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ABSTRACT
Performance tools based on hardware counters can efficiently
profile the cache behavior of an application and help soft-
ware developers improve its cache utilization. Simulator-
based tools can potentially provide more insights and flex-
ibility and model many different cache configurations, but
have the drawback of large run-time overhead.

We present StatCache, a performance tool based on a
statistical cache model. It has a small run-time overhead
while providing much of the flexibility of simulator-based
tools. A monitor process running in the background collects
sparse memory access statistics about the analyzed appli-
cation running natively on a host computer. Generic local-
ity information is derived and presented in a code-centric
and/or data-centric view.

We evaluate the accuracy and performance of the tool us-
ing ten SPEC CPU2000 benchmarks. We also exemplify
how the flexibility of the tool can be used to better under-
stand the characteristics of cache-related performance prob-
lems.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Measurement, Performance

Keywords
cache behavior, profiling tool

1. INTRODUCTION
An ideal profiling tool should have low run-time overhead

and high accuracy, it should be easy to use and flexible,
and it should provide the user with intuitive and easily-
interpreted information. Low run-time overhead and high

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’05, June 6–10, 2005, Banff, Alberta, Canada.
Copyright 2005 ACM 1-59593-022-1/05/0006 ...$5.00.

accuracy are both needed to efficiently locate performance
bottlenecks with short turn-around time, and the ease-of-
use requirement excludes methods which need cumbersome
experimental setups or special compilation procedures. The
tool should also be able to profile any application in its nor-
mal development, test and even production environment.
Flexibility means that the profile should be applicable to a
variety of hardware configurations and application input-
data sets, and the tool should detect performance issues
that do not affect performance on the experiment platform
but may affect performance on other hardware. To pro-
duce easily-interpreted profiles, the tool should present code-
centric and data-centric information.

It is unfortunately hard to combine all the requirements
above in a single tool. For example tools based on hardware
counters usually have a very low run-time overhead, but
their flexibility is limited because hardware parameters like
cache and TLB sizes are defined by the host computer [1,
12, 16, 30]. Simulators on the other hand are very flexible
but are usually slow [13, 21, 14, 23, 26]. At worst, they
may force the use of reduced data sets or otherwise unrep-
resentative experiment setups that give misleading results.
Furthermore, simulators often need a special compiler or re-
quire the application to be installed on a virtual simulated
machine, which leads to complex usage.

We propose tools based on statistical models as an al-
ternative to hardware-counter-based and simulation-based
approaches. Such tools have the potential to meet all of the
demands for flexibility, speed and ease-of-use. They can be
parameterized since they do not rely on the host hardware
configuration, they are potentially very fast because they
can be based on sparse sampling and they can also pro-
vide a simple and efficient user environment. While there
are many performance aspects that should be handled by a
generic tool, this paper focus on data cache behavior. This
paper presents StatCache, a proof-of-concept implementa-
tion of a fast cache profiling tool based on a statistical mod-
eling technique.

The capabilities of StatCache include locating source code
lines that cause poor cache utilization and analyzing data in-
terdependencies between source code lines. StatCache can
also generate working-set graphs and the paper describes
measures of spatial locality derived from the data StatCache
produces. StatCache can profile unmodified single-threaded
applications running natively on the host, including the cache
effects of library code. The run-time overhead is on average
less than 40% for the ten benchmarks in the evaluation. All
benchmarks are from the SPEC CPU2000 [33] suite and in-
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Figure 1: This figure illustrates the reuse distance
concept. Assume that the letters A, B, C, A, ... in
the boxes represent cache-line-sized pieces of mem-
ory accessed in that order by a target application.
The reuse distance, rd, is the number of intervening
accesses to other memory locations. For example
the first access goes to cache line A, and the next
time A is accessed is in the fourth access. This gives
the reuse distance two.

clude complex applications like gcc and gzip. StatCache runs
entirely in user space and relies on operating-system and
hardware support available on most platforms. The current
implementation runs on the SPARC/Solaris platform. The
paper describes several issues that had to be solved to get
a working tool, for example how to select samples, and
it also describes how to map the statistical information to
individual machine instructions and source code lines.

The next two sections will give a short introduction to
the previously published theoretical background and present
the implementation in a top-down manner. Sections 4 and 5
describes the validation of StatCache and discuss how to use
StatCache for data locality optimizations. Related work is
presented in Section 6 and, finally, in Section 7 we conclude.

2. THEORETICAL BACKGROUND
StatCache uses a statistical model for estimating the miss

ratio of fully associative caches. This section gives a brief
presentation of the theoretical background of StatCache[4].
We use the term target application to denote the analyzed
application.

2.1 Reuse Distance
The reuse distance plays a central rôle in StatCache. We

define the reuse distance as the number of memory accesses
between two accesses to the same cache-line-sized piece of
memory. Figure 1 illustrates the concept, where the pro-
cessor accesses cache line A, then accesses two other cache
lines (B and C in the figure), and finally the processor ac-
cesses cache line A again. Thus, the reuse distance of the
second access to A is two. Please note that this definition of
the reuse distance counts all intermediate memory accesses,
contrary to the stack distance that only counts unique mem-
ory accesses [28]. This is an important difference, the reuse
distance defined above is much easier to measure than the
stack distance and enables an efficient implementation.

2.2 The Statistical Model
The reuse distances of an application largely determine its

cache behavior. These reuse distances are hard to interpret
as is, but can be transformed into cache-miss ratios using a
statistical model. The model gives the miss ratio of a fully

associative cache of arbitrary size with random replacement.
Please see our previous publication [4] for a detailed descrip-
tion of the model and a simulation-based validation.

Assume that we know the reuse distance of a represen-
tative subset of all memory accesses. This subset can be
selected by sampling. Then sort the reuse distances of all
the memory accesses of the subset into buckets, hi. Let h0

be the number of memory accesses with reuse distance zero,
h1 the number of memory accesses with reuse distance one,
and so on. Then solve the equation

R · N = h1f(R) + h2f(2R) + h3f(3R) + . . . (1)

for R, which is the miss ratio. N is the total number of
samples, i.e. N = h0 + h1 + h2 + . . . , and f(n) is a function
that gives the probability that a cache line has been evicted
from the cache if we know that it was in the cache n cache
misses ago. The function f is

f(n) = 1 − (1 − 1/L)n (2)

where L is the number of cache lines in the cache. The cache
size is L times the cache line size.

Equation 1 is only valid if the miss ratio is approximately
constant during the execution, which is not always the case.
To handle this, StatCache divides the target-application run
into several short periods, where each period is short enough
for the miss ratio to be approximately constant during that
period. Such a period of the execution is called a sam-
pling window. The basic theory is applied to each sampling
window. Equation 1 gives an estimated miss ratio for each
sampling window and the overall miss ratio of the applica-
tion is simply the arithmetic mean of the miss ratio of every
sampling window.

3. IMPLEMENTATION
This is a top-down description of our profiling tool Stat-

Cache, starting with the user interface and working our way
toward important implementation details.
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Figure 2: The figure shows the graphical user in-
terface, the monitor process and a target process.
The user interface contains only code for presenting
results while the monitor process handles all sample-
data collection, the statistical cache model and other
support code for example for reading debugger in-
formation. The trap handlers and syscall wrappers
are injected in the target process at load time using
the preload support in Solaris. The processes com-
municate through UNIX pipes, shared memory and
the /proc file system.



Figure 3: The process view of
the user interface shows a list
of all executables monitored by
StatCache, their process ID and
state, active or finished. New
processes are added to the list
when they are started and a
user can select any process, ac-
tive or not, and then switch to
one of the other views to display
detailed cache miss information
about the selected process.

Figure 4: The working-set view
of the graphical user interface.
The tool can present graphs that
show the miss ratio as a func-
tion of cache size for any tar-
get process. This is for example
useful for analyzing the impact
of different input data sets on
cache utilization and for tuning
blocking factors. This picture
shows the working-set graph for
SPEC swim. The miss ratio is
apparently not very sensitive to
cache size, thus, we would not
gain much performance by mov-
ing the application to a computer
with larger caches.

3.1 Overview

Figure 2 gives an overview of the tool, which is composed
of two parts, a graphical user interface for presenting profil-
ing results and a monitor process that handles sampling and
the statistical calculations. The figure also shows a target
process and how the different processes communicate. This
design enables the implementation of a tool that is inter-
active in the sense that profiling information is available at
run-time and is continously updated during execution.

A single command at a shell prompt with the target ap-
plication as argument starts the profiler. While the tool
keeps track of new subprocesses, an easy way to use the tool
interactively is to first start an xterm(1) (X terminal emu-
lator) as the first process from the command line, and then
start the actual target application in the new xterm win-
dow. Thus, the same target application can be rerun several
times using this approach without restarting the tool. This
enables easy comparison of the profiles of different runs for
example to study the impact of different input data sets on
cache behavior.

The StatCache implementation runs on UltraSPARCIII-
based computers and can be used to profile unmodified bi-
nary code. The entire tool runs as an unprivileged program
under Solaris because no special drivers are needed and no
part of the tool must run as a privileged user. StatCache
is written in C and consists today of about 11,000 lines of
code. It supports the stabs debugging format generated by
the Sun C and F90 compilers.

3.2 The User Interface
The user interface displays profiling information for all

target processes. It has three views, and a user can switch
between them using the tabs at the top. The first view is
a list of running and finished target processes, identified by
name and process id, as seen in Figure 3. In this example
we have first started an xterm window and then run SPEC
swim twice, recompiled it with the Sun F90 compiler and
linker, and restarted swim again. StatCache collects perfor-
mance data independently for each of these processes. After
selecting one of the processes, a user can switch to one of
the other two views to study the available profiling infor-
mation for that process. The second view presents working



Figure 5: The source view
shows code-centric profiling in-
formation. The view has three
panes, the upper left shows the
source file names (only swim.f in
this example), the upper right
pane shows source code anno-
tated with the miss ratio per
code line, and the bottom pane
shows detailed data dependency
information. The bottom view
shows in this example that most
(88%) data reuse for line 265 is
self reuse, that is, data is previ-
ously accessed by the same line.

set graphs for the selected target process, i.e., miss ratio as
a function of cache size. The screen shot in Figure 4 shows
such a graph for swim. The third view shows the source
code of the application annotated with cache miss rate in-
formation. Figure 5 shows the source code for swim, where
lines 263, 264, 265 and 267 are annotated with cache miss
ratio numbers next to the line numbers. The bottom half of
this view contain data reuse information.

3.3 The Monitor Process
The monitor process is the core of StatCache. It controls

the target applications using the Solaris debugger interface
and detects the creation of child processes by overloading
the fork() and exec() system calls. It also intercepts the sig-
nals SIGTRAP and SIGEMT, which are used by the sam-
pling and watchpoint mechanisms described in detail below.
The monitor process also contains data structures for stor-
ing the sampled information per target process and support
functions for calculating miss ratios, reading debugger infor-
mation etc. Several target processes running on the same
computer may be monitored concurrently by a single moni-
tor process.

3.4 The Sampling Algorithm
StatCache is based on reuse-distance sampling. One of the

most important requirements of this statistical approach is
that the samples are selected randomly. This means that
every memory reference must be sampled with the same
probability, and that the samples are selected independently
of parameters like execution speed and system load. These
requirements would be easy to meet if we had an exact ac-
cess counter and could stop the execution exactly at any
given memory operation. Unfortunately, the SPARC plat-
form does not provide such a mechanism.

UltraSPARC III has 32-bit counters for counting executed
instructions and load and store operations. The counters
can be configured to generate the Solaris-signal SIGEMT
on overflow, i.e. transition from all ones to zero. However,
these counters have two limitations that prevent us from

using them to select samples in a straight forward man-
ner. Firstly, they cannot be configured to count both load
and store operations simultaneously. Secondly, the overflow
traps are deferred, which means that the processor may ex-
ecute several instructions, sometimes twenty or more, after
the actual overflow occurred, an effect also known as skid.
The processor also tend to stop at certain instructions with
much higher probability than other instructions that are ex-
ecuted the same number of times. An implementation that
does not consider these hardware weaknesses would give very
inaccurate results.

At first we tried to select samples using only the load
counter. This actually worked quite well for applications
with regular memory access patterns. However, when we
ran complex codes, we found that applications with a vary-
ing load-store ratio caused our tool to select very unrepre-
sentative samples. This forced us to instead use the method
we describe below based on an instruction counter. The
deferred traps were also difficult to handle. When we in-
vestigated the trap handling of the UltraSPARC processor,
we found cases where the processor always stopped at the
same instruction in a loop that consisted of over twenty in-
structions. The skid-compensation method introduced be-
low solves this problem.

Figure 6 illustrates the final sampling mechanism. First,
decide how far ahead we want to stop and take the next
sample using a random-number generator.

NextSample := RandomGenerator() (3)

Next, set the hardware instruction counter, InstrCounter,
to generate a trap after NextSample instructions, minus a
small constant, SkidComp, which is larger than the maxi-
mum skid, i.e.,

InstrCounter := ICMAX − (NextSample − SkidComp),

where ICMAX is the maximum value of InstrCounter.
When the processor takes the overflow trap, StatCache reads



the current value of InstrCounter to check how many in-
structions the processor executed after the overflow occurred
and determines the number of instructions, InstrRem, that
remain to execute until it reaches the actual sampling point.
Thus,

InstrRem := SkidComp − InstrCounter. (4)

The tool sets the target application in single-step mode and
executes the remaining InstrRem instructions to reach the
intended sampling point. However, this instruction may not
be a memory operation. There are two ways to handle this:
the tool can either continue to single step until the next
memory operation is found, or it can check whether the cur-
rent instruction is a memory operation and take a sample
only if it is. However, the first alternative does not fulfill our
requirements of random sampling, because a memory opera-
tion preceeded by a large number of non-memory operations
would be selected with much higher probability than a mem-
ory operation that is preceeded by just a few non-memory
instructions. Thus, StatCache uses the second alternative.
It decodes the instruction and if it is a memory operation,
StatCache calculates the effective address of the instruction
and determines the base address of the cache-line-sized piece
of memory the instruction accesses, and passes the base ad-
dress to the watchpoint mechanism for monitoring. If the
intended sampling point is not a memory operation, the tool
just skips it and restarts the sampling mechanism.

3.5 Hierarchical Sampling Scheme
The total number of sampling windows introduced in Sec-

tion 2.2 could potentially become very large for long-running
applications. However, the overall miss ratio is just the av-
erage of the miss ratios of the individual sampling windows,
and the accuracy of an estimated average value depends
mostly on the absolute number of samples and not the sam-
pling ratio. Thus, there is no need to estimate the miss ra-
tio of every such possible sampling window for long-running
target applications, the accuracy would not improve much
anyway. Furthermore, StatCache has the nice property that
it does not consider cold misses, which enables the length
of the sampling windows to be shorter than the warm-up
period of a traditional cache simulator. This makes it pos-
sible to capture the cache behavior of the various phases of
the target application using a large number of short sam-
pling windows scattered throughout the target-application
run. About twenty sampling windows are enough for ap-
plications with regular memory access patterns while com-
plex codes require more sampling windows. We take advan-
tage of this in our tool to reduce overall sampling rate, and
thus reduce run-time, by introducing a hierarchical sampling
scheme and use only a limited number of sampling windows
scattered over the execution. This gives a fair estimate of
the overall miss ratio with low run-time overhead. There
are statistical methods that can determine the confidence
interval of the results given the sample data and confidence
level [4].

The hierarchical sampling scheme is easy to integrate in
the sampling algorithm described in the previous section.
We configure the random generator used to assign new val-
ues to the NextSample variable (Equation 3) to produce
smaller numbers if inside a sampling window, and a larger
number at the end of each sampling window to produce an
inter-window sampling gap.
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Figure 6: An illustration of the sampling and watch-
point mechanisms. The InstrCounter overflows at
instruction 12, but the processor does not take the
trap (SIGEMT) until instruction 15 because the
trap is deferred. The sampling mechanism advances
the target application instruction by instruction un-
til the desired sampling point, instruction 18, is
reached. If this is a memory operation, a watch-
point is set, and the next access to the same cache
line is detected.

3.6 Watchpoint Mechanism
The cache-line-sized pieces of memory selected by the sam-

pling algorithm must be monitored until the processor ac-
cesses them again. StatCache uses the watchpoint system
provided by the operating system for this task. When a
sample is selected, the data collector sets a watchpoint on
the corresponding cache-line-sized piece of memory. This
causes the operating system to send a SIGTRAP signal to
the target process when it attempts to access the monitored
memory. The signal is intercepted by the data collector,
which records the reuse and removes the watchpoint. Fig-
ure 6 illustrates how the sampling and watchpoint mecha-
nisms work together to select samples and detect data reuse.

The watchpoint mechanism in Solaris is based on page-
wise memory protection using the MMU. The run-time over-
head would therefore be very high if the target application
often accessed memory on the same memory page as a mon-
itored piece of memory. Thus, it is important to keep the
number of active watchpoints low. Our statistical method
can produce accurate results at a very low sampling rate,
which keeps the average number of active watchpoints to a
minimum.

3.7 Measuring Reuse Distance
The sampling and watchpoint mechanisms described above

enable us to measure the reuse distance. The basic idea is to
read the value of a memory reference counter when a sample
is taken and check how much it has increased when the reuse
is detected. However, measuring reuse distance also turned
out to be tricky on SPARC, because it cannot count both
load and store operations simultaneously.

Our profiling tool uses the load counter and a store-per-
load scale factor to work around the limitation. The reuse
distance, D, can be decomposed into load and store opera-
tions respectively, i.e., D = L+S. If we only know the num-
ber of load operations, L, but not store operations, S, we
can instead approximate the reuse distance using L and an
average number of stores per load, StoreLoadRatio. Thus,
D = (1 + StoreLoadRatio) · L.



The StoreLoadRatio is estimated per sampling window
by counting store and load operations executed when the
target application is in single step mode. This is a rough
estimate if the StoreLoadRatio also varies a lot within each
sampling window, but our results show that it is good enough
for our tool. However, a hardware counter that counts both
load and store instructions could improve accuracy. It is
important to generate a new StoreLoadRatio for each sam-
pling window because it varies greatly between sampling
windows for some applications, for example SPECmcf .

3.8 Accurate Code Annotation
It is desirable to point out which instructions and which

lines in the source code that cause the most cache misses.
This is often troublesome using hardware counters because
advanced hardware is needed to record exactly which in-
struction that caused a cache miss. The statistical approach
enables an easy way to accurately annotate source code with
cache misses.

Consider one sampling window. The sampling mechanism
halts the processor at some random instruction, the sample
instruction. It then checks if it is a load or store instruction,
and if it is, calculates the effective memory address. The
watchpoint mechanism monitors the cache-line-sized piece
of memory accessed by the sample instruction until another
instruction, the trigger instruction, accesses the same piece
of memory again and records the reuse distance, D. When
the tool has estimated the miss ratio of this sampling win-
dow, Rwindow , it can also estimate the number of cache
misses between sample instruction and trigger instruction
as D · Rwindow . Formula 2 gives the probability that a da-
tum still resides in the cache after n cache misses. Thus,

p = f(D · Rwindow)

gives the probability that the trigger instruction causes a
cache miss.

Our tool records the PC (program counter) of both the
sample instruction and the trigger instruction. It then ag-
gregates the information per source code line using debugger
information from the executable file and the object modules
and presents it as miss ratio numbers next to the source
code in the user interface as Figure 5 shows.

3.9 Identifying Data Structures
Identifying the data structures that cause poor cache uti-

lization is often just as useful as identifying lines of code
that cause many cache misses. A method similar to the one
used for code annotation can be used also for data anno-
tation. Besides recording reuse distance, sample and trig-
ger instruction PCs, the tool also records the effective data
address. Using a mapping between data structures and ad-
dress ranges, the tool can easily calculate the miss ratio of
any frequently accessed data structure.

There are different methods to find a mapping between
data structures and address ranges. Statically allocated
data may be identified using debugger information. How-
ever, many applications use mostly dynamically allocated
data structures. One way to keep track of dynamically al-
located data is to overload memory allocation functions, for
example malloc(), and aggregate information about all data
structures allocated at the same line in the program. A third
way is to identify the name of the data structure by instruc-
tion PC (Program Counter). However, StatCache is cur-
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for (i = 0; i < ARCHnodes; i++)

for (j = 0; j < 3; j++)

disp[disptplus][i][j] +=

2.0 * M[i][j] * disp[dispt][i][j] -

(M[i][j] - Exc.dt / 2.0 * C[i][j]) *

disp[disptminus][i][j] -

Exc.dt * Exc.dt *

(M23[i][j] * phi2(time) / 2.0 +

C23[i][j] * phi1(time) / 2.0 +

V23[i][j] * phi0(time) / 2.0);

for (i = 0; i < ARCHnodes; i++)

for (j = 0; j < 3; j++)

disp[disptplus][i][j] =

disp[disptplus][i][j] /

(M[i][j] + Exc.dt / 2.0 * C[i][j]);

Figure 8: Nested loops from SPEC CPU2000 equake

rently based on the stabs debugger format, and stabs does
not provide enough detail to implement the last method.

We illustrate the data structure identification in Figure 7
with a blocked matrix multiplication, x = y · z. Statistics
for x are not shown because it is rarely accessed. (The
result of each vector times vector multiplication is stored in
a register). The array y has the largest miss ratio, because
it is referenced in column major order. The figure shows
graphs for two block sizes, 20 and 60. Note how the smaller
block size has moved the knees of the graphs to the left
compared to the larger block size. For more advanced codes,
this should turn out useful to track data structures with
unfavorable access patterns.

3.10 Cache Data Reuse
Figure 8 shows two loop nests from SPEC equake. A soft-

ware developer may want to know if any of the data accessed
in the first loop nest survives in the cache until it is accessed
in the second loop nest. This question could be answered
using StatCache. All information we need is already calcu-
lated as described in Section 3.8. First, find all samples with
a trigger instruction that belongs to the second loop nest.



Then put all these samples into buckets depending on what
source line the sample instruction belongs to and sort the
buckets in descending order. The first bucket indicates from
which source line most of the data is reused, and so on. This
information is readily available in our tool. A mouse click
on a source line immediately displays this information in the
user interface. Figure 5 shows the data reuse numbers for
SPEC swim line 265. It shows that most data reuse, 88%,
is self reuse, i.e. previously touched by the same line. The
rest of the data accessed by line 265 is previously touched
on lines 402 and 317. The tool could also estimate the prob-
ability that the data still resides in the cache. Section 3.8
describes how to calculate the miss probability of each trig-
ger instruction. The average miss probability of the trigger
instructions in a bucket tells if the data reused from the cor-
responding source code line still resides in the cache or have
to be fetched from memory again.

4. EVALUATION
A tool such as the one described in this paper should be

evaluated both for its speed and accuracy of its model.

4.1 Model accuracy
We evaluate the accuracy of the tool by comparing it to

a trace-driven functional cache simulator. We use an in-
house code instrumentation tool to generate traces that are
fed directly to a cache simulator, hereafter called the ref-
erence simulator. The reference simulator simulates a fully
associative cache with random replacement and line size 32
bytes. We have performed all experiments on a Sun V880
with two 750MHz UltraSPARC-III CPUs and 4GB mem-
ory. All benchmarks are compiled using gcc version 3.4.2
with optimization level 3, except gcc that did not compile
properly with optimization. All benchmarks are simulated
to the end.

The benchmarks come from the SPEC CPU2000 suite and
they are ammp, art, gcc with input 166.i, gzip with inputs
source, random and graphic, mcf, twolf, vpr route and vpr
place. While StatCache includes the cache effects of library
code, our reference simulator does not. Thus, these bench-
marks are chosen because they do not spend much of their
execution time in library code to enable a fair comparison.
Many of these benchmarks have a cache behavior that varies
greatly over time and some are very complex integer codes,
like gcc.

Figure 4 shows the miss ratio as a function of cache size
for ten selected benchmarks. The cache size is varied be-
tween 8KB and 4MB, and the figure shows two graphs for
each benchmark, one generated by StatCache, and one gen-
erated by the reference simulator. The figures shows that
StatCache captures the shape of the graphs well which we
believe is an important property of a data-locality analyzer.
This helps a programmer answer questions like: Does my
data set fit in the cache or should I try blocking? or: I
reordered the loops in this function, did it improve cache
utilization? The tool will also tell if a code change had any
positive effect on data locality even if it did not affect cache
behavior on the actual development machine.

The benchmark gzip is a good example of how our profiling
tool may be used to analyze the impact of different input
data on cache behavior. A comparison of the graphs for gzip
source, gzip random and gzip graph shows that the miss ratio
for small cache sizes is much higher for the source input than

for the other inputs. The miss ratio of the benchmark gzip is
difficult to estimate because the benchmark compresses the
input data several times at increasing compression levels.
This causes the miss ratio to increase over time. We realized
this when we experimented with the profiler and saw the
miss ratio increase during the execution, but StatCache still
manages to produce accurate results.

The differences we do see between the reference simula-
tor and our tool have several causes. The first problem is
that the reference simulator does not handle library code
except memcpy and memset. Even though we have selected
benchmarks that spend a small fraction of their execution
time in other library code, many benchmarks still spend a
few percent of their execution time in functions that are not
traced by our reference simulator. This causes some of the
deviations.

The next source of error is the sampling rate. Too few
samples may cause large random errors. The tool reports the
number of samples and a user can therefore handle this type
of error by increasing the sampling rate. We know from ex-
perience that about 25 sampling windows is a minimum for
complex codes like gcc, while it often suffice with less sam-
pling windows for iterative numeric programs. The overall
sampling rate in this evaluation is about 1 to 5,000,000, but
the exact sampling rate varies between the different bench-
marks because they have different instruction mixes. We
describe in a technical report how the statistical method
bootstrapping can be used to estimate the sampling error
and find confidence intervals [3].

A third source of error is the sampling algorithm. Based
on experience gained during the development of the tool we
believe that this is the largest source of error. While it at
first sight may seem easy to stop the processor at random
instructions and sample, this really turned out to be one of
the major problems. The method described in section 3.4 is
the best we are aware of today, but we believe improvements
are possible. The inherent error from the statistical method
StatCache itself should be of minor importance because the
theoretical results reported using a simulated implementa-
tion of StatCache show even smaller errors, also for integer
benchmarks. [4].

4.2 Performance
A profiling tool should be fast to allow large workloads

to be analyzed. Table 1 shows the run times for the bench-
marks in our study with and without our profiling tool. Most
of these applications have a rather short run time, and for
such run times an overhead of up to 100 percent may be
acceptable. Our profiler is well below that limit. For long-
running applications we expect much lower relative over-
head if the sampling rate is decreased proportionally. Fur-
thermore, while StatCache is interactive, a user may view
intermediate results at any time during an experiment and
may choose to interrupt the application as soon as she has
the desired information. This could shorten the turn-around
time even further. The overhead for producing intermediate
results is negligible.

There are different reasons for this run-time overhead.
One of them is the watchpoint mechanism. While the page
size of the SPARC architecture (8KB) is much larger than
the cache line size, the OS kernel must handle a lot of MMU
traps caused by memory accesses to pages that contain a
watchpoint. Thus, the watchpoint mechanism is currently
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Figure 9: A comparison between the reference simu-
lator (RefSim) and our sampling-based data-locality
profiler (StatCache). The graphs show that the dif-
ference between full simulation and the statistical
model is relatively small. StatCache also captures
trends well, which is important for analyzing work-
ing sets. Profiling an application twice with different
input should clearly show if the change in input af-
fects cache behavior. Compare for example the dif-
ferent graphs for gzip, gzip random and gzip graphic

are both similar while gzip source has a much larger
miss ratio for small cache sizes.

the largest source of run-time overhead. Using the two hard-
ware watchpoints available on the UltraSPARC III to han-
dle watchpoints on frequently accessed memory pages would
have reduced the run-time overhead considerably. This,
however, requires kernel code modifications. The second
most important overhead source is the sampling mechanism.
StatCache must switch to single-step mode and single step
about 50 instructions for each sample to compensate for trap
skid and get representative samples. This consumes a lot of
CPU cycles and causes a lot of context switches. We be-
lieve that an improved sampling mechanism could improve
performance as well as accuracy.

5. DATA LOCALITY OPTIMIZATION
A fast flexible cache analysis tool can provide valuable

insight in program behavior. This section discusses possible
use of a fast tool with the capabilities described above and
give a few examples of what kind of information that can be
retrieved. 1

1The results in this section are based on a pre-study code-
instrumentation-based version of the tool that uses the same
sampling algorithm.



Benchmark Memory refer-
ences (billions)

Run time
(min/sec)

Run time with
tool (min/sec)

Overhead
(min / sec)

Number of
sample win-
dows

Overhead (%)

gcc 48 4m12s 6m55s 2m43s 37 64%
gzip source 16 4m31s 5m30s 59s 22 21%
gzip random 21 5m14s 2m36s 2m38s 22 50%
gzip graphic 24 5m10s 6m46s 1m36s 26 32%
art 14 4m44s 5m58s 1m14s 16 26%
ammp 131 21m4s 29m17s 8m13s 95 39%
vpr place 36 5m41s 8m47s 3m6s 33 54%
vpr route 31 5m20s 8m13s 2m53s 21 48%
mcf 19 11m0s 14m13s 3m13s 25 29%
twolf 100 19m28s 24m19s 4m51s 95 25%

Table 1: Run-time overhead of our profiling tool. The overhead includes everything, including graph gener-
ation. We have measured wall-clock time on a lightly loaded system.
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Figure 10: Spatial locality of 179.art and 171.swim.
The graphs show the miss ratio of the two bench-
marks as a function of the line size for the cache
sizes 64K byte and 1M byte. Art has some spatial
locality for the 64K byte cache but none for the 1M
byte cache. Swim shows a very high degree of spatial
locality for both cache sizes.

5.1 Spatial Locality in 171.swim
The benchmark swim performs iterative updates of a num-

ber of two-dimensional arrays. In each iteration, the pro-
gram executes three two-level loop nests, Figure 11 shows
one of them. The arrays are larger than most caches, which
means that very few array elements will survive in the cache
until the next iteration. Thus, we expect almost only spatial
locality, especially in small first level caches. Assembly code
inspection showed that the program uses 32-bit instructions
to read data. The miss ratio for caches with 16 and 32 byte
lines should therefore be approximately 1/4 and 1/8 respec-
tively.

Figure 10 shows the miss ratio estimates of 179.art and
171.swim as function of the cache size. Swim behaves as ex-
pected. The cache miss ratio approximately halves when the
cache line size doubles. The exception is large cache lines
and a 64KB cache, were the miss ratios are very similar for
the cache line sizes 64, 128 and 256. The reason is that the
cache is so small that data is evicted before the program can
take advantage of all the potential spatial locality. Spatial

DO 100 J=1,N

DO 100 I=1,M

CU(I+1,J) = .5D0*(P(I+1,J)+P(I,J))*U(I+1,J)

CV(I,J+1) = .5D0*(P(I,J+1)+P(I,J))*V(I,J+1)

Z(I+1,J+1) = (FSDX*(V(I+1,J+1)-V(I,J+1))-

FSDY*(U(I+1,J+1)-

U(I+1,J)))/(P(I,J)+P(I+1,J)+

P(I+1,J+1)+P(I,J+1))

H(I,J) = P(I,J)+.25D0*(U(I+1,J)*U(I+1,J)+

U(I,J)*U(I,J)+V(I,J+1)*V(I,J+1)+

V(I,J)*V(I,J))

100 CONTINUE

Figure 11: A loop nest from swim. The program
spend most of its time in simple loops like this.

locality is thus limited to 64 bytes for the 64K byte cache.
In contrast, the miss ratio of the 1M byte cache continues
to decrease for cache line sizes up to 256 bytes. The abso-
lute values are somewhat lower than expected, but this is
probably because there is some limited temporal locality as
well. The curve for the 1M byte cache is also lower than the
64K byte curve, which indicates some temporal locality for
larger caches.

Art behaves differently. The miss ratio of the 64 K byte
cache decreases towards larger cache line size, while the miss
ratio of the 1 M byte cache is approximately constant. For
the largest cache line size, 256 bytes, the miss ratio for both
cache sizes are similar. We conclude that the small cache
is too small to fully take advantage of the temporal data-
locality in the benchmark, while the large cache is. Further,
there is very little spatial locality to take advantage of in
the large cache. Thus, spatial locality depends on cache
size, and to get a complete view of spatial locality, we need
to study it for different cache sizes.

5.2 Quantifying Spatial Locality
Comparing the miss ratio of caches of the same size, but

with different cache line sizes, allows quantification of spatial
locality. A miss ratio that drops by 50 percent when the
cache line size is doubled indicates good spatial locality. Let
Bsmall be the size of the smallest data unit we consider, and
let B be the cache line size. Let Rsmall be the miss ratio of
a cache with cache line size Bsmall, and R be the miss ratio



Benchmark Spatial
Use

Benchmark Spatial
Use

168.wupwise 1.07 179.art -0.30
171.swim 1.01 183.equake 0.98
172.mgrid 0.93 188.ammp -0.02
173.applu 0.97 301.apsi 1.01

Table 2: Spatial Use for eight SPEC benchmarks.
Most of the applications show very good spatial lo-
cality, while two, art and ammp, stands out with
poor locality. The cache is 1M byte with 64 byte
lines.
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Figure 12: Spatial locality of SPEC 183.equake. The
graphs show the Spatial use defined in Section 5.2
as a function of B (cache line size) for the original
(unoptimized) and optimized code. This experiment
use Bsmall = 4 and B = 4 through 64. The spatial lo-
cality of the optimized version is close to one for all
line sizes, while the spatial locality for the unopti-
mized version drops for 16 byte lines.

of a cache with cache line size B. For a given cache size,
define the spatial use:

Spatial Use(B) =
1 − R/Rsmall

1 − Bsmall/B

The Spatial Use will be one if the cache miss ratio is in-
verse proportional to B, and zero if it is unaffected by B.
Table 2 shows the spatial use for the eight SPEC bench-
marks we investigate in this study. The values in the table
are based on Bsmall = 16, and B = 64. Two benchmarks,
art and ammp, stands out with very poor data locality. This
indicates that data is accessed in an unfavorable way in the
two applications. For example ammp initializes large ar-
rays of C-structures field by field instead of all fields for
one array-index at a time, which causes very poor spatial
locality.

5.3 SPEC 183.equake
It has been shown that equake suffers from poor spatial

locality due to ineffectively allocated data [2]. In the original
version of the application, the memory is allocated in small
chunks (6 bytes large) with unused spaces between them.
The paper showed that the application could run up to 40%
faster with an optimized memory allocator. We were curious

to see if our tool could guide a programmer towards this per-
formance bug. We compared the original application with
a version with an optimized memory allocator to see if our
prototype tool and the spatial locality metrics would reveal
the poor spatial locality. We varied the cache line size, B,
between 4 and 64 bytes and calculated the spatial locality
metrics defined above relative to the small 4 byte cache line.
Figure 12 shows the results. Note that the spatial use is
close to one for all cache line sizes for the optimized version,
while the original program has a sharp dip for 16 byte lines.
This study shows that we can find the same spatial local-
ity problems with our prototype tool as the profiling tool
described in [2] based on functional cache simulation.

6. RELATED WORK
There is a variety of methods to perform cache behav-

ior studies. These include simulation, hardware monitoring,
statistical methods and compile-time analysis. Compile-
time analysis tools [35][8] estimate cache miss ratios by stat-
ically analyzing the code and determine when cache misses
occur. Compile-time analysis major advantage is that it
doesn’t require the program to be executed, and can po-
tentially be parameterized in terms of workloads etc. Its
drawback is that it is limited to relatively well-structured
codes where for example loop limits are known at compile
time.

Cache simulators may be driven by instrumented code[13,
14, 20, 21, 23, 26, 27], on source code [17] or machine code
levels, or the cache simulator incorporated in a full sys-
tem simulator[24][22]. Their major limitation is their large
slowdown. Simulation-based analysis can possibly combined
with sampling (see below) to reduce the runtime overhead.

Cache-sampling techniques include set sampling and time
sampling. In time sampling a cache model simulates contin-
uous sub-traces from the complete memory reference trace.
This is explored in papers [11, 15, 18, 19, 36]. It works
well for smaller caches, but the need for long warmup peri-
ods makes time sampling less suitable for large caches. The
problem of selecting statistically representative samples is
explored in Perelman et al.[32] Set sampling is another ap-
proach, were only a fraction of the sets in a set-associative
cache is simulated [11, 18]. It generally suffers from poor
accuracy and can only be used as a rough estimate.

More recently, sampling guided by phase detection has
been proposed [31, 37]. The idea is based on the obser-
vation that most applications have different phases during
their execution. Within each phase, the system performs in
a fairly invariant (often repetitive) way. Guided by phase
detection algorithms, very sparse samples can still provide a
representative behavior for the entire execution. While most
work on phase-guided sampling has been targeting detailed
pipeline simulation, similar techniques could also be applied
to memory system modeling. Cutting down the number of
samples for time-sampling of caches could turn out to be
especially valuable, since the need to warm the large caches
requires so many memory operations per sample. Phase-
detection could also work well together with our tool. Phase
detection could guide us to sample more or less often during
the execution which could cut back on out runtime overhead
further. The fact that we do not need to warm the caches
before our model is valid further speaks in our favor.

Hardware counters are available on most modern comput-
ers. Events that can be counted include L1 and L2 cache



misses, coherence misses and number of stall cycles. Ex-
amples of use include DCPI [1], which uses an advanced
hardware support to collect detailed information to the pro-
grammer, and PAPI [6] which is a common programming
interface to access hardware monitoring aids. Histogram-
ming and tracing hardware may be used to detect for exam-
ple cache conflicts [30] and locate problem areas [7]. Their
limitations are mainly that only architectural parameters
realized on the hardware may be studied, and that it can
be hard to capture entities not directly present in the hard-
ware, such as spatial locality. Trap-driven trace generation
has also been suggested [34]. It can trace unmodified code,
but requires OS modification.

Other approaches to describe and quantify memory be-
havior include the concept of data streams or strides. Infor-
mation about data streams can be used to guide prefetch-
ing[9] [10] and help choose between optimizations such as
tiling, prefetching and padding[29]. Abstract cross-platform
models for analyzing and visualizing cache behavior exist [25,
5, 38], mostly based on a reuse distance definition similar to
the stack distance [28].

7. CONCLUSIONS
We have presented a fast and flexible tool for analyz-

ing application cache behavior. The paper shows that it
is possible to implement a fast profiling tool based on reuse
distances sampling using only user-level operating-system
support. The profiling tool is interactive and runs native
unmodified application. We belive that the tool fills the
gap between detailed but slow simulators that often force
the analyst to reduce runs, and hardware monitoring with
its limited flexibility. The speed of the tool enables execu-
tion with full data sets, while adding less than 40 percent
overhead to the native execution time for long-running ap-
plications. This reduces many errors originating in unrepre-
sentative and reduced experimental setups, at the expense
of a less details.

The paper shows working-set graphs, spatial locality mea-
sures and presentation of data-centric information as exam-
ples of information that may be monitored with the tool.
We also show how to produce detailed and accurate data-
locality information at the source code level and how to find
data reuse between different parts of the code. There are
many details that cannot be explained in a paper and we
plan to release the tool under an open source license to en-
able anyone interested to check any detail of the tool.
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