
Uppsala Programming for Multicore
Architectures Research Center

The Direct-to-Data (D2D) Cache:
Navigating the Cache Hierarchy with a Single Lookup

Andreas Sembrant, Erik Hagersten, David Black-Schaffer

Department of Information Technology, Uppsala University http://it.uu.se/

1 Problem: Traditional Caches

3 D2D: Accessing Data Directly

Solution: Go Directly to Data2

4 D2D: Extra Cache Management

7 Use Case 1: L1 Cache Size

Traditional cache hierarchies waste time and
energy by sequentially searching for data.

D2D extends the TLB with per cache line level and way info.
 One lookup in the eTLB tells us where the data is located.

2. The Direct-to-Data (D2D) Cache: Navigating the Cache Hierarchy with a Single Lookup, In International Symposium on Computer Architecture (ISCA), June 2014

1. TLC: A Tag-Less Cache for Reducing Dynamic First Level Cache Energy, In International Symposium on Microarchitecture (MICRO), December 2013

6 eTLB Effectiveness

Check L1
 L1 Miss
Check L2

L2 Miss
Fetch from DRAM

5 Summary

3. Eliminate the tag-arrays
 by avoiding tag comparisons

Trade off D2D's lower L2 latency for energy by using a smaller L1
cache size (without hurting performance).

Hub

CPU

eTLB

Data
Array

L1D

...

...

TAG ... CLT

... C W C W

PA

L2 TLB

DRAM

(c) L1 Replacemnt + Hub/eTLB Update

Find Set 2

TAG

3

Move4

HP DATA

...

...

Evict

eP CLT

1
Read Hubpointer

Update CLT
to point to L2

5

CPU

L2 TLB

...

DRAM

(b) Hub Eviction

Hub Miss
Find Replacement

...

...

L2Hub

...

...

...

...
1

4Install New Page 2 Flush
Evicted Page

L1D

......

3Invalidate CLT

L1D

5

CPU

L2 TLB

DRAM

(a) eTLB Miss

eTLB Miss
1

......

TAG ... CLTPA

2 Evict

3Copy Page
Permission etc.

L2

4VA to PA

...

Hub

TAG

...

eP CLT
6

Update L1P

Copy CLT

L2

A. eTLB Miss
 Fetch CLT from Hub
B. Hub Eviction
 Flush cache lines (no tags)
C. Cache Line Replacement
 Move data and update eTLB

8 12 16 20 24 28 32
L1 Cache Size (kB)

E
n
e
rg

y
 /

 I
n

st
r.

 (
p
J)

0

10

20

30

S
p
e
e
d
u
p
 (

%
)

-20

-10

0

10

-30

S
p
e
e
d
u
p
 (

%
)

-20

-10

0

10

-30

Check eTLB

Access Data

21%

E
n
e
rg

y
 /

 I
n

st
r.

 (
p
J)

0

10

20

30

L1
L2

8 121620242832
L1 Cache Size (kB)

Lower Energy

Baseline
Fast L2

D2D

Low Latency
High Energy-

+

12%
Slowdown

No perf. loss
with smaller L1

5%
Speedup

S
p
e
e
d
u
p
 (

%
)

-20

-10

0

10

-30
16202428323640

 ROB Size

8 Use Case 2: ROB Size

No perf. loss
with smaller ROB

D2D

25%
Smaller ROB

D2D

Baseline
D2D

Off Critical Path

2. Eliminate extra data-array reads
 by determining the correct way from the TLB

1. Skip levels in the cache hierarchy
 by determining the correct level from the TLB

40% Lower L2 Latency
21% Lower Cache Energy

Many applications have low L2
utilization. We therefore see lower
performance improvement when
looking at the average across all
applications.

L1 cache energy drops
with smaller cache sizes,
resulting in a total cache
energy reduction.

The L1 cache energy drops with
smaller L1 cache size. However,
the increase in L2 traffic eliminates
the energy savings of a smaller L1.

D2D's lower L2 latency results in a
5-14% speedup for L2 sensitive
applications compared to a tra-
ditional cache hierarchy.

D2D's lower L2 latency enable
us to use a smaller reorder
buffer without hurting perf-
ormance, since the ROB does
not need to hide as much
cache latency.

D2D is effective at accessing
the data directly. 99.7%, 87%
and 76% of all L1, L2 and DRAM
accesses are accessed directly
via the eTLB, respectively. The
rest first accesses the Hub.

These events are off the critical path. That is, they are done during cache
misses (B, C) or TLB misses (A). Regular accesses, when the CPU wants to
fetch data from L1, L2, or DRAM are fast since the data is accessesed directly
using the eTLB. D2D therefore trades some extra cache management for
faster and more energy efficient cache accesses.

Hub L2

Virtual
Physical

eTLB

L1
Data Array

L1D

CPU

Hub

L2 TLB

...

DRAM

eTLB Hit + L1D Hit

Data Hit

CPU

L2 TLB

DRAM

eTLB Hit + Cache Miss

L2

Send request directly to DRAM
(bypass L1 and L2)

...

1 eTLB Hit

Send Data
to CPU3

TAG ... CLT

... L W

Le
ve

l
W

ay

L W

PA

2

L1D

Cache Miss 2 ...

...

1 eTLB Hit
Send Data to CPU3

Move to L1
5

4 Evict

Hub

L2

L1D

CPU

L2 TLB

...

DRAM

eTLB Hit + L2 Hit

L2 Hit 2

...

...

1 eTLB Hit
Send Data to CPU3

4

Move to L1
5

Evict

6 6

CPU
D
R
A
M

L2

TLB

L1
T
A
G

T
A
G

1
2

3

...

TAG ...

L Way

PA

2
CPU

D
R
A
M

L2

L1

1

Fast L2

D2D

Baseline

D2D

L2 Sensitive Programs
Overall

 (94% of memory accesses) (3% of memory accesses) (2% of memory accesses)

The cache-level bits in the CLT entry indicate that the data is in the L1 cache. The L1 data-array is
then accessed with the set index from the virtual address and the way index stored in the eTLB’s
cache-line location table (CLT) . The D2D cache accesses the correct L1 data array directly and
sends the data to the CPU . Note that the set index from the virtual address is used to identify
the correct cache line in the CLT, meaning that only 6 bits of the CLT (384 bits) needs to be read.
Moreover, the physical address in the eTLB is not needed since the correct way is determined by
the way information from the CLT (and not by comparing tags).

The cache-level bits in the CLT entry indicate that the data is in the L2 cache. The L2 data-array is
physically indexed and accessed by combining: 1) parts of least significant bits of the virtual
address, 2) the parts of the physical address bits from the eTLB (4 bits for 1MB 16way L2), and 3)
the way index bits stored in the eTLB's cache-line location table (CLT) . The D2D cache accesses
the L2 data array and sends the data to the CPU . . The data is then installed into the L1 cache
by first evicting a cache line from the L1 cache , and then migrating the data from the L2 cache
into the L1 cache and updating the Hub pointer (HP) to point to the cache line's page in the
Hub . The CLT is updated to point to the new location in the L1 cache .

The cache-level bits indicate that the data is not in any of the caches. D2D then reads the
physical address from the eTLB, and sends a memory request directly to the DRAM controller .
The data is fetch from memory, and D2D sends the data to the CPU . The data is then installed
into the L1 cache by first evicting a victim from the L1 cache , and then moving the data into
the L1 cache and updating the Hub pointer (HP) to point to the cache line's page in the Hub .
The CLT is updated to point to the new location in the L1 cache .

2
3 2

3
4

5 6

2
3

4
5

6

D2D

L2 Sensitive Apps

CPU

L2

eTLB

L1

Hub
D
R
A
M

99.7% 0.3% 87% 13% 76%

24%

The cache hierarchy in modern processors consumes 12-45% of the core power. Typically, each cache level is unaware of what data the
other levels contain. A request must therefore traverse the cache hierarchy, level-by-level, until the data is found. This wastes energy by
probing levels that do not contain the data, and increases access latency for every level examined.

To address the inefficiency of having to traverse the whole hierarchy to find data, we propose the Direct-to-Data (D2D) cache design. This design uses a single
lookup to an extended L1 TLB (the eTLB) to identify the cache level and way for the desired data. As a result we can eliminate the energy and latency overhead of
traversing the cache hierarchy and the cost of tag comparisons. Because the D2D design removes the need for tag lookups in the L2 cache, it reduces L2 latency
by 40% (4 cycles) compared to a standard 10-cycle phased L2 cache (4c tags + 6c data).

(average across all of SPEC, ...)

Go directly to L2
(no L2 tag checks)

Page Offset in Virtual Address

64x6b

Backing store for
the CLT in the eTLB

