Schedulability Analysis of Synchronous Digraph Real-Time Tasks

Morteza Mohaqeqi, Jakaria Abdullah, Nan Guan, Wang Yi

Uppsala University

ECRTS 2016

Introduction

Real-Time Task Models:

Introduction

Real-Time Task Models:

- Proposed by M. Stigge et al. (2011)
- Real-time tasks with different job types

The Digraph Real-Time (DRT) Task Model

- Job Types
 - WCET
 - Relative deadline
- Conditional flow (Branch)

The Digraph Real-Time (DRT) Task Model

- WCET
- Relative deadline
- Conditional flow (Branch)

The Digraph Real-Time (DRT) Task Model

- WCET
- Relative deadline
- Conditional flow (Branch)

Outline

- 1 A Review on DRT
- 2 Synchronous DRT
- 3 Schedulability Analysis
- 4 Conclusion

Synchronous DRT

■ Synchronized Release

Semantics

Task T_2 :

Semantics

Task T_2 :

Overview

Assumptions

- Uniprocessor
- Preemptive scheduling
- Fixed priority

Overview

Assumptions

- Uniprocessor
- Preemptive scheduling
- Fixed priority

Contributions

- Schedulability analysis
- Heuristics for better efficiency

Outline

A Review on DRT

Synchronous DRT

Schedulability Analysis

4 Conclusion

DRT Schedulability

DRT Schedulability

DRT Schedulability Condition

Notation:

- A set of tasks $\tau = \{T_1, T_2, \dots, T_n\}$
- \blacksquare π_i : A path in T_i 's graph

DRT Schedulability Condition

Notation:

- A set of tasks $\tau = \{T_1, T_2, \dots, T_n\}$
- \blacksquare π_i : A path in T_i 's graph

Theorem (Stigge 2013)

A job with WCET "e" and relative deadline "d" is schedulable under a set of higher priority tasks τ if and only if for all $(\pi_1, \ldots, \pi_n) \in \Pi(\tau)$:

$$\exists t \leq d : e + \sum_{T_i \in \tau} r f_{\pi_i}(t) \leq t \tag{1}$$

DRT Schedulability Condition

Notation:

- A set of tasks $\tau = \{T_1, T_2, \dots, T_n\}$
- \blacksquare π_i : A path in T_i 's graph

Theorem (Stigge 2013)

A job with WCET "e" and relative deadline "d" is schedulable under a set of higher priority tasks τ if and only if for all $(\pi_1, \dots, \pi_n) \in \Pi(\tau)$:

$$\exists t \leq d : e + \sum_{T_i \in \tau} rf_{\pi_i}(t) \leq t \tag{1}$$

• $rf_{\pi_i}(t)$ could be derived independently.

SDRT Schedulability

Alignment

Alignment

Alignment

SDRT Schedulability Condition

- $au = \{T_1, T_2, \dots, T_n\}$
- \blacksquare π_i : A path in T_i 's graph

Theorem

A job with WCET "e" and relative deadline "d" is schedulable under a set of tasks τ if and only if for all $\pi = (\pi_1, ..., \pi_n) \in \Pi(\tau)$, $\forall R \in RF_{\pi}$:

$$\exists t \leq d : e + \sum_{\substack{rf_i \in Synch(R) \\ T_i \in \tau_{ho}}} rf_i(t) \leq t$$

SDRT Schedulability Condition

- $au = \{ T_1, T_2, \dots, T_n \}$
- \blacksquare π_i : A path in T_i 's graph

Theorem

A job with WCET "e" and relative deadline "d" is schedulable under a set of tasks τ if and only if for all $\pi = (\pi_1, ..., \pi_n) \in \Pi(\tau)$, $\forall R \in RF_{\pi}$:

$$\exists t \leq d : e + \sum_{\substack{rf_i \in Synch(R) \\ T_i \in \tau_{hp}}} rf_i(t) \leq t$$

Efficient Exploration

- Removing dominated request function
- Search using an "abstraction and refinement" approach

Experiments: Analysis Efficiency

Number of Total Actions (Utilization = 0.5)

Experiments: Analysis Efficiency

Number of Total Actions (Utilization = 0.7)

Experiments

Number of Total Actions (Utilization = 0.7)

Outline

- 1 A Review on DRT
- 2 Synchronous DRT
- 3 Schedulability Analysis
- 4 Conclusion

Conclusion and Future Work

■ SDRT as an extension of DRT

Conclusion and Future Work

■ SDRT as an extension of DRT

- Multicore Scheduling
 - Task-level paritioning
 - Job-level paritioning

Schedulability Analysis of Synchronous Digraph Real-Time Tasks

Morteza Mohaqeqi, Jakaria Abdullah, Nan Guan, Wang Yi

Uppsala University

ECRTS 2016

Thanks!

Appendix

- Request Function Dominance
- Abstraction and Refinement
- Experiment Setting
- Experiments: Path Combinations (RF Dominance)
- Experiments: Acceptance Ratio
- Why Synchronized Release?
- Multirate Tasks
- Critical Instant
- SDRT vs. DAG

Experiment Settings

Table: Task set parameters

Task Type	Small	Medium	Large
Vertices	[3, 5]	[5, 9]	[7, 13]
Branching degree	[1, 3]	[1, 4]	[1, 5]
p	[50, 100]	[100, 200]	[200, 400]
е	[1, 2]	[1, 4]	[1,8]
d	[25,100]	[50, 200]	[100, 400]

Number of Path Combinations

 Number of path combinations that should be considered in schedulability analysis

Schedulability Analysis Results

 Schedulability analysis results for different number of synchronizations

	Acceptance Ratio			Tested Combinations		
Util.	No act.	n act.	3n act.	No act.	n act.	3n act.
0.35	1	1	1	37	37	37
0.4	1	1	1	52	52	52
0.45	1	1	1	70	70	70
0.5	0.94	0.96	0.96	116	165	14768
0.55	0.6	0.77	0.85	154	218	46694
0.6	0.1	0.19	0.26	225	392	59114
0.65	0	0	0.05	178	372	19167

Why Execution-Independent Synchronization?

- Separation of Computation and Communication
 - More predictability

Why Execution-Independent Synchronization?

- Separation of Computation and Communication
 - More predictability
- Ada's Rendezvous mechanism
- Fixed input/output instants

SDRT Modeling Usage

- Engine control tasks (Davis-2014, Biondi-2014)
- Multirate controllers


```
TASK T1 {
   f1();
   if(rpm < 2000)
      f2();
}
```

Rate-dependent behaviour

SDRT Modeling Usage

- Engine control tasks (Davis-2014, Biondi-2014)
- Multirate controllers


```
TASK T1 {
   f1();
   if(rpm < 2000)
      f2();
}
```

Rate-dependent behaviour

SDRT Modeling Usage

- Engine control tasks (Davis-2014, Biondi-2014)
- Multirate controllers


```
TASK T1 {
   f1();
   if(rpm < 2000)
      f2();
}
```

Rate-dependent behaviour

Request Function Dominance

Lemma

A request function rf₁ dominates a request function rf₂ if:

- 1 $\forall t : rf_1(t) > rf_2(t)$,
- 2 rf_1 and rf_2 contain the same sequence of actions, and
- **3** $(AS_{rf_1} \text{ is empty}) \text{ or } (t_s \leq t_s' \text{ and } rf_1(t_s) \geq rf_2(t_s') \text{ and } rf_1' \text{ dominates } rf_2'), \text{ where } (s,t_s) = AS_{rf_1}[0], (s,t_s') = AS_{rf_2}[0], \text{ and } rf_1' \text{ and } rf_2' \text{ are obtained by } Align \text{ and } Pop(rf_1,rf_2,s).$

Abstraction and Refinement

Abstraction:

Abstraction and Refinement

Abstraction:

Abstraction and Refinement

Abstraction:

■ Refinement:

Critical (Scheduling) Instant

The critical instant for J is not necessarily when all the tasks are released simultaneously with J.

Future Work

- Broadcast synchronization
- Critical instant for the general case

References

- [Stigge-2013] M. Stigge and W. Yi, "Combinatorial abstraction refinement for feasibility analysis," Real-Time Systems Symposium (RTSS), 2013.
- [Sun-2016] J. Sun, N. Guan, Y. Wang, Q. Deng, P. Zeng, and W. Yi, "Feasibility of fork-join real-time task graph models: hardness and algorithms," ACM Trans. Embed. Comput. Syst. (TECS) 2016.
- [Guan-2011] N. Guan, P. Ekberg, M. Stigge and W. Yi, "Resource sharing protocols for real-time task graph systems," Euromicro Conference on Real-Time Systems (ECRTS), 2011.
- [Biondi-2104] R. I. Davis, T. Feld, V. Pollex and F. Slomka, "Schedulability tests for tasks with variable rate-dependent behaviour under fixed priority scheduling," Real-Time and Embedded Technology and Applications Symposium (RTAS), 2014.
- [Davis-2104] A. Biondi, A. Melani, M. Marinoni, M. D. Natale and G. Buttazzo, "Exact interference of adaptive variable-rate tasks under fixed-priority scheduling," Euromicro Conference on Real-Time Systems, Madrid, 2014.