variables). A solution to such a system
is an assignment that maps each variable to a value, which satis�es the set of inequalities.
In general, a constraint system may have more than one solution. In the rest of the paper,
we shall simply call a constraint system D a region, which means its solution set. We
shall write (1) D = fg to mean D is not satis�able, (i.e. its solution set is empty), (2)
D � D0 to mean that D implies D0 (i.e. the solution set of D is included in the solution
set of D0), and D ^D0 to mean the intersection of the solution sets of D and D0.
As we are only allowed to compare clock variables with natural numbers in enabling

conditions, the class of constraint systems we need to deal with is restricted to a simple
class which we call time regions. We shall use D to denote this class of constraint systems
ranged over by D;D0.

De�nition 3.3 (time region) Let C = fx1:::xng be a set of clocks. A time region of C is
a constraint system in the following form3:

D = fai � xiji � ng [fxi � biji � ng [fxi � xj � dij ji; j � ng

where �2 f�; <g, and ai; bi; dij are natural numbers. In particular, bi; dij may be 1. 2

Intuitively, ai is the lower bound of xi in D, bi is the upper bound of xi in D and dij
is the maximal distance between xi and xj in D. We shall need a few operations on time
regions in doing reachability analysis.

De�nition 3.4 Assume that D is a time region.

1. (Weakest Pre{Condition): wp(D) = f � j 9d 2 R+0 : �+ d 2 Dg

2. (Border{Line): border(x;D) = f � j � 2 D and �(x) = 0 g

3. (Free{Variable): free(x;D) = f �[x := d] j � 2 D and d 2 R+0 g 2

D

D’

D’’

D’’’=free(x ,D’’)

D’=wp(D)

x2

x1

x1x1

x1

xx

x

2

2

2

2

(a) - Time Region (b) - Weakest Pre-Condition

(d) - Free-Variable(c) - Border-Line

2D’’=border(x ,D’)

Figure 1. Operations on Time Regions

3Note that the symbol [here means the union of the sets of constraints. It does not mean the union of
the solution sets, rather the intersection of the solution sets.

The three operations on time regions are illustrated in Fig 1 for the case of two clocks.
The weakest pre{condition, wp(D) is the largest region of points that will eventually reach
D after some delay, border(x2;D0) is the border{line of D0 on x1{coordinate (that is the
region D0 ^ fx2 = 0g) and free(x2;D00) is the largest region that has the same projection
as D00 on x1{coordinate.
We will apply the operations border(x;D) and free(x;D) on sets of variables. As-

sume that � is a set of clock variables and � = fxg [�0. We de�ne border(�;D) =
border(x; (border(�0;D))), free(�;D) = free(x; (free(�0;D))) and in particular, border(fg;D) =
free(fg;D) = D. Furthermore, we de�ne conjunction D ^D0 of two time regions D;D0 in
the standard way, that is, f�j� 2 D and � 2 D0g.
It can be established that the class of constraint systems known as time regions is

closed under the operations: \Conjunction", \Weakest Pre{Condition", \Border{line"
and \Free-Variable".

Proposition 1 Assume that C is a set of clocks, D and D0 are time regions of C, and
� � C. Then D ^D0;wp(D); free(�;D) and border(�;D) are also time regions of C. 2

We shall use these operations for backward reachability analysis. Similar operations
such as strongest post{condition can be de�ned in order to do forward reachability anal-
ysis.

3.2.2. An Algorithm and Its Correctness

Having introduced the notion of time regions, in the following we will simply call (P;D)
a region of states, and extend the transition relation ; to regions.

De�nition 3.5 Assume a 2 Act and a new symbol " representing delays.

1. (P;D)
a
;(P 0;D0) i� for all � 2 D, (P; �)

a
;(P 0; �0) for some �0 2 D0, and vice versa

for all �0 2 D0, (P; �)
a
;(P 0; �0) for some � 2 D.

2. (P;D)
"
;(P;D0) i� for all � 2 D, (P; �)

d
;(P 0; �0) for some d 2 R+0 and �0 2 D0,

and vice versa for all �0 2 D0, (P; �)
d
;(P; �0) for some d 2 R+0 and � 2 D. 2

Now, the general reachability problem can be reformalized as follows:

Proposition 2 Given an initial region (P0;D0) and a �nal region (Pf ;Df), (Pf ;Df) is
reachable from (P0;D0) i� there exists a �nite number n, �i 2 Act[f"g and Di 2 D for all
i � n, such that Pn � Pf , Dn^Df 6= fg and (P0;D0)

�1
;(P1;D1):::(Pn�1;Dn�1)

�n
;(Pn;Dn).

2

To achieve a decision algorithm for the problem, we shall take the approach of backward
reachability analysis. Usually, to verify safety{properties, a backward analysis algorithm
may terminate much faster than a forward analysis algorithm for the following reason: In
case that a system does not contain an undesired state, the backward analysis needs not
to check the whole reachable state{space of the system (but the forward analysis does),
and the probability for a safety{critical system to contain a serious error is often very
small.

The general principle of backward analysis is to start from the �nal and search back to
the initial. If the initial is found, the algorithm terminates with answer \yes", otherwise
\no". However, our backward analysis method can be easily adopted to forward analysis.
First, we need to study the control{structures more carefully. It has been said earlier

that the algebraic structure of a term P describes the control{structure of a process.
In fact, the set of subexpressions of P is a superset of the control{states of P , and the
transitions among the control{states obey the rules in Fig. 2.

(g; a; �):E
g;a;�

���!E

E
g;a;�

���!E 0

E + F
g;a;�

���!E 0

F
g;a;�

���!F 0

E + F
g;a;�

���!F 0

E
g;a;�

���!E0

X
g;a;�

���!E0

[X
def
= E]

E
g;a;�

���!E0

EjF
g;a;�

���!E0jF

F
g;a;�

���!F 0

EjF
g;a;�

���!EjF 0

E
g;a;�

���!E0 F
f;�a;'

���!F 0

EjF
g^f;�;�['

�����!E0jF 0

E
g;a;�

���!E 0 [a;�a 62 L]

EnL
g;a;�

���!E0nL

Figure 2. Transition Rules for Control{States.

It should be obvious that each term P0 describes a timed automaton, i.e. < CS; P0;�!>

where CS is all control{states reachable from P0, �! is the least transition relation de�ned
by the transitional rules. In particular, note that CS is �nite.
The reachability analysis algorithm is based on the following idea: Assume that we

want to decide whether (P 0;D0) may reach (P;D) in one step (i.e. without passing
other control{states) or not. The �rst thing to check is whether it is possible for P 0

to switch to P directly. If this is not the case, that is, P 0
g;a;�

���!P for no P 0; g; a; �, we
can conclude immediately that (P;D) is not reachable from (P 0;D0) in one step. Now,

assume P 0
g;a;�

���!P . To reach (P;D), there should be time regions D0;D1;D2 such that
D0 \ D0 6= fg and (P0;D0)

"
;(P0;D1)

a
;(P;D2)

"
;(P;D). Note that D0 and D are given.

We need to �nd D0;D1;D2. Clearly, we may choose

D2 = border(�;wp(D))
D1 = g ^ free(�;D2)
D0 = wp(D1)

That is, D0 = wp(g^[free(�; border(�;wp(D)))]). In fact, D0 is the largest region of points
that may (1) pass the guard g and (2) be reset by �, and �nally (3) reach D. In general,
for any given g, � and D, we de�ne image(g; �;D) = wp(g ^ [free(�; border(�;wp(D)))]).
Now, we are ready to present the algorithm, shown in Fig. 3 for backward reachability

analysis. We use two bu�ers for saving regions (of states): passed and waiting where passed
stands for the set of regions that have been examined and waiting for the set of regions
that are to be examined next.

Algorithm. (Input: P0; Pf 2 P and D0;Df 2 D and Output: answer = `yes' or `no'.)

1. Initial: passed := fg and waiting := f(Pf ;Df)g.

2. Repeat
for all (P;D) 2 waiting, do

begin

(1) If there is no D0 such that D � D0 and (P;D0) 2 passed then

begin

(a) passed := passed [f(P;D)g and
(b) waiting := waiting [f(P 0;D0)g for all P 0; g; a; �

such that P 0
g;a;�

���!P , and D0 = image(g; �;D) 6= fg.
end;

(2) waiting := waiting � f(P;D)g
end

until waiting = fg or (P0;D
0

0) 2 waiting for some D0

0 such that D0 ^D
0

0 6= fg.

3. Termination: If waiting = fg then answer := `no'; otherwise answer := `yes'.

Figure 3. An Algorithm for Reachability Analysis.

The algorithm is started with passed = fg and waiting = f(Pf ;Df)g, and then repeat-
edly examines the regions in waiting. If a region (P;D) found in waiting is smaller than
a region (P;D0) (with the same control{state) in passed, then (P;D) does not need to be
examined further. Otherwise, put all the regions that may reach (P;D) in one step into
waiting to be examined later, and put (P;D) into passed. The algorithm will terminate
when waiting is empty (i.e. nothing is left to be examined, and therefore fails to �nd the
initial region) or a region (P0;D0

0) is found, which includes a part of the initial region
(P0;D0) (i.e. D0 ^D

0

0 6= fg).
It is easy to prove the partial correctness (soundness) of the algorithm: given proper

inputs, it always provides the right answer.

Theorem 1 (Partial Correctness) For all initial regions (P0;D0) and �nal regions (Pf ;Df),
if the algorithm terminates with `yes', then (Pf ;Df) is reachable from (P0;D0). Otherwise,
(Pf ;Df) is not reachable from (P0;D0). 2

It is slightly more di�cult to prove the total correctness (completeness) of the algorithm:
given proper inputs, it always terminates with an answer.

Theorem 2 (Total Correctness) For all initial regions (P0;D0) and �nal regions (Pf ;Df),
the algorithm always terminates with an answer which is either `yes' or `no'. 2

3.2.3. Implementation

In describing the reachability algorithm, we did not explain how to (1) perform the four
operations (wp, free, border, ^) de�ned on time regions, (2) check the emptiness of a time

region (or satis�ability of a constraint system), and (3) set{inclusion (i.e. �) between
time regions. In fact, these functions are often provided by constraint solvers or straight
forward to implement using primitive functions of a constraint solver.
We have implemented the algorithm as a tool, based on a constraint solver developed

at the Swedish Institute of Computer Science called Prolog Constraint Solver (PCS) [21].
Several examples have been used to test the tool (see next section), which show that the
implementation is fairly e�cient.

4. EXAMPLES

In this section, we present examples which have been veri�ed by our tool. In addition
to clock variables, in describing the examples, we shall also use ordinary variables. These
variables do not change their values automatically as the clock variables; they can only be
assigned to values from �nite domains, and therefore they will not cause in�nite{stateness.
Fortunately, the implementation of our tool is based on a general constraint solver which
can handle logical constraints and assignments including ordinary variables in the same
way as timing constraints and clock assignments.

4.1. Fischer's Mutual Exclusion Protocol

The protocol was proposed originally by Fischer and described by Lamport [18]. It is to
guarantee mutual exclusion in a concurrent systems consisting of several processes using a
shared variable (among the processes) and properly timing the processes in changing the
shared variable. Each of the processes is assumed to have a local clock. The idea behind
the protocol is that the timing constraints on the local clocks are set so that only one
process can change the global variable to its own process number, then read the global
variable later and if the shared variable is still equal to its own number, enter the critical
section.
Assume a concurrent system with n processes P1:::Pn. We use xi to model the local

clock for each process Pi. The formal description of Pi is given in Fig. 4, and illustrated4

in Fig 5.
This is a simpli�ed version of the original protocol and has been studied by researchers,

e.g. [4, 25], which permits only one process to enter the critical section and never exits
it. Recovery actions from failure to enter the critical section are omitted. However, the
protocol can be extended to an actual mutual exclusion algorithm.
The processes, Pi, may be in either of the four local states Ai;Bi;Ci;CSi. Initially, all

processes are in their A{state and the shared variable v is initially 0. A process, Pi, that
tries to enter the critical section changes state from Ai to Bi if it sees v=0. In Bi, it will
move to Ci before the clock xi proceeds to const, and in doing so, reset the clock xi (i.e.
xi := 0) and assign v to its own process number (i.e. v := i). From Ci, it can move to the
critical section CSi if v is still equal to its process number (i.e. v = i) when the clock value
of xi is larger than const.
Intuitively, the protocol behaves as follows: The constraints on the shared variable v

4In �gures, we adopt the convention that when a transition is not labelled with a timing constraint, it
means implicitly that the constraint is tt, that is, the transition can be taken at any time. We shall also
adopt the convention that when a transition is not labelled with an action, it means that the transition
is an internal one, that is, labelled with � .

Pi
def
= Ai

Ai
def
= (fv = 0g; �; fxig):Bi

Bi
def
= (fxi < constg; �; fv := i; xig):Ci

Ci
def
= (fv = i; xi > constg; �; fg):CSi

CSi

def
= nil

Figure 4. The Formal Description of Fischer's Protocol.

A B C CS
v = 0

v = i

i i i i

x > constix < consti

{x }i {x , v:=i}i

Figure 5. Fischer's Mutual Exclusion Protocol

ensure that a process must reach B{location before any process reach C{location; oth-
erwise, it will never move from A-location to B-location. The timing constraints on the
clocks ensure that all processes in C{location must wait until all processes in B{location
reach C{location. The last process that reached C{location and set v to its own process
number gets the right to enter its critical section. In fact, the protocol will guarantee
mutual exclusion for any non{zero constant const.
We need to verify that the mutual exclusion property is satis�ed, i.e. there will never

be more than one process which may reach the critical section, CSi. The requirement can
be formalized as follows: The concurrent system, with an initial state where the control{
state is A1j : : : jAn and arbitrary variable assignment, will never reach a state where the
control{state is in the form

S1j : : : jCSkj : : : jCSlj : : : jSn

for some k; l � n and Si 2 fAi;Bi;Ci;CSig.
We have used our tool and veri�ed a system consisting of 10 processes and const = 1,

which satis�es the property. We are in progress to extend the tool to treat the number of
processes as a variable and verify that the property is satis�ed by systems with arbitrary
number of processes.

4.2. A Simple Railway Control System

We consider a railway control system to automatically control trains passing a critical
point such as a bridge. The idea is to use a computer to guide trains from several tracks
crossing a single bridge instead of building many bridges. Obviously, a safety{property of
such a system is to avoid the situation where more than one train are crossing the bridge

at the same time.
Assume that the whole system consists of n trains and a simple controller. We model

the system by the following process:

(CjTrain1j : : : jTrainn)nA

where Traini describe the behavior of trains, C describes the behavior of the controller,
and A = fappri; stopi; leavei; goig is the set of internal channel names (or signals) between
the trains and the controller.
To describe timing constraints, we use x and xi to model the local time of the controller

and the trains respectively. The controller uses a list L for the trains waiting to cross the
bridge. The formal descriptions of Traini's and C are given in Fig. 6 and illustrated in
Fig. 7.

Traini
def
= Safei

Safei
def
= (fttg; appri!; fxig):Appri

Appri
def
= (fxi � 0 ^ xi � 10g; stopi?; fxig):Slowi

+(fxi � 11 ^ xi � 20g; �; fxig):Crossi

Crossi
def
= (fxi � 3 ^ xi � 5g; leavei!; fxig):Safei

Slowi
def
= (fxi � 5 ^ xi � 7g; �; fxig):Stopi

Stopi
def
= (fttg; goi?; fxig):Starti

Starti
def
= (fxi � 7 ^ xi � 15g; �; fxig):Crossi

C
def
= Occ1

Occ1
def
= (fttg; leavei?; fL := L� ig):F ree+ (fttg; appri?; fn := i; xg):Occ2

Occ2
def
= (fx < 10g; stopn!; fL := L :: ng):Occ1

Free
def
= (fL = emptyg; appri?; fL := [i]g):Occ1

+(fL 6= emptyg; goi!; fi := hd(L)g):Occ1

Figure 6. The Formal Description of the Railway Control System.

Intuitively, when a train, Traini, approaches the bridge it sends a signal to the controller
within a certain distance. If the bridge is occupied the controller sends a stop signal stopi
within 10 time units to prevent the train from entering the bridge. Otherwise, if the
approaching train does not receive a stop signal within 10 time units, it will start to cross
the bridge within 20 time units (but it will take at least 11 time units for a train to enter
the bridge). The crossing train is assumed to leave the bridge within 3 to 5 time units;
a stopped train will slow down and eventually stop after some delay. When the bridge is

{L := L - i}
leave ?

ileave !

occ

occ

appr ?

L = empty

{i := hd(L)}
appr ?

L = empty
go !

(a) (b)

{L := [i]}

i

i i
i i

i

2

1

safe

slow stop

cross

appr !

go ?

appr start

i

i

i i

i

i

i{n := i, x} stop !
{L := L :: n}

n

{x < 10}

{x }

{x }

{x }

i

i

i

i

i

istop ?
{x <10}

{x }i
free

{x }

{x }

i

{x }

{7<x <15}

{5<x <7}i

i

{3<x <5}i

i{11<x <20}

Figure 7. (a) { Controller, (b) { Train

free again and the controller signals (by sending goi) the �rst train in the waiting list to
cross.
Assume that the system is started with the following control{state:

(FreejSafe1j : : : jSafen)nfappri; stopi; leavei; goig

and all clocks are initialized to 0.
We need to guarantee that the system will never reach a control{state where two trains

are in location Cross (the clocks may have any values). That is, a state in the form:

(SijT1j:::jCrosskj:::jCrosslj:::jTn)nfappri; stopi; leavei; goig

for some k; l � n, Si 2 fFree;Occ1;Occ2g and Ti 2 fSafei;Appri;Slowi;Stopi;Startig.
We have veri�ed a system consisting of 6 trains by our tool, which satis�es the safety{

requirement. As in the previous example (Fisher's protocol), we can only check a system
with a �xed number of trains. We hope to extend our system to deal with any number of
trains.

5. CONCLUSION

The �rst contribution of this paper is an algebra of processes with clocks, which extends
timed automata with algebraic operators. The algebra may serve as a formal description
language for real{time communicating systems. In particular, a parallel composition op-
erator is introduced for timed automata to model communication and concurrency, which
can be used to construct complex system descriptions in terms of component descriptions.

The second contribution of this paper is a reachability analysis algorithm for the de-
scription language, based on constraint{solving techniques. The algorithm is proved to
be sound (i.e. always provides the right answer) and complete (i.e. always terminates
with an answer). It has been implemented as an automatic veri�cation tool, for verifying
safety{properties of real{time communicating systems, based on an existing constraint{
solver. Several examples have been used to test the tool. In particular, we have studied
and veri�ed Fisher's mutual exclusion protocol and a railway controller using our tool.
There have been many proposals for verifying timed systems e.g. [2, 24, 1, 7, 14, 17].

However, most of them are intended to construct the whole reachability graph of a system
or to obtain more e�cient model{checking algorithms with respect to a real{time temporal
logic, or to check equivalences between abstract speci�cations. We believe in that the
goal of verifying real{time systems, in particular safety{critical systems is to check simple
logical properties, which can be done without constructing the whole reachability graph
or the full power of model{checking. We are of the opinion that our approach is simpler as
it is based directly on constraint{solving techniques and can be fairly e�cient in verifying
systems consisting of many components as it avoids to explore the whole state{space.
We are in progress to extend our tool to deal with more general types of variables such

as lists, in addition to clock variables. In particular, we will treat the number of compo-
nents in a concurrent system as a parameter (i.e. an ordinary variable) in order to verify
systems with many similar components such as the trains in the railway controller and
the processes in Fisher's protocol in a more e�cient way.

Acknowledgements: We would like to thank Parosh Abdula and Bengt Jonsson for
discussions, and the anonymous referees for comments and suggestions on the paper. We
would also like to thank Bengt Asker and Ulf Olsson from the steering group of the
Swedish Board for Technical Development (NUTEK) for supervising the project.

REFERENCES

1. Rajeev Alur, Costas Courcoubetis, and David Dill. Model{checking for real{time systems.
In Proceedings of the Fifth IEEE Symposium on Logic in Computer Science, 1990.

2. R. Alur, C Courcoubetis, N. Halbwachs, D. Dill, H. Wong{Toi. Minimization of Timed
Transition Systems. CONCUR92, LNCS 630, 1992.

3. Rajeev Alur and David Dill. Automata for modelling real{time systems. In Automata,

Languages and Programming: Proceedings of the 17th ICALP, LNCS 443. Springer-Verlag,
1990.

4. Martin Abadi and Leslie Lamport. An Old-Fashioned Recipe for Real Time. Lecture Notes
in Computer Science, volume 600, Springer-Verlag, 1993.

5. J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Technical Report P8916,
University of Amsterdam, 1989.

6. B. Berhomieu and M. Diaz. Modeling and Veri�cation of Time Dependent Systems Using
Time Petri Nets. In IEEE trans. on Software Engineering, pages 259{273, Vol 17, March
1991.

7. Karlis Cerans, Jens Chr. Godskesen and Kim G. Larsen. Time Modal Speci�cation { Theory
and Tools. Proceedings of the 5th Int. Conf. on Computer Aided Veri�cation, 1993.

8. M. Diaz. Modeling and analysis of communication and cooperation protocols using Petri net

based models. Computer Networks, Dec. 1982.
9. Jim Davis and Steve Schneider. An introduction to timed CSP. Technical Report PRG{75,

Oxford University Computing Laboratory, 1989.
10. Willem Jan Fokkink and Steven Klusener. Real time algebra with pre�xed integration.

Technical report, CWI, Amsterdam, 1991.
11. Jens Chr. Godskesen and Kim G. Larsen. Real{time calculi and expansion theorems. In

Twelfth Conference on the FST and TCS, Lecture Notes in Computer Science. Springer-
Verlag, December 1992.

12. Nicolas Halbwachs. Delay Analysis in Synchronous Programs. In the Proceedings of CAV'93,
volume 697 of Lecture Notes in Computer Science. Springer-Verlag, 1991.

13. Uno Holmer, Kim Larsen, and Yi Wang. Deciding properties of regular timed processes. In
Kim G. Larsen and Arne Skou, editors, Proceedings of the Third Workshop on Computer

Aided Veri�cation,, volume 575 of Lecture Notes in Computer Science. Springer-Verlag, 1991.
14. T. Henzinger, X. Nicollin, J. Sifakis, and J. Yovine. Symbolic Model Checking for Real{Time

Systems. Proceedings of the 7th IEEE Symposium on Logic in Computer Science, 1992.
15. Matthew Hennessy and Tim Regan. A process algebra for timed systems. Technical Report

5/91, University of Sussex, 1991.
16. P.C. Kanellakis and S.A. Smolka, CCS Expressions, �nite state processes, and three prob-

lems of equivalence. Information and Control Vol 86, 1990.
17. Kim G. Larsen and Wang Yi, Time Abstracted Bisimulation: Implicit Speci�cation and

Decidability. In the proceedings of MFPS93 , New Oleans, USA, 1993. Lecture Notes in
Computer Science No. 802, 1994.

18. Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. on Computer System,
pages 1{11, volume 5(1), February 1987.

19. Robin Milner. Communication and Concurrency. Series in Computer Science. Prentice{Hall
International, 1989.

20. Faron Moller and Chris Tofts. A temporal calculus of communicating systems. In CON-

CUR'90, volume 458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.
21. Martin Nilsson. Piecewise Linear Constraints and Entailment Technical report, Swedish

Institute of Computer Science, August 1993.
22. X. Nicollin, J.-L. Richier, Joseph Sifakis, and J. Yovine. ATP: an algebra for timed pro-

cesses. In Proceedings of the IFIP TC 2 Working Conference on Programming Concepts and

Methods, Sea of Gallilee, Israel, April 1990.
23. Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. From ATP to timed graphs and hybrid

systems. In Real{Time: Theory in Practice, volume 600 of Lecture Notes in Computer

Science. Springer-Verlag, 1991.
24. K�arlis �Cer�ans. Decidability of bisimulation equivalences for processes with parallel timers.

In the Proceedings of CAV'92, 1992.
25. N. Shankar. Veri�cation of Real{Time Systems Using PVS. Proceedings of the 5th Int. Conf.

on Computer Aided Veri�cation, 1993.
26. Frits Vaandrager and Nancy Lynch. Action Transducers and Timed Automata. In CONCUR

'92, volume 630 of Lecture Notes in Computer Science. Springer-Verlag, 1992.
27. Yi Wang. Real{time behaviour of asynchronous agents. In CONCUR '90, volume 458 of

Lecture Notes in Computer Science. Springer-Verlag, 1990.
28. Yi Wang. A Calculus of Real Time Systems. PhD thesis, Chalmers University of Technology,

G�oteborg, Sweden, 1991.
29. Yi Wang. CCS + time = an interleaving model for real time systems. In ICALP '91, LNCS

510. Springer-Verlag, 1991.

