
SIP: Performance Tuning
through Source Code Interdependence

Erik Berg and Erik Hagersten

Uppsala University, Information Technology, Deparment of Computer Systems
P.O. Box 337, SE-751 05 Uppsala, Sweden

{erikberg,eh}@docs.uu.se

Abstract. The gap between CPU peak performance and achieved ap-
plication performance widens as CPU complexity, as well as the gap
between CPU cycle time and DRAM access time, increases. While ad-
vanced compilers can perform many optimizations to better utilize the
cache system, the application programmer is still required to do some
of the optimizations needed for efficient execution. Therefore, profiling
should be performed on optimized binary code and performance prob-
lems reported to the programmer in an intuitive way. Existing perfor-
mance tools do not have adequate functionality to address these needs.
Here we introduce source interdependence profiling, SIP, as a paradigm
to collect and present performance data to the programmer. SIP identi-
fies the performance problems that remain after the compiler optimiza-
tion and gives intuitive hints at the source-code level as to how they
can be avoided. Instead of just collecting information about the events
directly caused by each source-code statement, SIP also presents data
about events from some interdependent statements of source code.
A first SIP prototype tool has been implemented. It supports both C
and Fortran programs. We describe how the tool was used to improve
the performance of the SPEC CPU2000 183.equake application by 59
percent.

1 Introduction

The peak performance of modern microprocessors is increasing rapidly. Modern
processors are able to execute two or more operations per cycle at a high rate.
Unfortunately, many other system properties, such as DRAM access times and
cache sizes, have not kept pace. Cache misses are becoming more and more ex-
pensive. Fortunately, compilers are getting more advanced and are today capable
of doing many of the optimizations required by the programmer some years ago,
such as blocking. Meanwhile, the software technology has matured, and good
programming practices have been developed. Today, a programmer will most
likely aim at, first, getting the correct functionality and good maintainability;
then, profile to find out where in the code the time is spent; and, finally opti-
mizing that fraction of the code. Still, many applications spend much of their
execution time waiting for slow DRAMs.

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 177–186.
c© Springer-Verlag Berlin Heidelberg 2002



178 E. Berg and E. Hagersten

Although compilers evolve, they sometimes fail to produce efficient code.
Performance tuning and debugging are needed in order to identify where an
application can be further optimized as well as how it should be done. Most
existing profiling tools do not provide the information the programmer needs in
a straightforward way. Often the programmer must have deep insights into the
cache system and spend a lot of time interpreting the output to identify and
solve possible problems.

Profiling tools are needed to explain the low-level effects of an application’s
cache behavior in the context of the high level language. This paper describes
a new paradigm that gives straightforward aid to identify and remove perfor-
mance bottlenecks. A prototype tool, implementing a subset of the paradigm, has
proven itself useful to understand home-brewed applications at the Department
of Scientific Computing at Uppsala University. In this paper we have chosen the
SPEC CPU2000 183.equake benchmark as an example.

The paper is outlined as follows. Section 2 discusses the ideas behind the tool
and general design considerations. Section 3 gives the application writer’s view
of our first prototype SIP implementation; Section 4 demonstrates how it is used
for tuning of equake. Section 5 describes the tool implementation in more detail,
section 6 compares SIP to other related tools, before the final conclusion.

2 SIP Design Considerations

The semantic gap between hardware and source code is a problem of application
tuning. Code-centric profilers, which for example present the cache miss rate
per source-code statement, reduces this gap, but the result can be difficult to
interpret. We have no hints as to why the misses occurred. High cache miss ratios
are often not due to one single source code statement, but depend on the way
different statements interact, and how well they take advantage of the particular
data layout used. Data-centric profilers instead collect information about the
cache utilization for different data structures in the program. This can be useful
to identify a poorly laid out, or misused, data structure. However, it provides
little guidance to exactly where the code should be changed.

We propose using a profiler paradigm that presents data based on the interde-
pendence between source code statements: Source Interdependence Profiler, SIP.
SIP is both code-centric, in that statistics are mapped back on the source code,
and data-centric, in that the collected statistics can be subdivided for each data
structure accessed by a statement. The interdependence information for indi-
vidual data structures accessed by a statement tells the programmer which data
structures that may be restructured or accessed in a different way to improve
performance.

The interdependence between different memory accesses can be either posi-
tive or negative. Positive cache interdependence, i.e., a previously executed state-
ment has touched the same cache line, can cause a cache hit; negative cache
interdependence, i.e., a more recent executed statement has touched a different
cache line indexing to the same cache set and causing it to be replaced, may



SIP: Performance Tuning through Source Code Interdependence 179

cause a cache miss. A statement may be interdependent with itself because of
loop constructs or because it contains more than one access to the same memory
location.

To further help the programmer, the positive cache interdependence collected
during a cache line’s tenure in the cache is subdivided into spatial and temporal
locality. The spatial locality tells how large fraction of the cache line was used
before eviction, while the temporal locality tells how many times each piece of
data was used on average.

3 SIP Prototype Overview

The prototype implementation works in two phases. In the first phase, the stud-
ied application is run on the Simics [10] simulator. A cache simulator and a
statistics collector is connected to the simulator. During the execution of the
studied application, cache events are recorded and associated with load and store
instructions in the binary executable. In the second phase, an analyzer summa-
rizes the gathered information and correlates it to the studied source code. The
output from the analyzer consists of a set of HTML files viewable by a standard
browser. They contain the source code and the associated cache utilization.

Figure 1 shows a sample output from the tool. The browser shows three
panes. To the left is an index pane where the source file names and the data
structures are presented, the upper right pane shows the source code, and the
lower right contains the results of the source-interdependence analysis. A click on
a source file name in the index pane will show the content of the original source
file with line numbers in the source pane. It will also show estimated relative
execution costs to the left of the last line of every statement in the file. Source
statements with high miss rates or execution times are colored and boldfaced.
The source-interdependence analysis results for a statement can be viewed by
clicking on the line number of the last line of the statement. It will show in the
left lower pane in the following three tables:

– Summary
A summary of the complete statement. It shows the estimated relative cost
of the statement as a fraction of the total execution time of the application,
the fraction of load/store cost caused by floating point and integer accesses,
and miss rates for first- and second-level caches.

– Spatial and Temporal Use
Spatial and temporal use is presented for integer and floating point loads and
stores. The Spatial and Temporal use measures are chosen to be independent
from each other to simplify the interpretation.

• Spatial use
Indicates how large fraction of the data brought into cache that is ever
used. It is the percentage, on average, of the number of bytes allocated
into cache by this statement that are ever used before evicted. This
includes used by this same statement again, e.g. in next iteration of a
loop, or used by another statement elsewhere in the program.



180 E. Berg and E. Hagersten

Fig. 1. A screen dump from experiments with SPEC CPU2000 183.equake, 32 bit
binary on UltraSPARCII. It shows the index pane (left), source pane (right) and profile
information pane (bottom). It shows that the application exhibits poor spatial locality
(46 percent) and temporal locality (2.1 times) for floating point loads.

• Temporal use
The average number of times data is reused during its tenure in the cache.
First touch is not counted, i.e. a temporal use equal to zero indicates that
none of the data is not touched more than once before it is evicted. Data
that is never touched is disregarded, and therefore this measure does not
depend on the spatial use.

– Data Structures:
Miss ratios, spatial use and temporal use are presented for the individual
data structures, or arrays, accessed by the statement.

This prototype SIP implementation does not implement the explicit pointers
to other statements where data is reused, but only the implicit interdependence



SIP: Performance Tuning through Source Code Interdependence 181

in spatial and temporal use. We anticipate that future enhancements of the tool
will include the explicit interdependencies.

4 Case Study: SPEC 183.equake

A case study shows how SIP can be used to identify and help understanding
of performance problems. We have chosen the 183.equake benchmark from the
SPEC [15] CPU2000 suite. It is an earthquake-simulator written in C. First, SIP
was used to identify the performance bottlenecks in the original1 application
and examine their characteristics. Figure 1 shows a screen dump of the result.
The statement on lines 489-493 accounts for slightly more than 17 percent of the
total execution time. Click on “493”, and the browser will show the statement
information in the lower pane as in the figure. As can be seen under Summary,
the cost of floating-point loads and stores is large. Miss rates are also large,
especially in the Level 2 cache.

4.1 Identifying Spatial Locality Problems

The spatial use shows poor utilization of cached data. Floating-point loads show
the worst behavior. As can be seen in the lower right pane under “Spatial and
temporal use”, not more than 46 percent of the floating-point data fetched into
cache by loads in this statement are ever used. Floating-point store and integer
loads behave better, 71 and 59 percent respectively. The information about in-
dividual data structures, in bottom table of the same pane, points in the same
direction. All but one, the array disp, have only 62 percent spatial use. When
examining the code, the inner-most loop, beginning on line 488, corresponds to
the last index of the data accesses on lines 489 - 492. This should result in good
spatial behavior and contradicts the poor spatial percentage reported by the
tool.

These results caused us to take a closer look at the memory layout. We
found a problem in the memory allocation function. The data structure in the
original code is a tree, where the leafs are vectors containing three doubles each.
The memory allocation function does not allocate these vectors adjacent to each
other, but leaves small gaps between them. Therefore not all of the data brought
into the cache are ever used, causing the poor cache utilization.

A simple modification of the original memory-allocation function substan-
tially increases performance. The new function allocates all leaf vectors adjacent
to each other and the SIP tool shows that the spatial use of data improves.
The speedups caused by the memory-allocation optimization are 43 percent on
a 64-bit (execution time reduced from 1446s to 1008s) and 10 percent on a 32-
bit executable. The probable reason of the much higher speedup on the 64-bit
1 In the prototype, the main function must be instrumented with a start call to tell
SIP that the application has started. Recognizable data structures must also be
instrumented. For heap-allocated data structures, this can be done automatically.



182 E. Berg and E. Hagersten

binary is that the larger pointers cause larger gaps between the leafs in the orig-
inal memory allocation. The SIP tool also revealed other code spots that benefit
from this optimization. Therefore the speedup of the application is larger than
the 17 percent execution cost of the statement on lines 489-493. A matrix-vector
multiplication especially benefits by the above optimization. All speedup mea-
surements were conducted with a Sun Forte version 6.1 C compiler and a Sun
E450 server with 16KB level 1 data cache, 4MB unified level 2 cache and 4GB of
memory, running SunOS 5.7. Both 64- and 32-bit executables were created with
the -fast optimization flag. All speed gains were measured on real hardware.

4.2 Identifying Temporal Problems

The temporal use of data is also poor. For example, Figure 1 shows that floating-
point data fetched into the cache from the statement are only reused 2.1 times on
average. The code contains four other loop nests that access almost the same data
structures as the loop nest on lines 487-493. They are all executed repeatedly in
a sequence. Because the data have not been reused more, the working sets of the
loops are too large to be contained in the cache. Code inspection reveals that
loop merging is possible. Profiling an optimized version of the program with the
loops merged shows that the data reuse is much improved. The total speedups
with both this and the previous memory allocation optimizations are 59 percent
on a 64-bit and 25 percent on a 32-bit executable.

5 Implementation Details

The prototype implementation of SIP is based on the Simics full-system simu-
lator. Simics[10] simulates the hardware in enough detail to run an unmodified
operating system and, on top of that, the application to be studied. This en-
ables SIP to collect data non-intrusively and to take operating-system effects,
such as memory-allocation and virtual memory system policies, into account.
SIP is built as a module of the simulator, so large trace files are not needed. The
tool can profile both Fortran and C code compiled with Sun Forte compilers and
can handle highly optimized code. As described earlier, the tool works in two
phases, the collecting phase and the analyzing phase.

5.1 SIP Collecting Phase

During the collecting phase, the studied application is run on Simics to collect
cache behavior data. A memory-hierarchy simulator is connected to Simics. It
simulates a multilevel data-cache hierarchy. The memory-hierarchy simulator can
be configured for different cache parameters to reflect the characteristics of the
computer, for which the studied application is to be optimized. The parameters
are cache sizes, cache line sizes, access times, etc. The slowdown of the prototype
tool’s analyzing phase is around 450 times, mostly caused by the simulator,
Simics.



SIP: Performance Tuning through Source Code Interdependence 183

The memory hierarchy reports every cache miss and evicted data to a statis-
tics collector. Whenever some data is brought to a higher level of the cache
hierarchy, the collector starts to record the studied application’s use of it. When
data are evicted from a cache, the recorded information is associated with the
instruction that originally caused the data to be allocated into the cache. All
except execution count and symbol reference are kept per cache level. The infor-
mation stored for each load or store machine instruction includes the following:

– Execution count
The total number of times the instruction is executed.

– Cache misses
The total number of cache misses caused by the instruction.

– Reuse count
The reuse count of one cache-line-sized piece of data is the number of times
it is touched from the time it is allocated in the cache until it is evicted.
Reuse count is the sum of the reuse counts of all cache-line-sized pieces of
data allocated in the cache.

– Total spatial use
The sum of the spatial use of all cache-line-sized pieces of data allocated in
cache. The spatial use of one cache line-sized-piece of data is the number of
different bytes that have been touched from the time it is allocated in cache
until it is evicted.

– Symbol reference
Each time a load or store instruction accesses memory, the address is com-
pared to the address ranges of known data structures. The addresses of the
data structures comes from instrumenting the source code. If a memory-
access address matches any known data structure, a reference to that data
structure is associated with the instruction PC. This enables the tool to
relate caching information with specific data structures.

5.2 SIP Analyzing Phase

The analyzer uses the information from the statistics collector and produces the
output. First, a mapping from machine instructions to source statements is built.
This is done for every source file of the application. Second, for each source code
statement, every machine instruction that is related to it is identified. Then, the
detailed cache behavior information can be calculated for every source statement;
and finally, the result is output as HTML files.

SIP uses compiler information to relate the profiling data to the original
source code. To map each machine instruction to a source-code statement, the
analyzer reads the debugging information [16] from the executable file and builds
a translation table between machine-instruction addresses and source-code line
numbers. The machine instructions are then grouped together per source state-
ment. This is necessary since the compiler reorganizes many instructions from
different source statements during optimization and the tool must know which
load and store instructions that belongs to any source statement. The accurate



184 E. Berg and E. Hagersten

machine-to-source-code mapping generated by Sun Forte C and F90 compilers
makes this grouping possible. It can often be a problem to map optimized ma-
chine code to source code, but in this case it turned out to work quite well.

Derived measures are calculated at source-statement level. The information
collected for individual machine instructions are summarized over their respec-
tive source-code statements, i.e. total spatial use for one statement is the sum
of the total spatial uses of every load and store instruction that belongs to that
statement. Reuse count is summarized analogous. To calculate the information
that is presented in the table “Spatial and temporal use” in Figure 1, instruc-
tions are further subdivided into integer load, integer store, floating point load
and floating point store for each source statement. For example, the total spatial
use for floating-point load of one statement is the sum of the total spatial uses of
every floating-point load instruction that belongs to that statement. The spatial
use for a statement is calculated as:

Spatial use(%) = 100 · total spatial use of the statement

#cache misses of the statement · cache line size

Temporal use is calculated as:

Temporal use =
reuse count of the statement

total spatial use of the statement
− 1

The output is generated automatically in HTML format. It is easy to use
and it does not need any specialized viewer. SIP creates two output files for each
source file, one that contains the source code with line numbers, and one that
contains the detailed cache information. It also produces a main file that sets up
frames and links to the other files.

6 Related Work

Source-code interdependence can be investigated at different levels. Tools that
simply map cache event counts to the source code do not give enough insights in
how different parts of the code interact. Though useful, they fail to fully explain
some performance problems. Cacheprof [14] is a tool that annotates source-code
statements with the number of cache misses and the hit-and-miss ratios. It is
based on assembly code instrumentation of all memory access instructions. For
every memory access, a call to a cache simulator is inserted.

MemSpy [11] is based on the tango [6] simulator. For every reference to dy-
namically allocated data, the address is fed to a cache simulator. It can be used
for both sequential and parallel applications. The result is presented at the pro-
cedure and data-structure level and indicates whether the misses were caused by
communication or not. The FlashPoint tool [12] gathers similar information us-
ing the programmable cache-coherence controllers in the FLASH multiprocessor
computer. CPROF [8] uses a binary executable editor to insert calls to a cache
simulator for every load and store instruction. It annotates source code with



SIP: Performance Tuning through Source Code Interdependence 185

cache-miss ratios divided into the categories of compulsory, conflict and capac-
ity. It also gives similar information for data-structures. It does not investigate
how different source statements relate to each other through data use, except for
the implicit information given by the division into conflict and capacity. The full
system simulator SimOS[9] has also been used to collect similar data and to op-
timize code. MTOOL[5] is a tool that compares estimated cycles due to pipeline
stalls with measurements of actual performance. The difference is assumed to
be due to cache miss stalls. Buck and Hollingsworth [2] present two methods
for finding memory bottlenecks; counter overflow and n-way search based on the
number of cache misses to different memory regions.

DCPI [1] is a method to get systemwide profiles. It collects information about
such things as cache misses and pipeline stalls and maps this information to ma-
chine or source code. It uses the ProfileMe[3] hardware mechanism in the Alpha
processor to accurately annotate machine instructions with different event coun-
ters, such as cache misses and pipeline stalls. The elaborate hardware support
and sampling of nearby machine instructions can find dependencies between
different machine instructions, but the emphasis is on detailed pipeline depen-
dencies rather than memory-system interaction. SvPablo [4] is a graphical viewer
for profiling information. Data can be collected from different hardware coun-
ters and mapped to source code. The information is collected by instrumenting
source-code with calls to functions that read hardware counters and records there
values. Summaries are produced for procedures and loop constructs.

MHSIM[7] is the tool that is most similar to SIP. It is based on source-code
instrumentation of Fortran programs. A call to a memory-hierarchy simulator
is inserted for every data access in the code. It gives spatial and temporal in-
formation at loop, statement and array-reference levels. It also gives conflict
information between different arrays. The major difference is that it operates
at source-code level and therefore gives no information as to whether the com-
piler managed to remove any performance problems. The temporal measure in
MHSIM is also less elaborate. For each array reference, it counts the fraction of
accesses that hit previously used data.

7 Conclusions and Future Work

We have found that source-code interdependence profiling is useful to optimize
software. In a case study we have shown how the information collected by SIP,
Source code Interdependence Profiling, can be used to substantially improve an
application’s performance. The mechanism to detect code interdependencies in-
creases the understanding of an application’s cache behavior. The comprehensive
measures of spatial and temporal use presented in the paper also proved useful.
It shows that further investigation should prove profitable.

Future work includes adding support to relate different pieces of code to each
other through their use of data. Further, we intend to reduce the tool overhead
by collecting the information by assembly code instrumentation and analysis.



186 E. Berg and E. Hagersten

We also plan to incorporate this tool into DSZOOM [13], a software distributed
shared memory system.

References

1. J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S. Leung, D. Sites,
M. Vandevoorde, C. Waldspurger, and W. Weihl. Continuous profiling: Where
have all the cycles gone? ACM Transactions on Computer Systems, 1997.

2. B. Buck and J. Hollingsworth. Using hardware performance monitors to isolate
memory bottlenecks. In Proceedings of Supercomputing, 2000.

3. J. Dean, J. Hicks, C. Waldspurger, W. Weihl, and G. Chrysos. ProfileMe: Hardware
support for instruction-level profiling on out-of-order processors. In Proceedings of
the 30th Annual International Symposium on Microarchitecture, 1997.

4. L. DeRose and D. Reed. Svpablo: A multi-language architecture-independent per-
formance analysis system. In 10th International Conference on Performance Tools,
pages 352–355, 1999.

5. A. Goldberg and J. Hennessy. MTOOL: A method for isolating memory bottlenecks
in shared memory multiprocessor programs. In Proceedings of the International
Conference on Parallel Processing, pages 251–257, 1991.

6. S. Goldschmidt H. Davis and J. Hennessy. Tango: A multiprocessor simulation
and tracing system. In Proceedings of the International Conference on Parallel
Processing, 1991.

7. R. Fowler J. Mellor-Crummey and D. Whalley. Tools for application-oriented
performance tuning. In Proceedings of the 2001 ACM International Conference on
Supercomputing, 2001.

8. Alvin R. Lebeck and David A. Wood. Cache profiling and the SPEC benchmarks:
A case study. IEEE Computer, 27(10):15–26, 1994.

9. S. Devine M. Rosenblum, E. Bugnion and S. Herrod. Using the simos machine sim-
ulator to study complex systems. ACM Transactions on Modelling and Computer
Simulation, 7:78–103, 1997.

10. P. Magnusson, F. Larsson, A. Moestedt, B. Werner, F. Dahlgren, M. Karlsson,
F. Lundholm, J. Nilsson, P. Stenström, and H. Grahn. SimICS/sun4m: A virtual
workstation. In Proceedings of the Usenix Annual Technical Conference, pages
119–130, 1998.

11. M. Martonosi, A. Gupta, and T. Anderson. Memspy: Analyzing memory system
bottlenecks in programs. In ACM SIGMETRICS International Conference on
Modeling of Computer Systems, pages 1–12, 1992.

12. M. Martonosi, D. Ofelt, and M. Heinrich. Integrating performance monitoring and
communication in parallel computers. In Measurement and Modeling of Computer
Systems, pages 138–147, 1996.

13. Z. Radovic and E. Hagersten. Removing the overhead from software-based shared
memory. In Proceedings of Supercomputing 2001, November 2001.

14. J. Seward. The cacheprof home page
http://www.cacheprof.org/.

15. SPEC. Standard performance evaluation corporation
http://www.spec.org/.

16. Sun. Stabs Interface Manual, ver.4.0. Sun Microsystems, Inc, Palo Alto, California,
U.S.A., 1999.


	1 Introduction
	2 SIP Design Considerations 
	3 SIP Prototype Overview 
	4 Case Study: SPEC 183.equake 
	4.1 Identifying Spatial Locality Problems
	4.2 Identifying Temporal Problems

	5 Implementation Details 
	5.1 SIP Collecting Phase
	5.2 SIP Analyzing Phase

	6 Related Work 
	7 Conclusions and Future Work 
	References

