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Improving DSZOOM’s Run Time System

21st January 2004

Abstract

DSZOOM is a software-based distributed shared memory (DSM) sys-
tem intended to run on a cluster of computers that communicates through
interconnect hardware. In order to run on a multi-system image (MSI)
cluster, meaning a cluster where each node has a separate operating sys-
tem running, there is a need for a run-time system that supports process
distribution.

In this thesis, we have implemented a run-time system that will dis-
tribute processes across the cluster without the assistance of the operating
system. This is done using the robust and widely accepted message pass-
ing interface (MPI) standard. The run-time system is also optimized to
take advantage of UltraSPARC’s Block Load/Store instructions.

We have also implemented hierarchical lock technology in DSZOOM.
The lock algorithm creates node affinity by keeping the lock in a node
for some time if there is contention. The micro-benchmark study shows a
500% speed-up on a two node cluster with 20 processors. The hierarchical
lock can run on any number of nodes.
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1 Introduction

For a long time, computer engineers have realized that sequential computers
have an upper speed limit, determined by several factors, one of them being the
speed of light. In order to make computers faster beyond that, one has to make
the computer make computations in parallel. Such computers are called parallel
computers and work by dividing the computation onto several processors. The
amount of speedup that is possible by using a parallel computer is governed
by Amdahls law, also known as the law of diminishing returns. What this law
states is basically that if a part of a program can not be run in parallel that part
wont run any faster no matter how many processors your parallel computer has,
and this sequential part will eventually become the limiting factor. It is then
up to the programmer of a parallel program to make algorithms that have as
little sequential code as possible.

The work of the computer engineers is to make parallel computers that are as
efficient as possible in every possible aspect. One big issue in any computer is
managing the physical location of the data, so that the executorial units of a
processor have the data available when it is going to perform a computation,
instead of stalling until the data arrives. This issue only grows bigger in a
parallel computer since there can be many processors that want to use a certain
datum and therefore the computer has to compromise on the location of the
data.

When a program is running in parallel, each of the parallel running sections
is called a thread. Up until recently there would be one thread executing on
each processor, but with the advent of Simultaneous Multithreading (SMT),
there can be a certain number of threads, often two or four, running on each
processor.

One other issue with computer designs is the communication and synchroniza-
tion among these threads. Often one thread may be dependent on the result
of one or many other threads to be able to proceed with its computations, and
may also have to synchronize with other threads so that the threads proceed in
correct order, for example when entering a critical section. On some systems,
two threads also have to synchronize to be sure that the communication of a
datum is completed. The goal for communication and synchronization is to be
as fast as possible, both in transferring many bytes at a time (high bandwidth)
and in low setup time for the first byte to arrive (low latency).

There have been many different designs that try to solve these issues and build
an efficient parallel computer. A design to build large parallel computers that
has become popular is to connect many smaller Shared Memory Processor
(SMP) computers in a cluster using fast interconnect communication hardware.
This way, many hundreds and possibly thousands of processors can work to-
gether. One problem with this approach is that the communication across the
interconnect is often relatively slow. An even bigger problem is that cache co-
herence is often not supported in hardware which makes it impossible to run



shared-memory programs. It is still possible to run programs that use message
passing, but there are many reasons why one would want to write a parallel
program using the shared-memory model. One reason is that many believe the
shared-memory model to be the most intuitive to program for. Another is that
some algorithms can not be written and run effectively using message passing.

This problem is remedied by implementing memory coherence in software. Such
a solution is called a Software Distributed Shared Memory (SW-DSM) system
and many different variants have been proposed [3, 8, 9, 12, 15, 14, 16, 19].
Implementing coherency in software has many benefits such as the possibility
to implement optimizations that would be too specific to implement in hardware.
The downside of a software solution is that there will generally be higher raw
latencies and lower raw bandwidth, but using cleaver latency hiding techniques
this can be compensated.

DSZOOM [12] is a SW-DSM system that inserts fine-grain access control checks
in the program code (called snippets) and uses a blocking directory that allows
the entire coherence protocol to run in the requesting processor. DSZOOM’s
coherence protocol is well tested and has previously proven to work well in
experimental setups on a system with single-system image capabilities. The
goal of this thesis is to make DSZOOM work on a real cluster where the nodes
all have different system images (operating systems).

Contributions

1. Simple, portable and robust process creation/distribution using well proven
MPI technology (Section 3)

2. Efficient synchronization implementation with hierarchical spin lock tech-
nology to create node locality (Section 4)

3. Instrumentation and protocol support that is optimized for UltraSPARC
processors Block Load/Store instructions, which are required to work with
the interconnect hardware (e.g., Infiniband [7] and/or Sun Fire Link [18])
(Section 5)

2 Run-Time Support

To be able to make the cluster of computers provide a single system image,
DSZOOM implements a run-time system that performs operations such as syn-
chronization and process creation across the cluster. The current version of
DSZOOM implements the PARMACS parallel execution environment.



2.1 PARMACS Overview

PARMACS is a set of m4 macros that is used to write portable parallel programs.
These macros are today considered as a PARMACS Application Programming
Interface (API) standard, but are mainly used in academia. By implementing
the macros for different architectures, programs written with the PARMACS
APT can be compiled and executed at those architectures. PARMACS macros
are originally developed by researchers at the Argonne National Laboratory [10].

DSZOOM implements primarily those parts of PARMACS that are needed by
the Stanford Parallel Applications for Shared-Memory (SPLASH-2) benchmark
suite [21]. The following macros have been implemented in the DSZOOM system
(originally based on the implementation by Artiaga et. al. [2, 1]):

e MAIN INITENV(): this macro initialize the PARMACS environment.
This should be the first executable function in the application.

e MAIN END(): this macro terminates the PARMACS environment. It
should be the last statement executed by the application.

e MAIN_ENV:this macro contains the variables and symbol definitions for
the PARMACS environment. It should only appear once in the applica-
tion, in the beginning of the main source file.

e EXTERN ENYV: this macro contains symbol definitions and should be
included in the beginning of each source file except the main source file.

e CLOCK (unsigned long time): this macro sets the time variable to the
current time.

e CREATE(void (*proc)(void)): this macro creates a new process, starting
its execution on the proc routine. The new process can access the shared
memory and perform synchronization with the other processes. The pro-
cess is created on a node of the cluster in a round-robin fashion.

e WAIT FOR_END(int n): this macro blocks the caller until n of its child
processes (created with the CREATE macro) has finished.

e G_MALLOC(int size): this macro allocate size bytes of shared memory
and return a pointer to it.

e G_FREE(void *ptr): this macro releases the memory allocated with
G_MALLOC and pointed by ptr.

e LOCKDEC(1): this macro declares ! as a variable of type lock.

o LOCKINIT(lock 1): it initializes a variable of type lock. After initializa-
tion, the first process calling the LOCK macro must be able to enter the
mutual exclusion area.



LOCK(lock 1): this macro enters a mutual exclusion area protected by a
lock variable. Just one process can enter the area at a time. If another
process has already entered, the caller process blocks until no one else is
in the protected area.

UNLOCK (lock 1): this macro exits from a mutual exclusion area. If pro-
cesses are blocked in the same lock variable (due to a LOCK call), one of
them is released.

ALOCKDEC(al, int n): this macro declares al as an array of locks of n
elements.

ALOCKINIT (alock al, int n): it initializes an array of locks of n elements.
The first processes locking each of the elements must be able to enter the
mutual exclusion area.

ALOCK (alock al, int 1): this macro enters the mutual exclusion area pro-
tected by the i-th lock in an array of locks. The macro assumes that the
first subscript of the array is 0 (zero). The caller process blocks if another
process is currently in the protected area.

AULOCK (alock al, int i): this macro exits the mutual exclusion area
protected by the i-th lock in an array of locks. If processes are blocked
in the same element of the array of locks (due to an ALOCK call), one of
them is released.

BARDEC(b): this macro declares b as a variable of type barrier.

BARINIT (barrier b): this macro initializes a variable of type barrier. This
operation is needed only once at the beginning of the application.

BARRIER (barrier b, int n): a process which execute this macro is blocked
until n processes (including itself) call the macro on the same barrier b;
then, all processes waiting for this barrier are released.

GSDEC(C(gs): this macro declares gs as a variable of type global _subscript.

GSINIT(global_ subscript gs): this macro initializes a variable of type
global _subscript. After exiting a self-scheduled loop, the variable is reset,
so GSINIT should be called just once at the beginning of the application.

GETSUB(global_ subscript gs, int subs, int mazx_ subs, int max_ processes):
this macro obtains the next subscript available in a self-scheduled loop,
and returns it into the subs variable. maz subs is the maximum legal
value for the subscript, and maz_processes the number of processes work-
ing on the same loop. When there is no other subscript available, -1 is
returned in subs and the process blocks until all the processes working on
the same loop also get a -1. The first subscript is always 0 (zero).



e PAUSEDEC(ev [,int nf): this macro declares ev as an array of events.
The first subscript in the array is assumed 0 (zero). If n is omitted, ev is
declared as a single event.

o PAUSEINIT (event ev [, int nf): this macro initializes an array of n events
(or the first one in the array, if n is omitted). After initialization, all events
in the array are cleared.

o SETPAUSE(event ev [, int if): this macro sets the i-th element in an
array of events (or the first one, if n is omitted).

o CLEARPAUSE(event ev [,int i]): this macro clears the i-th element in an
array of events (or the first one, if n is omitted).

o WAITPAUSE(event ev [,int i]): the caller process blocks if the i-th event
of the array of events (or the first one, if n is omitted) is cleared. As the
event is set, all processes waiting for that event are released.

o PAUSE(event ev [,int i]): if the i-th event in the array is set, the caller
process clears it and goes on; otherwise it blocks. As the event is set, only
one of the processes blocked after calling this macro is released, clearing
the event again. If 4 is omitted, the macro acts on the first event in the
array.

o EVENT(event ev [, int if): if the i-th event in the array is cleared, the
process sets it and goes on; otherwise, the caller process blocks. When the
event is cleared, only one of the processes blocked after calling this macro
is released, setting the event again. If ¢ is omitted, the macro acts on the
first event in the array.

o //START TIME(int mynum, int n): this macro is an DSZOOM exten-
sion macro that waits until n processes has arrived at that mark and
then starts the timing of the parallel section. The timing stops when all
processes have finished in the WAIT FOR__END macro, and the time is
printed in the console.

PARMACS programs start with a single process and then forks of child pro-
cesses that carry out parallel work. In the parallel section, processes may want
to synchronize with each other using synchronization primitives supported by
the run-time system. The processes also communicate through shared memory,
which is kept coherent by the DSZOOM system with blocking directory coher-
ence protocol code which is called by the instrumented loads and stores in the
program.

In the current DSZOOM implementation, it is assumed that child processes may
not perform any I/O operations during parallel execution, except for printing
text to the console. This is not explicitly stated in the PARMACS standard,
but all SPLASH-2 applications have this behaviour.

A skeleton of one simple PARMACS application is shown in Appendix A.



2.2 Previous DSZOOM Run-Time Implementation

The previous DSZOOM implementation supports the same PARMACS API
as this new version. However, the previous run-time system implementation
relies on single system image capabilities such as creating processes on remote
nodes and reading/writing to remote memories. One machine that has these
capabilities and that the previous DSZOOM implementation could run on is
the Sun WildFire prototype [5, 11, 6]. Using that setup, the previous DSZOOM
implementation was used as a proof-of-concept to try out different coherence
protocols, synchronization algorithms, and perform numerous instrumentation
experiments.

3 MPI Process Distribution

When a DSZOOM program begins execution it starts out with a single process
on one of the nodes of the cluster. When the parallel part begins processes
are created and must be distributed to the different nodes to make use of all
the processors in the cluster. In addition, before the program is started pro-
cesses need to be started on each node to set up memory mappings through the
interconnect controllers.

To facilitate starting processes on cluster nodes and communicating amongst the
processes before the shared-memory system in DSZOOM is set up, we decide
to use the Message Passing Interface (MPI) library. This decision was made
since the MPI standard is a simple to use, robust, highly performing and widely
accepted standard for communication and process creation across parallel plat-
forms such as clusters.

Along with the MPI library we are using, which is the Sun MPI Library, fol-
lows the Sun HPC Cluster Runtime Environment (CRE). The CRE must be
installed in advance by a system administrator on all nodes that will make up
the cluster. When the cluster runtime environment is set up, processes can be
started remotely on any node within the cluster.

Like all programs compiled with the MPI library our program is started using
the mprun command. The number of processes and on what nodes they are
going to be started at can be given as arguments to mprun. For example, if you
wish to run a program on the three cluster nodes “simba,” “tembo” and “duma,”
you would write:

mprun -np 3 -1 ‘““simba, tembo, duma’® <program filename>

Shown in Figure 1 is a flowgraph that visualizes the entire system described
below. The processes started with mprun are called startup processes in our
system, and they all start executing the same program. Using the #pragma



init directive, the first function that is called is the dszoom_ startup() that is
part of the run-time code. First MPI is initialized with a call to MPI Init()
and then a call to MPI Comm_ get  parent() is made to see if the process is
a startup process or a worker process (we discuss them further down in this
section). If the returned value is MPI COMM NULL it is a startup process
and dszoom__ startup process() is called.

Function calls to MPI Comm_ size() and MPI _Comm_ rank() gives the num-
ber of processes (which in our case equals the number of nodes) and the rank
for each process which is a unique identifier that tells the process apart. The
process that gets rank=0 becomes the master process and the other processes
with rank#0 becomes slave processes. All the startup processes performs ini-
tialization, such as allocation of memory, mapping of memory through the inter-
connect controller and initialization of the coherence state, but only the master
process goes on to execute the actual program. The slave processes only wait
until the program finishes and then performs clean up actions such as freeing
the allocated memory.

Before leaving the dszoom_ startup process() function the master processes will
gather the hostnames of all nodes, which will be used later on when the master
process are going to distribute worker processes to the nodes. After this the
slave processes will enter dszoom_ slave_ process() where they will wait for the
master process to signal them to proceed. The master process on the other hand
will return from its init section and enter the main() function where it is the
single process that will start to execute the actual application.

The first PARMACS macro that will appear in the program is MAIN INITENV
(see Appendix A for a framework of a PARMACS program). This macro will
make a call to the dszoom_main_ initenv() function, which will signal the slave
processes so that all startup processes does initialization of the DSZOOM co-
herent shared-memory system. This is done with the functions dszoom_ export
create(), dszoom_import_map() and dszoom_ coherence init(). When the ini-
tialization is done the master process initializes the run-time data in dszoom__
runtime_init() and then returns to the program. All slave processes wait for
the master process to signal them when the program is about to exit.

The program will now do general initialization, allocate shared memory and ini-
tialize synchronization primitives. Synchronization and shared-memory macros
will in general translate into function calls into the run-time system. Most
macros are straight forward implementations of commonly known algorithms,
except the hierarchical spin lock described in section 4.

After the initialization the program enters the parallel section by executing
the CREATE() macro several times to create child processes that do parallel
work. The CREATE() macro translates into a call to the dszoom_create()
function where a child process is started with the MPI Comm_ spawn() call.
The relevant arguments to this function are:



| dszoom_startup() |

Has MPI

parent?

Is MPI

dszoom_slave_process() |

Wait for master to synch ]<

rank=0?

| dszoom_main_initenv() |

----- {

Synch slaves ]

dszoom_export_create()
dszoom_import_map()
dszoom_coherence_init()

[Wait for master to synch]<
v

dszoom_export_create()
dszoom_import_map()

dszoom_coherence_init()
dszoom_runtime_init()

( Continue sequential execution |

| dszoom_create() } -----

A4
dszoom_worker_process() |

| dszoom_import_map() |

A
[ Do parallel execution ]

[ Do parallel execution ]

| dszoom_wait_for_end() |4—{ Increase processes ended ]

| dszoom_coherence_fini() |

| dszoom_import_unmap() |

’ Do sequential execution ]

| dszoom_main_end() |

————— { Synch slaves ]
v

dszoom_import_unmap()
dszoom_export_destroy()

dszoom_import_unmap()
dszoom_export_destroy()

\ 4

exit()

Figure 1: The MPI-based DSZOOM run-time system.
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Argument | Description

command | Name of program to be spawned

argv Arguments to command

info A set of key-value pairs telling the runtime
system where and how to start the processes

comm Intracommunicator containing spawned process

The filename of the program to be spawned is the same as that of the master pro-
cess, which is available in the main() function as arguf0]. Since the child process
does not use any arguments, we give MPI ARGV NULL. The info argument
needs to be created with calls to MPI Info create() and MPI Info set(), and
later freed with MPI Info free(). The only key we use is the “sun_hosts” key
whose corresponding value tells on what node to start the spawned process.
This is a platform dependent key-value pair, but there should be a similar key
on all platforms. When MPI_Comm_ spawn() returns, the intercommunicator
pointed to by the comm argument is the group with the spawned process in it.

The semantics of the CREATE() macro is not clearly documented, but from [2]
we conclude that the fork() call contains at least the semantics of CREATE().
The semantics of fork() is basically that it creates a child process and then
copies the entire state of the process to the child process. There is quite a lot of
state belonging to a process and not all needs to be copied to the child process
in our CREATE() macro implementation.

First of all, since we are going to call a routine right away when the process
is started, we do not need to copy the contents of the processor registers or
the stack. Since it is reasonable to assume that programs are not allowed to
do I/O in the parallel section, and this in fact is the case with the SPLASH-2
applications, we do not copy the state needed to do that, such as file descriptors.
We also does not copy the memory allocated on the heap using malloc() since
global memory is allocated using G MALLOC(), and this is in fact the way
SPLASH-2 applications behave. So the only state that will actually be copied
is the initialized and uninitialized data segments, the .data and .bss segments.

When the child process is started, it enters dszoom_ startup() where it executes
MPI Comm_ get_parent(). This MPI call will return an intercommunicator
to the parent process, which is the master process. The child process now
knows it is a worker process and calls dszoom_worker process() where it will
receive the data segments from the master process. This is done by the mas-
ter process executing a MPI Send() using the intercommunicator it got from
MPI Comm_ spawn() and the worker process calling MPI Recv() using the
intercommunicator it got from MPI Comm_ get parent(). The new data seg-
ments will be copied to replace the data that was there before. After this, no
more MPI calls can be made since data belonging to MPI in the data segment
has been overwritten. This can be fixed by not overwriting these certain pieces
of data, but as of now there is really no need to do that.
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The worker process will now call dszoom_ import_map() to set up the memory
mappings for the DSZOOM coherent shared-memory system. Then the routine
that was specified in the CREATE() macro will be called to perform the parallel
work.

One of the first things that will happen in the parallel section is that all processes
will execute the //START TIME() macro. It waits for all processes to arrive at
this point using a barrier; and the master process then stores the time when the
processes are released from the barrier. This will be used to get the total time of
the parallel section, which is used when benchmarking DSZOOM applications.

When the worker process is done with its parallel work it will atomically increase
a run-time data counter called processes_ended, which keeps track of how many
worker processes has ended. It will then unmap the memory mappings with a
dszoom__import_unmap() call and finally terminate with a call to exit().

The master process will in general also enter the parallel section and perform
parallel work. When it is done, it will return from the parallel routine and
execute the WAIT FOR_END() macro. This macro will call three functions;
dszoom_wait_for end(), dszoom_time_stop() and dszoom__ coherence _fini().

The dszoom_ wait_for_end() function will wait until the processes_ ended coun-
ter is equal to the number of child processes, which means that all child processes
are done. After this, the dszoom_time_stop() function will take the current
time and then subtract the time that was stored when the processes was released
in the //START TIME() macro, thus getting the total execution time of the
parallel section. Finally, the dszoom_ coherence_ fini() function will do any final
coherence work needed, such as moving all dirty cachelines to the master process
memory (this function is used for master-centric I/O operations because we do
not instrument any system calls).

When the worker processes have ended, the master process will usually do some-
thing with the data that was computed in the parallel section, such as saving
it to disk or presenting the result at the command-line. It will then free up
any resources previously allocated. As the very last sentence in the program
the MAIN END() macro will be executed. This calls the dszoom_main_ end()
function that finalizes the DSZOOM run-time system in the following steps.
First, the total time of the parallel execution is printed on the command line.
Then the slave processes are signaled using MPI so they know that they should
finish up. All startup processes (the master process and the slave processes)
will then execute dszoom_import unmap() and dszoom_ export destroy() to
un-map the memories and free the allocated memory. After this, the MPI li-
brary will finalize with a call to MPI Finalize(), the processes will call ezit(),
and the execution is finished.
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4 Hierarchical Spin Lock

A lock is one of the most important synchronization primitives. Locks are used
in many places to protect a piece of code or data so that only one thread can
access the data at any time. When a thread acquires a lock and wishes to access
the data associated with it, the data has to move from the cache where it was
last used to the cache of the processor on which the thread runs. Thus, we can
say that the data moves where the lock moves.

If the system used is a non-uniform communication architecture (NUCA) ma-
chine [13], the time it takes to move the data is dependent on how the caches
are interconnected, e.g. in a cluster it takes shorter time to move data between
caches in the same node than between caches in different nodes. A hierarchical
lock takes advantage of this knowledge and tries to keep the lock within a node
for some time to create data locality.

There is also the aspect of wasted bandwidth when a processor repeatedly uses
the atomic instruction to acquire the lock in a remote memory. This is another
issue that the hierarchical lock solves by only having one processor from each
node go to the remote memory and try to obtain the lock.

To this end Radovic and Hagersten have proposed a hierarchical lock [13] that
has been implemented in DSZOOM as part of this thesis. It works by having a
blocking directory that keeps track of where the global lock currently is, much
like how the blocking directory coherence protocol in DSZOOM works. Using
this technology this hierarchical spin lock can run on clusters with any number
of nodes, unlike the RH lock [13] that can only be used on a two node cluster.

In this implementation there is a data structure on each node with the following
fields:

struct hier_lock {
volatile char 1; // local lock bit
volatile char g; // global lock bit
volatile char h; // home node
volatile char d; // directory

};

When alock is initialized, a home node is designated, currently in a Round-robin
fashion, and written into the h field on every node. This field never changes and
is only there so that it is fast and easy to see what the home node is for every
lock. The d field is the directory entry and indicates in which node the global
lock is currently placed. The directory is only used in the home node and is
therefore only there as padding in all nodes except the home node. When the
lock is initialized the global lock is placed in the home node, so the d field is
equal to the home node number, and the g bit is true in the home node and
false in every other node. Initially the [ bit is false in all nodes.
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The lock works so that the lock is acquired when both the I- and the g-bit is
true, and the g bit can be true in only one node at any time. The directory
must point to the node where the g bit is true. The lock is released by clearing
the I bit. To modify the hier_lock struct on any node, the [ bit on that node
must first be set. This is done using an atomic instruction. So, to acquire a
lock that is currently on another node, the following steps have to be taken:

1. Spin lock the I-bit on the local node using an atomic instruction.
2. Spin lock the I-bit on the home node using an atomic instruction.

3. Spin lock the I-bit on the remote node that the directory points to using
an atomic instruction.

4. Clear the g-bit and the I-bit on the remote node.

5. Change the directory to point to the local node, and clear the [-bit on the
home node.

6. Set the g-bit on the local node. The lock is now acquired!

This is the worst case scenario where the data structure on three nodes has to
be touched to acquire the lock. The best case scenario is if the global lock is
currently in the local node, when only the local lock bit has to be locked using
an atomic instruction.

If there is a lot of contention on the lock it makes sense to use this hierarchical
lock since it is then more likely that there is another thread in the local node that
also wants to lock the lock and can do so very quickly when the lock is released.
One problem that can occur is if a lock is always handed over to another thread
in the same node, and never to a thread in another node. Then the threads in
the other nodes will be stalled and can not do any real work. This is sometimes
called starvation, and can be avoided by introducing a fairness factor, which is
treated thoroughly in [13].

Below follows acquire/release C code for the hierarchical lock:

void hier_lock_acquire( struct hier_lock *lock )
{

int home_node;

int remote_node;

struct hier_lock *home_lock;

struct hier_lock *remote_lock;

// lock local lock
local_spin_lock( &lock->1 );
if ( lock->g == 0 )

{
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home_node = lock->h;
home_lock (struct hier_lock *)
SET_NODE_ACCESS( lock, home_node );

// lock directory lock
if ( home_node !'= local_node )
remote_spin_lock( &home_lock->1 );

// clear global bit in remote node
remote_node = home_lock->d;
if ( remote_node != home_node )
{
remote_lock = (struct hier_lock *)
SET_NODE_ACCESS( lock, remote_node );
remote_spin_lock( &remote_lock->1 );
remote_lock->g = 0;
remote_lock->1 = 0;
}
else
home_lock->g = 0;

// update directory value
home_lock->d = local_node;

// unlock directory lock
if ( home_node != local_node )
home_lock->1 = 0;

// make local lock the global lock
lock->g = 1;
}
}

void hier_lock_release( struct hier_lock *lock )
{

lock->1 = 0;
}

4.1 Contention-Sensitive Hierarchical Spin Lock

If there is high contention on locking a lock, the hierarchical spin lock performs
well since it has very low hand-over time to local threads (threads in the same
node), and also because the data that is guarded by the lock can stay in the
node, thus creating locality. However, the hand-over time to a remote thread is
quite high, which is a clear disadvantage if the probability of handing over the
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lock to a local thread is low. If this probability, which we denote Pjycqr, is low
(below some threshold) it is more beneficiary to use a normal spin lock instead
of a hierarchical spin lock.

Pyyear is dependent on several factors, the two most important being;:

e The amount of contention over the lock. More contention means there is
greater probability of handing over the lock to a local thread, because of
the way the hierarchical spin lock works.

e The ratio between number of processors and number of nodes. Pjocq will
be higher if there are fewer nodes with many processors per node (few fat
nodes) instead of many nodes with few processors per node (many thin
nodes).

So because of this there are several cases when a normal spin lock is better then
a hierarchical. However, there are ways to combine the benefits of a spin lock
with the benefits from a hierarchical spin lock. This is done by letting the lock
start out as a normal spin lock, but if a thread senses contention it turns it into
a hierarchical lock.

The data structures used are precisely the same as for a hierarchical spin lock.
The only thing that is modified is that the pointers that normally points to the
node-local lock structure now all point to the lock structure in the home node.
As long as there is no contention the lock works exactly like a normal spin lock,
except that the code also checks so that the g-bit is set, which is true after
initialization.

If a thread fails to lock the lock, it will start to count the number of retries it
does until it acquires the lock. If the count goes above some specified threshold
it determines that there is contention over the lock and that it should turn
into a hierarchical lock. This is done by changing the pointer to point to the
node-local lock structure. After this, the lock acts purely as a hierarchical spin
lock.

When the lock later moves from the home node to a different node, other threads
will notice this and will also change their pointers and start acting like a pure
hierarchical lock.

5 Instrumentation and Protocol Implementation
Optimizations

Global coherence in the DSZOOM system is resolved by coherence protocols
(which are triggered by the inserted access control checks) implemented in C,
that copies data to the node’s local memory with UltraSPARC processor’s Block
Load/Store operations from the remote memory (which is locally mapped in
every node). Performance is dependent on three components:
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Block load | 1dda [reg_addr] imm_asi, fregq
Block store | stda freg,q, [reg_addr] imm_asi

Table 1: Assembly language syntax for Block Load/Store

1. Instrumented machine code fragments, so called snippets.
2. Trampoline routine that is called by snippets.

3. Coherence protocol itself, implemented in C.

This thesis improves on all of the three aspects given above. Most fundamentally
the code is optimized to utilize the Block Load/Block Store instructions more
efficiently.

5.1 Block Load/Store

The UltraSPARC processors implements two instructions called Block Load and
Block Store, which are used to load or store a 64-byte block between the mem-
ory and eight floating-point registers. The reason we are interested in these
instructions is primarily because these instructions are the only ones we can use
to communicate through our interconnect hardware.

Block Load and Block Store are somewhat different from normal instructions
since they do not obey Total Store Order (TSO) [20], or even obey the proces-
sor’s consistency rules. So in order to be certain that all the data has been read
from memory into floating-point registers, a membar #Sync instruction must
be issued after a Block Load. The instructions also do not allocate into the
L2-cache, to avoid pollution. Finally, the memory addresses accessed by the
instructions must be 64-byte aligned, and the floating-point registers need to be
aligned on an eight double-precision register boundary.

The assembly language syntax for the instructions is shown in Table 1. The
imm_asi is the Address Space Identifier (ASI) that identifies what kind of
load/store operation we wish to perform. We will be using AST_BLK_P (0xf0)
which is an unprivileged Block Load/Store from/to primary address space.

5.2 Snippet Improvements

The snippets have been improved by making them shorter and somewhat sim-
pler, which gives less code expansion. The main reason for them being shorter
is the inclusion of a trampoline, which keeps common code from being included
in the snippet code. Here is an example of a floating-point load snippet:
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#
FloatLoad
#
$I
*1 fcmps
*2  fcmpd
fbe,pt
add
srl
sub
brnz,pt
mov
save
call
mov
restore
$D
stb
.LQ$L:
#

! perform the original load

$F, $3, $3 ! do DEADBEEF test

$F, $3, $3

$F, .LQ$L ! if not DEADBEEF => load is done
$1, $2, %g3

%g3, 28, %g2 ! do range check

%e2, 8, hg2

%g2, .LQ$L ! if outside range => load is done
%e3, he2

%sp, -192, %sp ! get new register window
dszoom_load_trampoline

%o7, W17 ! call trampoline code to

! perform coherence protocol
[%g2], $3 ! perform corrected load
g4, [hg3l ! set new directory bits

5.3 Trampoline Routines

As shown above, the trampoline is called by the instrumented code and exe-
cuted before the protocol code is run. Since the trampoline code is stored in
only one place it keeps the code expansion down and also does not use unnec-
essary space in the instruction cache. The trampoline stores away important
registers and also makes room in the stack frame and saves the floating-point (f-
p) registers there. This way the protocol code has free f-p registers and does not
have to bother with saving the f-p registers when using the Block Load/Store

instructions.

dszoom_load_trampoline:

add
and

mov
mov
mov
mov
mov
call
stda
mov
mov

%fp, -64, %10
%10, -64, %10

! make room for 64 bytes + what
! is needed for alignment in the
! stack frame

%y, %11 ! save global registers in
!
!

%gl, K12 ! registers that are local to
heer, %13 ! this register window

%fprs, %14

%gb, %15

dszoom_load_protocol ! call protocol code
%£0, [/10] 0xf0 ! save f-p regs

%11, %y ! restore registers

%12, %gl
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mov %13, %cer

mov %14, %fprs

mov %15, %gb

ldda [%10] 0xfO, %fO0 ! restore f-p regs

jmpl %17 + 8, %go ! return to instrumented code
membar #Sync ! sync memory in delay slot

5.4 Protocol Implemantation Optimizations

The protocol code has been somewhat simplified and straighten out. The major
improvement is that the protocol uses only simple Block Load/Store-based rou-
tines to copy data, which are quite fast since there is no more need to spill the f-p
registers. Now, coherence routines are also ready to be used with interconnect
hardware.

[ /i
//## dszoom_load_protocol

//##

//## INPUT: g3 = effective address of the load
//##

//## OUTPUT: Y%g3 = &(dir->dir_tag)

//## %g4 = dir->dir_tag

[/ttt S R S S S R R S S S
void dszoom_load_protocol( void )
{

unsigned int effective_addr;

unsigned int cache_line_number;

unsigned char bits; // presence bits

unsigned char mask; // this node’s presence bit

int home_node; // home node of cache line

int remote_node; // node that holds data

int nodes_valid; // number of nodes with valid data

dszoom_dir_t *dir;
dszoom_dir_t *remote_mtag;

effective_addr = dszoom_get_reg_g3();
cache_line_number = ( effective_addr -

DSZOOM_G_MEM_START_ADDR ) >>
DSZOOM_CACHE_LINE_SHIFT;

19



home_node = cache_line_number % dszoom_nodes;
mask = 1 << dszoom_node;

dir = (dszoom_dir_t *)
( DSZOOM_DIR_START_ADDR_ALIAS + home_node *
DSZOOM_G_MEM_SIZE );
dir += cache_line_number;

bits = dszoom_spin_lock_ldstub( &dir->dir_tag );

if ( bits == 0 ) // home node is exclusive
bits = 1 << home_node;

// safety check guarding against false deadbeef
if ( ( bits & mask ) == 0 )
{

dszoom_get_node_count( bits, &remote_node, &nodes_valid );

if ( nodes_valid == 1 && remote_node != home_node )
{
// remote node’s mtag needs to be locked and downgraded
remote_mtag = (dszoom_dir_t *)
( DSZOOM_DIR_START_ADDR_ALIAS + remote_node *
DSZOOM_G_MEM_SIZE );
remote_mtag += cache_line_number;

dszoom_spin_lock_ldstub( &remote_mtag->dir_tag );
remote_mtag->dir_tag = 1; // not exclusive

}

// copy cache line
dszoom_block_load(

(void *) ( DSZOOM_G_MEM_BIG_START_ADDR +
remote_node * DSZOOM_G_MEM_SIZE +
cache_line_number *
DSZOOM_CACHE_LINE_SIZE ) );

dszoom_block_store(

(void *) ( DSZOOM_G_MEM_START_ADDR +
cache_line_number *
DSZOOM_CACHE_LINE_SIZE ) );

}

// return &( dir->dir_tag ) via %g3
dszoom_set_reg_g3( (unsigned int) &dir->dir_tag );
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// return dir->dir_tag via Y%g4

if ( bits == mask && dszoom_node == home_node )
dszoom_set_reg_g4( (unsigned int) 0 );
else

dszoom_set_reg_g4( (unsigned int) ( bits | mask ) );

The Block Load and Block Store functions are simply wrappers for the assembler
instructions (which can easily be in-lined instead):

dszoom_block_load:
ldda [%o0] 0xfO, %f0
retl
membar #Sync

dszoom_block_store:
retl
stda %£0, [%o0] 0xfO

6 Performance Study

6.1 Experimental Setup

All the experiments were performed on a 2-node Sun WildFire machine [5, 6]
built from two Sun Enterprise E6000 [17] nodes connected through a hardware-
coherent interface. Each E6000 node has 16 UltraSPARC II 250 MHz processors
and 4 GB shared memory. The system is configured as a traditional cache-
coherent, non-uniform memory access (CC-NUMA) architecture with its data
migration capability activated while its coherent memory replication (CMR)
has been kept inactive. The WildFire interconnect has a raw bandwidth of 800
Mbyte/s in each direction and it has a latency of 1700 ns for remote memory
accesses.

The following software was used:

e Slightly modified Solaris 2.6 operating system
e mprun version 3.1 as part of Sun HPC CRE 1.1
e Sun MPI 4.1

cc: Sun WorkShop 6 update 2

SPARC Assembler Instrumentation Tool (SAIT) [4]
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Program |

Problem Size

Barnes 29k particles

Cholesky tk29.0

FFT 1M points

FMM 32k particles

LU-c 1024 x1024 matrices, 16 x 16 blocks
LU-nc 1024x 1024 matrices, 16x16 blocks
Ocean-c 514x514

Ocean-nc 258258

Radiosity | room, -ae 5000.0 -en 0.050 -bf 0.10
Radix 4M integers, radix 1024

Raytrace car

Water-Nsq | 2197 molecules, 2 iterations
Water-Sp 2197 molecules, 2 iterations

Table 2: SPLASH-2 benchmark suite.

The benchmarks used are from the Stanford Parallel Applications for Shared
Memory (SPLASH-2) suite [21]. Only unmodified benchmarks from the original
Stanford distribution are used (Table 2). The applications are representative
for scientific, engineering, and graphics computing fields. All benchmarks were
run five times and then the shortest execution time was taken.

6.2 Sequential Performance

We wish to see how long time the instrumented instructions take so that we
can quantitatively compare different versions of code snippets. To do this, we
ran the SPLASH-2 applications with just one processor and with only one kind
of instruction instrumented at a time. When we run the applications sequen-
tially, the code will never need to do any coherency work and will therefore
never enter the trampoline- or protocol code. The SPLASH-2 applications were
compiled and run with no instrumentation (none), integer loads instrumented
(intld), floating-point loads instrumented (fpld), with stores instrumented (st),
and with full instrumentation (all). The compiler optimization level used was
-z00 in Table 3 (Figure 2) and -fast in Table 4 (Figure 3). The raw times
are shown in Table 3 and 4, and in Figure 2 and 3 the relative times of instru-
mented integer loads, floating point loads and stores are shown. On average, the
instrumentation overhead for -zO0 is around 62% and for -fast, around 147%.

6.3 Hierarchical Lock Evaluation

To evaluate the hierarchical lock implementation we used two kinds of bench-
marks. First we run a micro-benchmark that consists of a small loop that
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| Benchmark | none | intld | fpld | st | all | Overhead |

1t 14.24 14.36 1595 | 2591 27.28 1.92
lu-c 66.34 | 66.38 | 82.78 | 140.81 | 155.49 2.34
lu-nc 80.11 80.22 | 97.02 | 154.01 | 168.99 2.11
radix 30.78 | 31.49 | 32.07 | 34.34 | 36.71 1.19
barnes 55.87 | 57.01 72.52 | 63.69 75.23 1.35
cholesky 20.40 | 20.74 | 24.45 | 35.07 38.2 1.87
fmm 117.98 | 123.64 | 134.78 | 124.63 143.3 1.21
ocean-c 46.52 47.77 57.60 69.42 82.14 1.77
ocean-nc 18.32 19.77 | 21.13 | 2448 | 28.72 1.57
radiosity 28.77 | 30.16 | 31.17 | 29.79 | 32.27 1.12
raytrace 178.45 198.7 | 252.54 | 195.81 | 312.17 1.75
water-nsq 131.88 | 143.14 | 155.59 | 145.59 | 184.11 1.40
water-sp 34.87 | 37.14 | 41.94 | 38.34 | 50.07 1.44

Table 3: Raw data from sequential performance benchmarks (-z00).

100%

80% 1

60% 1

Ost
mfpld
Dintld

40% -

20% -

00/0 ’

Figure 2: The relative execution times of the instrumented instructions (-z00).
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Benchmark | none | intld | fpld | st | all | Overhead ]

fft 3.24 | 3.26 | 4.51 9.34 | 10.51 3.24
lu-c 14.91 | 15.16 24.9 | 51.47 | 58.89 3.95
lu-nc 20.81 | 19.32 | 28.90 | 56.70 | 64.34 3.09
radix 6.37 | 7.07 | 6.35 | 10.52 | 11.09 1.74
barnes 13.93 | 15.24 | 16.59 | 16.99 | 21.84 1.57
cholesky 3.59 | 3.66 5.90 | 10.84 | 13.56 3.78
fmm 21.91 | 21.67 | 34.95 | 25.39 | 34.81 1.59
ocean-c 14.53 | 14.59 | 19.95 | 26.77 | 31.88 2.19
ocean-nc 3.85 3.79 5.56 6.50 8.32 2.16
radiosity 11.26 | 11.66 | 14.17 | 11.96 | 15.33 1.36

Table 4: Raw data from sequential performance benchmarks (-fast).

100%

90% -

80% -

70% A

60% -

Ost
mfpld
Dintld

50% -

40% -

30% -

20% -

10% 1

0% -

Figure 3: The relative execution times of the instrumented instructions (-fast).
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for (i = 0; i < 1000000; i++ )
{
LOCK( Global->idlock );
Global->counter++;
UNLOCK( Global->idlock );
}

Figure 4: The main loop of the micro-benchmark.
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Figure 5: The execution times of the micro-benchmark.

atomically increment a global counter a million times (Figure 4).

The micro-benchmark was run with a normal spin lock and with the hierarchical
spin lock on one to twenty processors distributed evenly on the two nodes (e.g.,
ten processors on each node for the total of twenty processors). The benchmark
was run five times with each number of processors, and the shortest execution
time was used. The results are shown Figure 5.

The second benchmark we use is the SPLASH-2 benchmarks run with the nor-
mal spin lock and with the hierarchical spin lock on 16 processors (8 on each
node). The results are shown in Figure 6.

From the micro-benchmark it is fairly clear that the hierarchical spin lock intro-
duces locality that keeps the data from constantly moving between the nodes,
which is what happens for the normal spin lock. However we can not clearly
observe this behaviour in the SPLASH-2 benchmark results (except for Radios-
ity, where we observe an improvement of 24%). This is not totally unexpected
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Figure 6: Execution times of SPLASH-2 suite with normal and hierarchical spin
locks.

since there is probably not enough contention in the SPLASH-2 benchmarks
with only 16-processor runs for the hierarchical lock to keep the lock in a node
for long enough time to create locality. There is also quite a high cost in moving
the hierarchical lock between the nodes which also makes the hierarchical lock
less ideal when there is low contention. This is why the contention sensitive
hierarchical lock was proposed (section 4.1). Even though the hierarchical lock
does not shine when used with low contention we see that the hierarchical lock
is always almost as good as the normal spin lock.

7 Conclusions

A new run-time system for DSZOOM has been created that supports process
distribution across the cluster using robust MPI technology. A hierarchical spin
lock synchronization primitive has been proposed and implemented that can be
used on a cluster with any number of nodes and gives higher performance in
tasks that has a lot of contention. In a micro-benchmark we have shown a 500%
speed-up on a two node cluster with 20 processors. The snippets and protocol
code have been rewritten and trampoline routine code added, to facilitate the
use of real interconnect hardware so that DSZOOM can run on a real multi-
system image cluster.

Future improvements to the hierarchical lock could include making the lock even
more unfair by adding exponential backoff, thus increasing node locality.
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Appendix A
A skeleton of a parallel PARMACS program.

#include <stdio.h>
MAIN_ENV

struct GlobalMemory {
int id;
LOCKDEC( idlock )
VE T Y

} *Global;

#define DEFAULT_P 1 /* use one processor as default */
int P = DEFAULT_P; /* number of processes */

void SlaveStart( void );

int main( int argc, char *argv[] )
{
/* Parse command line arguments to find
* out desired number of processes and
* assign the number to P

*/
// .. P = ...;
MAIN_INITENV();

/* Allocate global memory (G_MALLOC) and
* initialize synchronization primitives
* (LOCKINIT, BARINIT, ...)

*/

Global = (struct GlobalMemory *)
G_MALLOC( sizeof ( struct GlobalMemory ) );
LOCKINIT( Global->idlock );
Global->id = 0;
/...

/* Create child processes */

for (i=1; i <P; i++ ) {
CREATE( SlaveStart );

}
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/* Master process does parallel work aswell x/
SlaveStart();

/* Wait until all child processes has finished */
WAIT_FOR_END( P - 1 );

MAIN_END();
return 0;

}

void SlaveStart( void )
{
int MyNum;

/* Each process acquires a unique id number */
LOCK( Global->idlock ); // enter CS

MyNum = Global->id;

Global->id++;

UNLOCK( Global->idlock ); // leave CS

/* Wait for P processes to arrive here */
//START_TIME( MyNum, P );

/*
* Perform parallel work
* using shared-memory and
* synchronization primitives

*/
/...

/* When all work is done, just return from
* the function and the process will terminate */
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