ISBN 91-7170-103-6 ISRN SICS/D--8--SE

Toward Scalable

Cache Only Memory
Architectures

Erik Hagersten

A Dissertation submitted
for the Degree of Doctor of Technology
Department of Telecommunication and Computer Systems
The Royal Institute of Technology
Stockholm, Sweden

First Edition October 1992
Second Edition July 1993

The Royal Institute of Technology (KTH) SICS

Department of Telecommunication Swedish Institute
and Computer Systems of Computer Science
S-100 44 Stockholm, Sweden Box 1263

S-164 28 Kista, Sweden

TRITA-TCS-LPS-9213 SICS Dissertation Series 08
ISSN 0284-4397 ISSN 1101-1355

To KARIN,
ELSA,
and
CARL VICTOR

Toward Scalable
Cache Only Memory Architectures

Erik Hagersten

Abstract

IGH PERFORMANCE at a low cost is the common goal of most new
H computers. Even if the speed of microprocessors seems to double every
year, there are, and will always be, important applications demanding even
better performance. There are two ways of meeting this demand: a single processor
designed with exclusive technology, or several processors in cooperation. The shared-
memory model allows the processors to share inputs and results, and is regarded as

the most general model for cooperation.

Our approach has been to take today’s microprocessors as a starting point and to
add the means for successful cooperation via shared memory. There exists, however,
no physical shared memory in our proposal. Instead, all memory is divided among
the processors and organized in such a way that data can be duplicated, moved
freely, and allowed to reside in any memory. This behavior of data is not visible to
the programmer, who sees the popular shared memory abstraction. It is, however,
beneficial to performance and adapts well to different application behaviors.

We have introduced a new class of architectures based on the above model com-
prised of caches and processors connected by a network—Cache-Only Memory Ar-
chitectures (COMA)—and an implementation proposal thereof—the Data Diffusion
Machine (DDM). The large caches are managed by a cache-coherence protocol which
makes sure the many copies of a datum have the same value. The protocol will also
find a datum that is not in the caches of the requesting processor.

COMAs were shown to have superior performance over alternative shared memory
architectures in a quantitative analytical performance study. The implementation
proposal for the DDM has been simulated with good performance results. Two
optimization techniques have also been proposed; hardware-based prefetching, and
adaptive write-update protocols, both of which further improved performance. Sev-
eral techniques for improving the transaction frequency, which is identified as the
sparse resource, have also been proposed.

Descriptors
Multiprocessors, shared-memory architectures, cache-only memory ar-

chitectures, hierarchical architectures, prefetching, write-update proto-
cols, fat trees, split buses, analytical models, cache coherence.

Acknowledgments

Without the support and help of many people, this work would not have been
possible. My advisor, Professor Seif Haridi, has supported me and is a constant flow
of inspiration. He initiated the DDM architecture together with Professor David
H.D. Warren, University of Bristol. Without their initiative and help this work
would never have taken off.

I would also like to thank my parents Anna-Britta and Karl-Erik for always encour-
aging me to continue my studies.

The single most important event that brought me into computer-science research
was my year as a visiting research engineer at Professor Arvind’s Dataflow group at
M.LT. The many bright and interesting people eagerly striving toward the future in
computers made for an exciting and enriching stay. I would especially like to thank
Greg Papadopoulos for taking care of the Swede.

The biggest help, however, has been the daily work in the DDM group at SICS.
Anders Landin joined the DDM project, doubling its size, in 1989. Anders has
been active not only in DDM implementation and consistency-level issues, his main
research areas; he is always willing to help improve my work.

In January 1992 the size of the DDM group increased to eight people. Thorbjorn
Granlund, Mats Grindal, Peter Magnusson, Ashley Saulsbury, Bengt Werner, and
Akio Yamamoto, have not only increased the development pace of the prototype,
but also taken some work off my shoulders which enabled the completion of this
work. I would like to thank the DDM group as a whole for inspiring my work, for
commenting on crude drafts of this dissertation, and for a good time.

Other valuable sources of comments on earlier drafts have been Professor Per Sten-
strom and Fredrik Dahlgren of Lund University.

Three students from the Royal Institute of Technology contributed to this work
during their final three months of practical training at SICS: Mikael Lofgren im-
plemented the DDM simulator, Par Andersson ported the SPLASH programs, and
Mats Grindal modeled the prefetcher in the simulator.

Since 1989, some of the DDM work has been part of the ESPRIT project 2741
PEPMA. I thank the many colleagues involved in or associated with the project.

Finally, I thank my wife Karin for all her love, support, and help. She not only
accepted my long days (and nights and mornings) of writing, she also helped taking
the pidgin out of my English. Thank you, we did this together.

SICS is sponsored by Asea Brown Boveri AB, NobelTech Systems AB, Ericsson
AB, IBM Svenska AB, Televerket (Swedish Telecom), Forsvarets Materielverk FMV
(Defense Material Administration), and the Swedish National Board for Industrial
and Technical Development (Nutek).

Contents

Preface

Prologue

1

Introduction

1.1 Scope
1.2 DDM Backgroundo oo
1.3 Contributions
1.4 Thesis Road Map o

JUSTIFYING COMA

Toward Scalability

2.1 What is Scalability? oo oo
2.2 Latency Hiding and Reducing Techniques
2.3 Effectsof Caches
2.4 Removing Remaining Misses
2.5 Context Switching Lo o
2.6 Networks.
2.7 Synchronizationo

Cache Only Memory Architectures

3.1 Introduction L
3.2 COMA Implementation Issues
3.3 Comparing COMA to Other Architectures

A Quantitative Performance Study

4.1 Analytical Study oo
4.2 Which Architecture is Better and When?
4.3 Comparative Performance For Large Multiprocessors
4.4 Comparing Real Implementations
4.5 Comparing the Models of the Ideal and Real Systems

II IMPLEMENTING COMA-THE DDM

5

A DDM Primer

5.1 Single Bus DDM-a Small COMA
5.2 Hierarchical DDM-a Large COMA
5.3 A Closer Look at the Protocol
5.4 Protocol Examples o0

11

13
15
19
20
23
26
28
29

31
33
34
39

47
49
39
63
69
73

5.5 Directory Replacement and Mapping 96

5.6 Handling the Memory System 99
6 DDM Prototype Implementation 103
6.1 The Motorola 88000 Family 105
6.2 The 88000 Family and the DDM 106
6.3 Prototype Implementation 112
6.4 Memory Overhead 117
7 Simulated Performance of the DDM Prototype 119
7.1 Simulation Technique 0o Lo 121
7.2 Simulating the Prototype o0 oL 124
7.3 Communication Locality 0. 133
7.4 Speeding up TLB Fills 134
IIT OPTIMIZING COMA 139
8 Prefetching—ROT 141
8.1 Introduction 143
8.2 Existing Prefetching Techniques 144
8.3 Right-On-Time Algorithm 146
8.4 A Simple Exampleo 150
8.5 Uniprocessor Simulation 152
8.6 Prefetching in Multiprocessors 153
8.7 Implementation 156
9 An Adaptive Write Update Protocol 159
9.1 Introduction 161
9.2 A First Attempto 164
9.3 Introduction to Weaker Consistency 167
9.4 A Second Shot at a Write-Update Protocol 170
9.5 Performance Study oo 178
10 High-Performance Hierarchical Networks 187
10.1 Properties of a Hierarchical Network 189
10.2 Increasing the Bandwidth 191

i

SUMMING UP 199

11 Related Work 199
11.1 Hierarchical Architectures 201
11.2 COMA-related Architectures. 203
11.3 Cache-Coherent NUMAs 206

12 Summary 207

13 Conclusion 209

Epilogue 211

APPENDIX 220

A Tables from the Analythical Model 221

B The Protocol of the Prototype 229

C Simple COMA 233
C.1 Introduction L 234
C.2 COMA Properties. 236
C.3 Proposed COMA Node Implementations 238
C.4 The Simple COMA 248
C.5 Performance and Complexity 253
C.6 Related Work 256
C.7T Conclusion 257
C.8 Acknowledgements L oo 257

i1

Preface

The first edition of this book was identical to the dissertation submitted for a Ph.D.
in Computer Science at the Royal Institute of Technology, Stockholm, Sweden.

The procedure for getting a PhD in Sweden is first to publish the dissertation, and
secondly to defend it publicly, receiving questions and feedback (i.e. criticism) from
the external examiner, the evaluation committee, and the audience. The drawback
of such a procedure is that you normally do not have a chance to include any of the
constructive feedback in your dissertation.!

In this second edition, I have the opportunity to actually include some of the com-
ments from the defense as well as other general comments. It also gives me a chance
to express my appreciation for having Professor James R. Goodman, University of
Wisconsin, as my external evaluator, and for having Professors Michel Dubois, USC,
Per Stenstrom, LTH, and Stefan Arnborg, KTH, on the evaluation committee.

The second edition differs from the first in two major areas. The several different
implementation possibilities of attraction memories have finally been explained with
the addition of a recent paper “Simple COMA” by Erik Hagersten, Ashley Saulsbury
and Anders Landin. Instead of squeezing it into the existing text, the paper is
added as Appendix C, with numerous references to it. The second major difference
is an extension to Chapter 4, “A Quantitative Performance Study,” which compares
the COMA and NUMA approaches more clearly. The second edition also corrects
typographical errors and adds some minor clarifications.

Kista, Sweden July 1993.

Erik Hagersten

!The advantage is that people are tempted to be nice to you, since their advice will not have
any impact on the final result anyhow.

Prologue

“What do you do for living?” At a party, you have a few fractions of a second to
evaluate the asker and return an appropriate answer. You buy yourself some time
by simply replying: “I work with computers.” Then you assess the facial expression
and categorize the asker as computer enemy, computer user, or computer freak. For
the first category, you can end with: “...and we are working on a computer that

outdoes all others in terms of size and ugliness. It actually eats small children.”

Computer users can be given a more friendly answer: “I am working on a way of
making computers both faster and cheaper. Today you can buy microprocessors by
the kilo, while large and fast computers are very expensive. Fast computers require
exclusive technology and the development cost per machine is tremendous, since
they sell in small quantities and soon lose their edge in this fast-moving field. Mi-
croprocessors, on the other hand, sell in large enough quantities to be inexpensive,
often have special development programs for your assistance, and might even have
ready-to-use programs for your customers. If only a couple of hundred micropro-
cessors could work together on the same problem! Then we would have a computer
that was both faster and cheaper than today’s large and fast computers.

“Building such a multiprocessor is very much like organizing a large company. First
you have to establish a way for the microprocessors to communicate with each other.
Then you must divide the work among the processors. The distribution must avoid
bottlenecks. You should also try to divide the work evenly between the processors,
so that they all complete their subtasks at the same time. If the processors can share
common knowledge, like input data and partial results, the distribution of work is
much easier.”

If the computer user at the party still seems somewhat interested after this intro-
duction, he might very well have to listen to the story about the telemarketing
company.

“Ten people (processors) are organized in a sales force. The vice president of sales has
divided potential customers into ten equally large groups, divided the groups among
his salespeople, and asked them to start to sell the product. Common knowledge
is that telephone directories covering all of Sweden exist. Even if there are only
about eight million people in Sweden, the set of telephone directories is still about
two meters wide. The most efficient scheme would be to give each salesperson
his or her own complete set of telephone directories. However, the president of
the company has decided this is too expensive (would require too much memory).
Instead, all salespeople share one common set of telephone directories (the shared
memory), creating a long line of eager salespeople at the directories (contention).
Ms Saleswhiz soon found her directory search time could be shortened by organizing
her customers in a small private book (a cache). Part of each name was used to find
the specific page of the book to search for each name (a multiway associative cache).

0.0

Only when that name was not found on that page (cache miss) was a lookup in the
telephone directory needed. Finally, when the number was found, Ms Saleswhiz
updated her private book. If the page was already full, an outdated customer had
to be erased (replaced). This was the customer who had not been called for the
longest time (least recently used algorithm-LRU).

“Soon, all the salespeople had their own small address books (caches), which short-
ened the line to the telephone directories, increasing sales, and the vice president
hired another thirty telemarketing people. Now the lines to the telephone directo-
ries grew long again. The vice president of sales bought larger address books for the
salespeople where they kept a larger amount of names. They still kept their small
address books where they looked first (first-level caches), looking next in the larger
and slower address books (second-level caches).

“Once more the line to the telephone directories was gone, and the vice president
hired another 100 salespeople, resulting in new lines to the directories. The vice pres-
ident proposed buying even larger address books for his people, but the president
complained that the size needed this time would be far too expensive. Instead, he di-
vided the telephone directories among salespeople so that each had one part (nonuni-
form memory architecture-NUMA). Things improved, but the vice president found
he could only distribute customers among salespeople in one way—geographically.
He could not, as before, group customers by the products they were interested in.
It was also difficult for one salesperson to help another who was behind in sales
(dynamic scheduling). As a last straw, concentrated sales campaigns in one region
created a long line to that directory (hot spot). The company became difficult to
manage efficiently and went bankrupt.

“Ms Saleswhiz read this dissertation, however, and started her own company. She
equipped all salespeople with huge address books equal in size to one section of the
telephone directory combined with the larger address book each salesperson had
had before (attraction memory), i.e., the same amount of paper per person. She
then made sure all the telephone numbers existed in at least one of the huge address
books. She financed the huge address books by selling all the telephone directories
(cache-only memory architecture). Now, on the rare occasions a salesperson missed
in the huge address book, algorithms described in the dissertation were used to find
the telephone number in someone else’s huge address book. This led to a more
general organization, which was easier to manage and worked more efficiently. Ms
Saleswhiz’s company is still in business.”

After the word “algorithm,” the computer user at the party normally looks less
interested in computers, and the subject is quickly changed to “what is your favorite
editor.”

A computer freak at the party has set himself up for a long monologue, a summary
of which can be found in the remainder of this dissertation.

Introduction

he execution speed of a computer has always been a scarce resource. Fven

though technology improvements have doubled the speed of a computer almost
every second year, computers still seem to be just a bit too slow for the really in-
teresting applications. The idea of building one fast computer out of several slower
ones is not at all new. The goal is to design such a multiprocessor with performance
comparable to the sum of its processor elements. One of the earlier attempts, the
ENIAC project, dates back to the 1940s. Numerous multiprocessors have been built
since then, of which only a fraction will be mentioned in this work. After all these
years and all the effort put into multiprocessors, the long-awaited success is still not
available. There are three negative attributes most multiprocessors have in common:
they are hard to program, they do not achieve the expected performance, and they
take a long time to develop. The tremendous speed improvements of uniprocessors
are obstacles to multiprocessors. Both the software and hardware of multiproces-
sors are complicated to develop, and they tend to have a much longer development
time than for uniprocessors. When a multiprocessor is ready for the market, unipro-
cessors have taken yet another giant performance step, and can offer performance
comparable to the multiprocessor’s. This work cannot present the final solution to
these problems, but, hopefully, it introduces solutions that bring us one step closer
to useful multiprocessors.

Introduction

This dissertation describes a parallel computer designed according to a new
paradigm—a cache-only memory architecture. Along with the description of the
core ideas of this architecture, two new general strategies for performance improve-
ment are presented. Neither the architecture nor the performance-improving strate-
gies are visible to the programmer/compiler. Nor are special features expected from
the processor.

A computer designed along these lines is expected to provide superior performance
in most applications. Yet it assumes only the functionality found in today’s mi-
croprocessor and compiler designs, allowing for rapid development based on known
technology and compatibility with existing programs, compilers, and operating sys-
tems.

1.1 Scope

The main component of this work is the introduction of a new class of architectures,
one possible implementation, and finally, suggested improvements for such an archi-
tecture. Although some of the solutions described are derived from related work,
the introduction of a new class of architecture has created many new challenges.
The search space for such work is enormous. The lack of previous architectural
work of this kind at the Swedish Institute of Computer Science (SICS) and the need
to create infrastructure like simulation and evaluation tools further increased the
search space.

Nevertheless, we felt it was necessary to create a complete solution, including proto-
type implementation, in order to fully understand all the issues involved in building
this new class of architectures. To achieve this in a finite time, we limited our scope
to the critical areas.

The techniques presented are, or at least could be, included in the ongoing prototype
project implementing a first version the architecture. Aspects not critical to initial
implementation are presented in limited detail. All critical aspects are covered to
the point of a detailed performance simulation.

1.1.1 Programming Model

Many programming models have been proposed for multiprocessors. Two common
ones are message-passing and shared-memory models, which differ in the memory
model provided to the programmer.

Both models are general and not tied to any specific programming language. Other
models, like the first Dataflow architectures and reduction machines, integrate lan-
guage primitives and synchronization with the memory system and are considered

1.1 Scope

less general. We were interested in general-purpose! multiprocessors and adopted
the most common paradigm for such architectures: the shared-memory paradigm.
Adapting to the mainstream made it easier to port existing applications and oper-
ating systems, resulting in a shorter development time—one of the critical factors
for multiprocessors. The coherent shared-memory paradigm is often regarded as the
most general programming model.

The use of existing programs from the public-domain reservoir eliminated much
work. Although the programs used were originally written for multiprocessors with
uniform memory access and small caches, they adapted well to this new class of
architecture.

Modifications to application programs were tested to fully explore the advantages of
the architecture, but programming issues are minor here. Rather, a choice was made
to spare the programmer/compiler from bothering with underlying architectural
properties. Programming a parallel computer is hard enough as is. Any advances in
compiler technology are welcome but not prerequisite for the architecture to perform
well.

1.1.2 Processors

Designing processors from scratch would be another major addition to search space
and development time. The use of commercial processors in the design, however,
incorporates the tremendous advances in microprocessor development into the mul-
tiprocessor with reasonable design effort. Designing a tailor-made processor for this
class of architectures is tempting, of course, but would not have yielded maximum
performance. The work presented here is based on existing commercial micropro-
cessors. Architectural modifications to the processor caches that would be beneficial
to this architecture are nonetheless proposed.

1.1.3 Memory System

The memory system has been the core activity of this work. Shared-memory systems
were originally designed as such, i.e., several computers physically sharing a single
memory. As the speed gap between processors and memories widened, the single
memory became the bottleneck of the system. This bottleneck was removed by the
introduction of local caches between the processors and the single physical memory.
The single memory was still a scarce resource, leading to the next evolutionary step,
architectures with local caches and with memory physically distributed between the
processors. This work represents yet another step in that evolution by introducing a

!General purpose should here be interpreted as suiting a wide variety of the traditional languages
and common problems.

Introduction

system with only caches, yet with a shared-memory view provided to the processors.
The system is endowed with the largest caches possible by using all the memory in
the system for implementing them. The large caches not only hide network latency,
but also reduce network traffic.

Despite using the largest possible caches, only some of the network latencies are
hidden. Latency effects are reduced to an acceptable level for many applications
by employing large caches. Other applications continue to suffer long delays: la-
tency occurs the first time a datum is touched, and some misses caused by the
write-invalidate protocol cannot be avoided. Two other latency-hiding techniques,
which hide most of the remaining latencies, are described and evaluated. Both tech-
niques are hardware supported and completely transparent to the programmer (or
compiler).

A fast simulator is essential to a study of this kind. The simulator can be used to
indicate whether the different ideas work properly and forces a complete description
of the architecture. It also provides an inside view of what is really going on in the
architecture, which is helpful for understanding the effects of the ideas and gathering
useful statistics. Debugging both protocols and some architectural ideas have also
been important issues, since some of the ideas presented here were later used in
prototype development.

1.2 DDM Background

The proposed architecture, the Data Diffusion Machine, was initiated by Seif Haridi
and David H.D. Warren [WHS88]. The essentials of their proposal included a hi-
erarchical architecture similar to the one described here, a hierarchical coherence
protocol, and a strategy for increasing bandwidth.

The original proposal did not contain any solutions to the replacement and deadlock
problems, nor was the protocol integrated with the bandwidth-increasing technique.

1.3 Contributions

In summary, this work includes novel research activities in these areas:

o Identifying and describing a new class of architectures: cache-only memory
architectures

o A large quantitative analytic study of ten different architectures

o An operational COMA proposal including replacement issues and memory
management

1.4 Thesis Road Map

e An implementation proposal thereof

e A performance characterization of the proposed implementation by simulation

An adaptive write-update protocol adjusting to the behavior of the applica-
tions

A proposal for bandwidth-improving techniques in hierarchies while preserving
the order among transactions

A dynamic hardware-based prefetching scheme

A simple and efficient simulation technique allowing for detailed studies of
architectural ideas

1.4 Thesis Road Map

Each chapter is self-contained to some extent. To avoid redundancy, references to
other chapters are often included rather than text. Each chapter starts with an
abstract and ends with a short summary. There are three distinct parts of three
chapters each.

The first part is a general discussion of important issues for efficient multiprocessors.
Its first chapter is about scalability issues, the second an introduction to cache-only
memory architectures and their properties, and the third a quantitative performance
study comparing cache-only memory architectures to alternatives.

The second part describes the prototype architecture currently being built at SICS.
The first chapter introduces architectural ideas, the second describes the prototype
implementation, and the third presents simulated performance results.

The third part describes general techniques for improving the performance of any
parallel computer: the hardware prefetcher (ROT), the adaptive write-update pro-
tocol (subscribe), and several ways of improving bandwidth in a hierarchical network
while preserving the order among transactions. These techniques are especially in-
teresting in the context of this work, since their improvements come from removing
the kind of misses remaining in a cache-only memory architecture.

We conclude by a summary part presenting some related work, followed by a short
summary of the dissertation, and end by a short conclusion.

10

Part 1

JUSTIFYING COMA

11

Toward Scalability

CALABILITY is one of the more misused terms in computer science. Many

architectures are claimed to be scalable whereas most definitions proffered by the
research community state an unreachable property. Were scalability regarded as a
“yes or no” property, the answer would be “no” for all architectures. The research
community has been asked to abandon or define scalability [Hil90]. We prefer to
see scalability as an abstract goal rather than defining it to fit an acceptable parallel
architecture.

This chapter discusses different ways of identifying a good architecture. We identify
parallel efficiency as a reasonable demand to put on a parallel architecture.

We also identify some techniques for achieving parallel efficiency. These techniques
are described briefly in this chapter and some of them are dealt with in more depth
in later chapters.

14

Toward Scalability

2.1 What is Scalability?

Scalability issues are mostly of interest to academia. Multiprocessors can have
memory, cost, bandwidth, and performance scalability. Memory scalability refers
to a behavior of the shared memory. If a single processor of the architecture can
make use of the whole shared memory, and thus avoid unnecessary disk accesses,
the memory could be described as scalable. This is of great importance not only
for the single user case, but also if processors have differing memory requirements
during execution.

The cost of building an architecture should be linear to the number of processors. In
practice, overhead per processor should be kept low and reasonably constant. The
multiprocessor must be cheaper than a uniprocessor with comparable performance
in order to be attractive on the market—one of the main ideas of parallel processing.

Scalable bandwidth is yet another property that is difficult to achieve. In order to
avoid contention with a large number of processors, available bandwidth must scale
with the number of processors. Infinite scalability is impossible in this respect, but
enough bandwidth can be provided for a fixed number of processors.

In the context of multiprocessors scalable normally refers to a measure of increased
performance when more processors are added, i.e., scalable speedup. An intuitive
interpretation of scalable is linear speedup for up to an infinite number of processors.
Speedup measures how much faster a program executes on n processors than the
same program executing on one processor. Linear speedup implies a speedup equal
to n. The definition of speedup is often coupled to a specific application.

execution timegpchitecture(1)

speedupay chitecture(N) = ; ;
execution tlmearchitectuTe(n)

scalability : speedup(n) =n

In this discussion we will assume a constant set of programs for which the formulas
apply. Defining speedup also requires a definition of problem size, which can either
be held constant or increased according to the number of processors; this will be
discussed later. No architecture has a linear speedup for an infinite number of pro-
cessors. Linear speedup is hard to achieve even for a small number of processors.
One begins to wonder if the term scalable should have such a pragmatic interpreta-
tion. The term is often applied to architectures that perform relatively well when
executing an application on a large number of processors.

Scalability has become a property to strive for, but is never met. Striving for the
unreachable could be depressing—and misleading. Given these problems, there must
be a better way to judge the performance of parallel architectures.

15

2.1 What is Scalability?

2.1.1 Efficiency

A simple definition of efficiency is:

speedup(n) execution time(l)

efficiency(n) = n - n % execution time(n)’

or, how close to linear speedup did we get? Ideally, an efficiency of 1 should be the
goal but, as pointed out by Hill [Hil90] and others, comparing with the unreachable
does not make much sense.

Not all parallel programs have enough parallelism to utilize a large number of pro-
cessors [Amd67]. Furthermore, the load balancing might be far from perfect, leaving
processors idle at some barrier or waiting to achieve locks. A third source of limited
speedup are deficiencies in the operating system, e.g., accesses to common resources
might be serialized. The definition of efficiency of an architecture should not suffer
from deficiencies outside the architecture.

Deficiencies orthogonal to the architecture can be compensated for by defining ar-
chitectural efficiency in relation to some ideal architecture running the same appli-
cation:

execution Limeheoretical model (1)

eﬁCZencyarchitecture(n) = . .
execution time g, chitecture(N)

A PRAM [FWT78] could be such a theoretical model. The PRAM models represent
a range of memory models with different access restrictions. In their base model,
all memory accesses take one unit of delay. A more practical way to estimate a
theoretical minimum execution time for an architecture is to run the application in a
simulator where all memory references take one cycle. An efficient parallel unit-delay
simulator for parallel architecture (UDS) can be made detailed enough to execute
an application on top of a real operating system, running only 30 times slower than
on one target processor element [Mag93]. It is therefore practical to make such
estimates for large programs running on hundreds of processor elements, given that
enough memory is available. Estimates for thousands of processors would require a
parallel implementation of the UDS. If the same processor architecture, compiler,
and operating system are used in the UDS as in the target parallel architecture, a
practical lower bound for the execution time can be calculated.

Having identified the minimum execution time of an ideal architecture, given the
application, compiler, and operating system, a definition of efficiency for the archi-
tecture can be produced:

execution timeyps(n)

eﬁCZencyarchitecture(n) = . . .
execution time g, chitecture(N)

16

Toward Scalability

Such a definition of architectural efficiency contains some of the deficiency found
in uniprocessors caused by their relatively slow accesses to primary memory. The
architectural efficiency of a uniprocessor, i.e., processor utilization, is often in the
range of 0.7-0.8. Architectural efficiency can therefore never be greater than the
processor utilization of its nodes. It would be cruel to ask the designer of a parallel
architecture for a higher processor utilization than that found in uniprocessors. A
measure of how efficient the parallel part of the architecture is has to compensate
for this deficiency. We will make use of algorithmic speedup, like the ones presented

for the SPLASH suite [SWGY1] and defined as:

execution timeyps(1)

SpeedupalgoTithmiC(n) = y y '
execution tzmeUDs(n)

This allows us to define parallel efficiency, a measure of how far from perfect our
parallel strategy is, as:

Speeduparchitect’uﬂ’e (n) _

speedupalgorithmic(n)

parallel efficiency(n) = (2.1)

execution timepyps(n) * execution timey,chitecture(1)

execution timepyps(1) * execution time,chitecture(N)

(
eﬁCiencyarchitecture (n)
eﬁCiencyarchitectuTe(l)'

Parallel efficiency is similar to, but slightly more practical than, a definition of
scalability by Nussbaum and Agarwal [NA91], which is related to the EREW PRAM

model.

A good parallel design should strive toward a parallel efficiency of 1. Parallel ef-
ficiency has the advantage of compensating for the latencies inside the node, also
found in a uniprocessor. As can be seen in Equation 2.1, the architectural efficiency
of n processors is divided by the architectural efficiency of one processor. Parallel
efficiency also compensates for the effects of the instruction-set architecture and
compiler used in the UDS. Thus, any UDS will do for an estimate, and a UDS for
the target architecture is not necessary. Even better is if the algorithmic speedup for
the application is already available, as is the case with the SPLASH suite [SWGI1].

There are pitfalls, however; not only should the achieved parallel efficiency of an ar-
chitecture be in focus, but also the performance of a single node' of the architecture.
High parallel efficiency is more easily obtained for designs with slow processors or
with a long latency to local memory, since the relative cost of a remote access is
related to the performance of a single node.

! A unit containing a processor and memory.

17

2.1 What is Scalability?

It the penalty for remote accesses is also paid when a single processor is executing,
then this would violate the concept of parallel efficiency—a measurement of the over-
head for executing on a parallel architecture rather than a uniprocessor. Examples
of such architectures are those with one common shared memory and those with
distributed memory such that the data set of the execution does not fit in the local
memory of a single node. Yet another example of parallel efficiency making little
sense is when problem size is held constant and fairly small. When the number of
processors increases, the size of the data set per processor decreases, with a positive
effect in the caches of the architecture as a result. A similar positive effect can also
be observed if the local memories are too small for hosting the data set. As the data
set per processor decreases, all of a processor’s data might fit in its local memory.
Since this positive effect is not explored in the UDS, the architecture under study
gets an advantage. Actually, a speedup larger than n can be achieved—superlinear
speedup.

What can be regarded as satisfactory efficiency also depends on the application. As
we will see later, satisfactory efficiency is more easily obtained in some applications
than in others. The efficiency of an architecture can be divided into two parts:

eﬁCiencyarchitectuTe(n) = eﬁCiencylatency(n) * eﬁCiencycontention(n) (22)

The latency component comes from all the latencies in the architecture—logic la-
tency, communication latency, and memory latency—assuming no contention in the
system. This efficiency is estimated with simpler simulation models and simple an-
alytical models. The second component comes from the isolated contention delay,
i.e., the time spent waiting for occupied resources, such as buses and memories.
This part is harder to model unless a very detailed simulation is used. It heavily
depends on the dynamic behavior of the machine, including the correct modeling of
hot spots in time and space.

If the effects of the latency and contention are isolated and measured as suggested
above, a third efficiency component might be necessary, adjusting for the changed
behavior in the load balancing of the machine caused by side effects when moving
from simulated delays to real delays. This component is hard to predict. It is
debatable whether it should be included in the efficiency of the architecture, sorted
under algorithmic deficiencies, or called pure luck. Applications for which this effect
is large are not well suited for evaluating architectures.

The communication portion of efficiency,,;.,., increases with the number of proces-
sors, while memory latency and logic latency are more or less constant. In large
systems, the communication part is the dominant source of latency. Mapping an
architecture in 3-D space implies that the communication distance between proces-
sors increases by /n. There is also the limitation of fan-in, fan-out introducing a
logarithmic factor. Therefore, an efficiency larger than O([n% logn]™*) should not

18

Toward Scalability

be expected for large systems. The physical limitations found in different topologies
have been studied extensively by Nussbaum and Agarwal [NA91].

The efficiency ., iention Will decrease if not enough bandwidth is provided by the
network. A saturated network will limit achievable efficiency. However, unlike
latency, there is no point in pushing available bandwidth too far; i.e., changing the
network load from 10 percent down to 5 percent by doubling the available bandwidth
in the network does not have the same effect as cutting its latency in half.

2.2 Latency Hiding and Reducing Techniques

Making a remote reference for each access to global data is costly in a large mul-
tiprocessor. To achieve reasonable efficiency, latency-hiding techniques are used to
“hide” network latency during execution. Some latency-hiding techniques involve
a smarter way of writing the program or smarter compilers that generate code to
hide latency during execution. Other techniques are transparent to the program
and result in more efficient execution without putting demands on the compiler or
the programmer. We call these two classes of latency-hiding techniques software-
and hardware-oriented solutions. They can coexist in a system, and each has its
advantages. This work focuses on hardware-oriented solutions.

Several techniques have been proposed to reduce and/or hide latency caused by
remote accesses [GHGTI1].

e Caching is by far the most popular technique. A cache hit not only reduces
latency, it also reduces the load on the network, since no remote access is
performed. Introducing caches to a multiprocessor should be combined with a
cache-coherence protocol to keep the many copies of a datum coherent, without
bothering the programmer.

e Prefetching techniques hide latency in a network by stimulating an access (e.g.,
retrieval of a datum) before it is needed by the processor. Prefetching can be
controlled by hardware or software.

e Multiple-context techniques hide latency by context-switching to a new task
whenever a remote access is performed. For algorithms with good parallelism
and algorithmic speedup, this method can be very efficient.

o Weaker consistency models allow for global operations by a processor to be
pipelined—yet another example of hiding the delay of the network.

o Write-update protocols maintain coherence by remotely updating all shared
copies on a write. For some applications, this is an efficient way of hiding
latency.

19

2.3 FEffects of Caches

2.3 Effects of Caches

Examples of how caches improve performance can be found in all classes of com-
puters. Although caching has been in commercial use since 1968 (IBM 360/85),
different strategies for its implementation are still being researched and evaluated.

A cache is a relatively small and fast memory containing a subset of the data avail-
able elsewhere in slower storage. The contents of the cache can either be controlled
by software, e.g., the contents of the primary memory of a workstation, or by hard-
ware, e.g., the small cache in a microprocessor. The replacement algorithms nor-
mally favor storing the most recently accessed data in cache.

A hardware-controlled cache is normally organized as set-associative memory, where
one part of the accessed address is used to determine in which set the accessed datum
might reside. This set may contain many alternative locations, or ways, where the
datum can be stored. Each location has an address tag containing the remaining
part of the address. Fach location tag in the set is compared with the accessed
address in order to determine if the accessed datum is in the cache—a cache hit.

A cache provides a shorter access time if the data is soon requested again. This is
referred to as temporal locality. The data unit brought into the cache, cache line,
is often larger than the word size of the processor. This is beneficial if other words
close to the accessed one will be accessed soon, called spatial locality.

As technology moves on and more powerful processors with small and fast on-chip
caches become available, larger second-level caches become useful to narrow the
speed /size gap between the small on-chip caches and the slow main memory. The
size and access time of a second-level cache lies in between those of the first-level
cache and the slower memory.

Caching is probably the most commonly used latency-reducing method in a multi-
processor, where copies of recently accessed data may be held in the local cache of
a processor. Caching not only hides the latency of the network, but also reduces
network traffic. Taking load off the network also results in less contention and,
subsequently, cuts access time to remote memory.

Caches in a multiprocessor allow several copies of the same datum to occur
simultaneously—the datum is replicated. Thus, several processors sharing the da-
tum gain a short access time, but having several copies of a datum also introduces
a coherence problem, i.e., there might be several copies of the datum, but there
should only be one value. Yet another, but related, problem is the consistency
level, or memory access ordering model, stating what assumptions a programmer
can make about the ordering of memory events. Both consistency and coherence
are often dealt with by a special cache-coherence protocol integrated with the cache
implementation.

20

Toward Scalability

In this work we focus on exploring the effects of very large second-level caches.
All the memory resources of our architecture, the Data Diffusion Machine
(DDM) [WHS88, HI.LH92], are invested in the implementation of large caches local to
processors. Therefore, it has no main memory. The sum of the large caches instead
form the common shared memory. This results in caches of the largest possible
size, but also introduces two new problems not solved in traditional cache-coherence
protocols: on a read-miss, the datum must be searched for in some other cache and
on replacement, care must be taken so that the last copy of a datum is not lost.

Part IT is devoted to the structure and performance of the DDM. We introduce
a new class of architectures based on the above idea in Chapter 3—Cache-Only
Memory Architectures (COMA). That chapter also argues why COMA can be re-
garded as a more general class of architectures than the alternatives. Chapter 4
is a quantitative performance comparison of different COMA implementations and
other architectures showing a clear advantage for COMA.

2.3.1 Effects of Cache Misses in Multiprocessors

Even if the largest possible caches are used, misses still remain. In some of the
applications studied, as many as 99.5 percent of data references are satisfied by the
large cache, while for others only 90 percent can be completed locally in the cache,
and 10 percent miss. Is this node hit rate high enough to make a large multiprocessor
competitive?

Here we assume a 100 percent hit rate for instructions.? Processor elements perform
one instruction per cycle. The processors have an access time of one cycle to their
caches, and average Latency,.,, to remote memory. Penaltyjgieney 1s the extra time
spent doing remote accesses normalized to the ideal execution time without any
penalty. It can be calculated by multiplying the cache miss fraction by the cache
miss latency and dividing by the average number of cycles per data references. The
efficiencyuyene, can be obtained by simply adding one and inverting.

node miss rate x Latency,en,

penaltyiatene . .
Y instructions per data reference

1
penaltyigiency + 1

eﬁCZencylatency

The studied classes of architectures and applications have approximately four in-
structions per data reference and a Latency,.,, in the range of 100 cycles. Figure 2.1
shows the simplified relationship between efficiency and miss rate for different

2This is a realistic estimation for the programs studied here (SPLASH et al.).

21

2.3 FEffects of Caches

1 | |
i Instructions per data reference = 4
08 N N U —
Latency=10
0.6 |- Latency=20]
Efficiency
0.4 _
Latency=50
0.2 Latency=100 _|
Latency=200
0 ! ! !
0 5 10 15 20

Miss rate (%)

Figure 2.1: The relationship between efficiency and miss rate shows the importance of
low miss rates for systems with long latencies.

remote-access latencies. It shows that a latency of 100 cycles and a miss rate of
10 percent result in an efficiency in the range of 0.3, while a miss rate of 0.5 percent
brings the efficiency up to almost 0.9.

Without having stated any absolute number for what efficiency is acceptable, one
could believe that 0.9 is allright, while 0.3 is too low. As a comparison, a miss rate
of 10 percent on a uniprocessor with a 10-cycle delay to main memory results in
an efficiency of 0.8 according to this model. A goal could be to achieve comparable
performance for the parallel architecture and for the uniprocessor. An efficiency of
0.8 at a latency of 100 cycles corresponds to a 1 percent miss rate. As a rule of
thumb, the effect of a 1 percent miss rate can be accepted in a multiprocessor. So,
large caches alone do not make an attractive architecture for all applications. This is
justified later by more detailed simulations. The effect of the misses must therefore

be subdued.

22

Toward Scalability

2.4 Removing Remaining Misses

We define a cache miss as being an access to a cache that makes the processor stall.
The cause for stalling the processor could be either a data read miss, a data write
miss, or an instruction miss.

o A read missis caused by a read access to a cache line not present in the cache.

o A write miss could be caused by a write access to a cache line not present in
the cache, or a write access to a present cache line in a state that delays the
write in order to achieve some consistency level.

e An instruction miss means that the processor tries to execute an instruction
that is not currently in the (instruction) cache.

In the calculation above, we assumed that all misses result in the same remote delay.
For real systems this is generally not the case.

To further increase performance, the reasons for the misses must be understood and
avoided. Hill and Smith [HS89] classify the cache misses of uniprocessors into three
categories.

e capacilty misses are caused by a limited cache size (the cache is too small),

o conflict misses by too many active blocks mapping to a fraction of the sets
(not enough associativity), and

o compulsory misses by the cache line being touched for the first time.

The first two categories of misses can be avoided by increasing the size of the caches,
and the second category can be decreased by more associativity (more ways). The
compulsory misses cannot be decreased without any prefetching and are the domi-
nant cause of misses for uniprocessors with large caches [HS89].

In multiprocessors cache coherence is often maintained by a cache-coherence protocol
of the write-invalidate type. In other words, on a write to a shared datum, all
other old copies are destroyed. Cache misses in multiprocessors with write-invalidate
protocols have another two categories:

o invalidation misses, caused by the invalidation of shared data performed by
another processor, and

o shared misses, which delay writes since there are other copies of the datum in
the system.?

3This assumes a sequentially consistent protocol.

23

2.4 Removing Remaining Misses

These two types of misses are often referred to as coherence misses and are caused
by two or more processors sharing a read/write datum. Because of large cache lines,
adjacent data, not directly shared, will also be invalidated/shared, resulting in false
sharing. False sharing increases with cache-line size [EK89]. We have measured
invalidation misses to be as high as 4 percent of data accesses. In the same ap-
plication, share misses also amounted to 4 percent, not surprisingly, since one can
imagine situations where the two misses are paired. False sharing has been mea-
sured at 4 percent of all data accesses. Large caches will cut down on the number
of capacity and conflict misses, but will not affect the other types of misses, which
must be reduced by other methods.

2.4.1 Prefetching

Misses can be removed by issuing a prerequest for the data prior to the point in
time where they are actually needed. If the prerequested data arrive in cache before
they are asked for, the miss rate in the cache will decrease. If the address of a future
data access is known, or can be calculated, a special prefetch instruction can be
inserted into the code. The prefetch instruction initiates the fetching of data, but
does not block the processor. Prefetching can either bring the data to a register or
to the cache. Bringing the data to a register results in the highest performance, but
requires far more registers than prefetching to cache. A prefetched datum residing
in a register will also be excluded from cache-coherence actions. In this work, we
only cover techniques that prefetch data to cache.

Most data misses can be removed by issuing extra prefetch instructions for all data
accesses. This is clearly not practical, since it would produce a large overhead in ex-
tra instructions executed and hence required bandwidth. Instead, the programmer
or compiler can try to determine which accesses will miss the cache, or at least, which
accesses have the potential of missing. The prefetch distance, i.e., how far ahead of
use data should be prefetched, can be determined by program analysis. Properly
used, this technique is very beneficial for removing misses [KL91, GHG'91]. How-
ever, if unnecessary prefetches are generated, the system might suffer from the extra
contention generated. Sometimes, extra address calculation is needed for prefetch-
ing, adding unnecessary work.

Programming a parallel processor is difficult. The programmer should not be re-
quired to insert special instructions in order to achieve reasonable speed. Nor can
today’s compiler technology be trusted to always perform this task. Instead, we pro-
pose a hardware-based prefetch technique, hidden from the compiler /programmer.

A simple algorithm implemented in hardware detects access patterns and predicts
what accesses will be made in the future. The algorithm will also detect how far
ahead of use data must be retrieved in order to hide network latency. We call this

24

Toward Scalability

technique Right-On-Time Prefetching (ROT). The operations of ROT are transpar-
ent to the programmer.

Prefetching can also remove share misses, if the type of access, like read or write,
is also monitored, and the prefetcher prepares for a forthcoming write by issuing a
dummy write. The dummy write brings the cache line into the right state, prior to
executing a write. Like the software-based techniques, care must be taken to avoid
overhead resulting in lower, rather than higher, performance. The ROT technique
cuts the miss rate in large caches for a studied multiprocessor application from
4 percent down to 2 percent. Using ROT does not rule out the use of software-
based techniques. If software-based latency-hiding techniques are provided by the
programmer, only latencies not covered by the software will be handled by ROT.
ROT is described in Chapter 8.

2.4.2 Relaxing the Memory Consistency Model

Shared misses can also be removed by relaxing the memory consistency model,
thereby removing the need to stall the processor on writes to a shared cache line.

Lamport states a requirement of the memory system of a multiprocessor called
sequential consistency, which executes programs “as if the operations of all the
processors were executed in some sequential order” [Lam79]. Sequential consistency
requires a global interleaving of the writes in the system observable by all processors.
Sequential consistency can be viewed as a specification of a memory’s behavior.
Hardware designs fulfilling this requirement can correctly execute programs written
with this assumption of behavior. Sequential consistency is not the only specification
of such behavior. Actually, there are very few programs that really require global
order between all writes.

Processor consistency [Goo89] relaxes the requirement of global order between all
writes, and instead states that the writes from each processor should be observed
by all processors in program order. This requirement is enough for most existing
programs. Implementing a memory system that supports processor consistency can
be made much more efficient than a sequentially consistent one. This is especially
true for systems with hierarchical networks, as discussed in more detail later, where
the processors do not have to stall on writes to shared data.

Weaker forms of consistency, e.g., weak ordering [DSB86] and release consis-
tency [GLLT90], remove all restrictions on the write order except around certain
synchronization points put in by the programmer or by the compiler. This also
implies that the delays for writes to shared data can be removed. Furthermore,
writes to nonexistent data and read misses can be avoided by dynamic scheduling of
instructions [GGH92]. The effects of weaker consistency models have been studied

by Gharachorloo et al. [GGHI1], and Zucker and Baer [ZB92].

25

2.5 Context Switching

Consistency models are discussed briefly in Chapters 9 and 10.

2.4.3 Write Update Protocol

Most cache-coherent shared-memory multiprocessors use a write-invalidate protocol.
Using this strategy, a write to a shared cache line results in invalidations of all other
cache lines through erase messages in the network before?* the write can be performed
locally in the cache. This causes invalidation misses; in other words, the requested
cache lines would have been in the local cache if they had not been invalidated by
the write of another processor.

Invalidation misses can be avoided by a write-update strategy. On a write, all other
copies are updated instead of being invalidated. This strategy has been imple-
mented in some multiprocessors, such as Firefly [TSS88]. Though superior for many
applications, this strategy has been fatal for others [KK89]. None of the updated
copies might ever get used, but the writer still keeps updating all copies, resulting
in a high network load and no miss reduction. Attempts have been made to de-
sign adaptive single-bus protocols, which switch back and forth between the two

strategies [KMRS86].

This dissertation suggests a general, adaptive method which implements the write-
invalidate strategy by default but switches to write update on a per-cache line basis.
It combines the write-update strategy with weaker forms of consistency and thus
removes both invalidation misses and share misses. This protocol improved the
node miss rate from 11 percent to 0.3 percent in one of the studied applications.
The protocol is described in Chapter 9.

2.5 Context Switching

Another way of hiding latency is to change context on a cache miss and work on
a different task until the requested data is retrieved. This technique is used in the
Alewife project [CKA91], using a modified SPARC architecture with low overhead
for a context switch. A more extreme use of the technique is in Dataflow [AI83],
where a context switch is made for each instruction. A similar technique was also
used in the HEP processor [Smi78], which had a limited number of contexts inter-
leaved on the instruction level. The instruction frequency for each context matched
access time to memory, effectively hiding its latency. Modern Dataflow architec-
tures [NPA92] propose a less aggressive context-switching method with an increased
granularity between switching points.

4f sequential consistency is supported.

26

Toward Scalability

Context switching can hide the effect of latency and some of the extra delay caused
by contention. One obvious overhead with this technique is the extra time spent
performing context switches. This overhead can be made very small if the contexts
are interleaved, and/or if disjoint register sets are used. This method of context
switching requires more active contexts than there are processors. The number
of contexts per processor needed depends on the number of instructions between
misses, and also on remote access latency. The Alewife project estimates a need for
three to four times as many contexts as there are processors.

The overhead in running an application using ¢ interleaved contexts per processor
adds one factor to the efficiency in Equation 2.2.

Speedupalgorithmic(n * C)

c* Speedupalgorithmic(n)

eﬁCiencymultiple context(n7 C) =

Speedup

A
algorithmic speedup

S 010 [00 - :

speedup(n) ===
speedup(n*c) :
c

oy
-

Processors

n n*c
Figure 2.2: Illustration of the overhead of running ¢ contexts on n processors.

The overhead is illustrated in Figure 2.2; ¢ * n contexts together achieve a speedup
of speedup(n+c). However, since each of the interleaved contexts runs ¢ times slower
than a single processor, the achieved speed is speedup(c * n)/c. This limitation is
severe for some algorithms with a declining increase in their algorithmic speedup.
Another drawback of context switching can be found in small processor caches. If the
active contexts of a processor have large disjoint data sets, they interfere with each
other in the small processor caches. The importance of this problem also varies with
different applications. For algorithms not suffering from these limitations, context
switching is a very effective latency-hiding technique, since the efficiency e, is

27

2.7 Networks

close to 1. These different constraints make it difficult to compare this strategy to
the other latency-hiding techniques.

Context switching as a latency-hiding technique is not discussed further in this
dissertation.

2.6 Networks

The processors of a parallel architecture are connected by a network. The network
allows for the processors to share data. The network carries requested remote data.
In a coherent multiprocessor, the network also carries the traffic that maintains
coherence between different copies of the same data. The requirement of the network
in a multiprocessor can be summarized as low latency and enough bandwidth.

Most speed-improving methods increase the burden on the network since compu-
tation, with its constant communication, is completed in a shorter time. However,
one way of limiting the bandwidth requirement of the network has been discussed:
caching. For the parallel programs studied in Chapter 4, architectures with infinite
caches have a 240 times lower communication need than architectures with small
caches, and a 10-200 times lower communication need than architectures without
caches.

Yet another way of limiting the bandwidth requirement is to explore the locality of
communication in such a way that only a limited part of the network is utilized for
communication between two closely located processors.

Finally, efficiency can be improved by building up muscles—the bandwidth. In a
mesh network, the bisectional bandwidth, i.e., the bandwidth available for commu-
nication between the two halves of the system, increases by the square root of the
number of processors [Len91]. This is not true for the hierarchical network we are
using in our Data Diffusion Machine. Its topmost component in the hierarchy easily
could become the system’s bottleneck since its available bandwidth does not increase
with the number of processors in a natural way. That does not mean available band-
width cannot be increased, however. We can widen the bottleneck by building a fast
ring, time-slotted into address domains [BD91], and/or by building fat trees [Lei85]
where the topmost component is implemented as several parallel components divided
among address domains. The topmost component of a hierarchy may be built from
any kind of interconnection network—a heterogeneous network. Several strategies
for utilizing these methods will be discussed in Chapter 10.

28

Toward Scalability

2.7 Synchronization

Throughout the computation, the different parallel processes need to synchronize
with each other. Small-scale multiprocessors have successfully used software busy-
wait locks and barriers to implement the synchronization needs. The busy waiting
can be performed as local reads to the cache as long as the value of the lock stays
the same. On large-scale multiprocessors, the busy-wait locks produce heavy com-
munication bursts. The reason for this is that each processor busy-waits on a value
in the same cache line. As soon as the value changes, all processors will see the
change and draw the same conclusion, e.g., when a lock is changed from locked to
unlocked, all processors will see the free lock and try to grab it. The communication

produced is O(n?).

A queue-based lock structures the lock requesters as a linked list. A processor
busy-waits on a flag changed by the predecessor in the list. The queue-based locks
have two obvious advantages over the simple test and test&set lock: requesters
will obtain the lock in a first-come-first-serve manner and it will not produce a
communication burst each time the lock is released. Software implementations of
queue-based locks can be made efficient [MCS91], but add a small overhead for
the cases of no contention. Queue-based locks can also be integrated in the cache-
coherence protocol, further reducing the overhead [GVW89].

Wake-up implementations of locks instead actively wake up a processor (or process)
when an awaited event occurs. Examples of this can be found in the synchronization
in the HEP processor [Smi78], and in many implementations of data-flow. These
kinds of synchronization can solve data-dependencies at run-time, which allows for a
more aggressive scheduling and exploration of a more fine-grained parallelism. This
kind of synchronization can also be implemented in cached systems [HLH91].

Synchronization is not covered in this work.

29

2.7 Synchronization

S

In this chapter we identified scalability as a goal rather than a yes-or-no proposition.
Parallel efficiency was identified as a measurement of parallel architectures.

As a rule of thumb, a large multiprocessor can accept the negative effects of a one-
percent node miss rate and still achieve reasonable parallel efficiency. For some
applications this can be achieved with large caches, while for others latency-hiding
techniques are needed. We briefly discussed some possible latency-hiding techniques.

Finally we noted that architectures with (infinitely) large caches have a network

traffic need 2—40 times lower than those of architectures with small caches and 10—
200 times lower than those of architectures without caches.

30

Cache Only Memory
Architectures

ONG LATENCIES introduced by remote accesses in a large multiprocessor can
be reduced by caching. Caching also decreases the network load.

We introduce a new class of architectures called Cache Only Memory Architectures
(COMA). These architectures provide the programming paradigm of the shared-
memory architectures, but have no physically shared memory; instead, the caches
attached to the processors contain all the memory in the system, and their size is
therefore large. A datum is allowed to be in any or many of the caches and will
automatically be moved to where it is needed by a cache-coherence protocol, which
also ensures that the last copy of a datum is never lost. The location of a datum in
the machine is completely decoupled from its address. The COMA approach suits a
large variety of applications.

This chapter discusses different ways of implementing a COMA. We also identify
four properties of a COMA that makes it more general than a Non-Uniform Memory
Architecture (NUMA), in the sense that a COMA has a behavior that suits a larger

class of programs.

32

Cache Only Memory Architectures

3.1 Introduction

Existing architectures with shared memory are typically computers with one com-
mon bus connecting the processors to the shared memory, such as computers man-
ufactured by Sequent and Encore, or with distributed shared memory, such as the

BBN Butterfly and the IBM RP3.

Systems based on a single bus suffer from bus saturation and typically only have a
few dozen processors—each with a local cache. The contents of the caches are kept
coherent with a cache-coherence protocol, whereby each cache snoops the traffic
on the common bus and prevents any inconsistencies from occurring [Ste90]. The
architecture provides a uniform access time to the whole shared memory, and is
consequently called uniform memory architecture (UMA).

In architectures with distributed shared memory, known as nonuniform memory ar-
chitectures (NUMAs), each processor node contains a portion of the shared memory;
consequently, access times to different parts of the shared address space can vary.
NUMASs often have networks other than a single bus, with a varying network delay to
different nodes. Earlier NUMAs had no coherent caches and left the coherence prob-
lem to the programmer. Research activities today strive toward coherent NUMAs
with directory-based cache-coherence protocols, for example DASH [LLGT90] and
Alewife [CKA91]. Each data quantum—or cache line—in a NUMA has a dedi-
cated home node. The home node stores its data values, and, in the case of a
cache-coherent NUMA, some directory information for deducing the locations of
additional cache-line copies. In this text, NUMA refers to this kind of architecture.

Programs can be optimized for NUMASs by partitioning the work and data. Indeed,
the operating system may play an active role in this partitioning. Where processors
are made to make the most of their accesses to their own part of the shared memory,
clearly scalability superior to that of UMA can be achieved.

In a cache-only memory architecture (COMA), the memory organization is similar
to that of a NUMA in that each processor holds a portion of the address space.
The partitioning of data among the memories need not be static, however, since
all distributed memories are organized like large (second-level) caches. The task
of such a memory is twofold. Besides being a large cache for the processor, it
may also contain some data from the shared address space that the processor never
has accessed, i.e., it is a cache and a virtual part of the shared memory at the
same time. We call this intermediate form of memory attraction memory (AM). A
coherence protocol attracts data used by a processor to the processor’s attraction
memory. The coherence unit, which is moved around by the protocol, is called an
item—comparable to a cache line. Figure 3.1 compares COMA to more traditional
architectures.

33

3.2 COMA Implementation Issues

Memory Network Network
| | |
Network || -
Mem Mem AM AM
Cache| . . Cache Cache| ... Cache| Cachel ... Cache
Proc Proc Proc Proc Proc Proc

Shared Memory (UMA) Shared Memory (NUMA) Cache Only Memory (COMA)

Figure 3.1: Comparing COMA to more conventional architectures.

When memory is referenced, a virtual address is translated into an item identifier.
The item identifier space is logically the same as the physical address space of other
machines, but there is no permanent mapping between an item identifier and a
physical location. The physical location of an item can be in any attraction memory,
and the item can exist in many attraction memories simultaneously.

3.2 COMA Implementation Issues

At first sight a COMA looks expensive and difficult to implement. The programming
model of such an architecture also seems unfamiliar. However, a closer look at the
implementation of a COMA, and its programming model, shows that it differs only
slightly from more traditional architectures.

3.2.1 Cache-Coherence Protocols

Recent years have seen extensive study of the problem of maintaining coherence
among read-write data shared by different caches—for example directory-based and
snooping-based techniques [Ste90].

Coherence can be kept by either software or hardware. We believe hardware coher-
ence in a COMA is more efficient. Each item must be small to prevent performance
degradation by false sharing. In other words, two processors accessing different parts
of the same item might clash although they share no data. For instance, we mea-
sured a speedup of 50 percent when false sharing was removed from the SPLASH
application MP3D-DIFF.

Snooping cache protocols have a distributed implementation. Fach cache is responsi-
ble for snooping traffic on the bus and taking the necessary actions if an incoherence

34

Cache Only Memory Architectures

is about to occur. An example of such a protocol is the write-once protocol intro-
duced by Goodman [Goo83]. In that protocol, shown in Figure 3.2, each cache line
can be in one of four states: Invalid, Valid, Reserved, or Dirty. Many caches might
have the same cache line in the Valid state at the same time, and may read it locally.
When writing to a cache line in the Valid state, the line changes state to Reserved,
and a write is sent on the common bus to the common memory. All other caches
with lines in Valid snoop the write and invalidate their copies. At this point there is
only one cached copy of the cache line containing the newly written value. Now the
common memory also contains the new value. When a cache already has the cache
line in the Reserved state, it can perform a write locally without any transactions on
the common bus. Its value will now differ from that in the memory, and its state is
therefore changed to Dirty. Any read requests from other caches to that cache line
must now be intercepted, in order to provide the new value, marked by “intercept”
in the figure.

Nwrite, Nread.inv

Pread/Nread

Nread/
read.inv intercept NOTATION:

. . in—trans./out-trans.
Nread.inv/ Pwrite/ Pwrite/

intercept Nread.inv Nwrite Eli Fr)wg\?v%?iotrr at;]a;ns.

Pwrite,
Pread

Figure 3.2: The write-once protocol.

Snooping caches, as described above, rely on broadcasting and are not suited for
general interconnection networks: unrestricted broadcasting would drastically re-
duce the available bandwidth, thereby obviating the advantage of general networks.
Instead, directory-based schemes send messages directly between nodes [CF78]. This
is the technique most often found in cache-coherent NUMAs, where each of the dis-
tributed directories contain data for their own part of the shared address space. The
directory is the home for that part. The home node also keeps directory information
for each of its data quanta! of their address space. Directory-based cache-coherence
protocols differ as to how they store directory information.

Fully mapped directories [LLGT90] store one presence bit for each of the nodes in the
system, indicating which nodes have cached copies of each quantum. The LimitLess

TA quantum is of the same size as a cache line.

35

3.2 COMA Implementation Issues

scheme [CKA91], in contrast, contains a limited set of pointers and can keep track
of a limited amount of sharing per data quantum. When the number of copies
exceeds the number of pointers, it emulates a fully mapped directory scheme in soft-
ware. The new standard IEEE P1596—Scalable Coherence Interface, SCI [JLGS90],
keeps a pointer per quantum in the home, pointing to a doubly linked list of the
caches with shared copies of the quantum. Yet another approach, the Stanford Dis-
tributed Directory protocol (SDD) [TD90] stores a pointer in the home referencing
a singly linked list. Each of these schemes exhibits different performance and mem-
ory overheads. The scheme with the highest memory overhead, but also the best
performance, is the fully mapped directory scheme.

In the fully mapped directory scheme, a read request is sent directly to the home,
which replies with data and sets the bit corresponding to the requesting node. An
extra bit, contained in the directory, may indicate that the datum is Dirty in another
remote node. In this case the read request is passed on to the cache with the Dirty
copy, which provides a copy of the datum for the requesting node and also sends an
update message to the home. Upon a write to a shared datum, a write request is sent
to the home, which then sends out invalidation messages to all caches with shared
copies. The caches each respond with an acknowledge message to the requesting
node. In order to achieve sequential consistency, all acknowledges must be received
before the write can be performed

3.2.2 Implementing a COMA

In this edition, a new chapter has been added in Appendix C. It presents several dif-
ferent attraction memory implementations, their complexity and performance. This
is a good introduction to the extra functionality needed in a COMA architecture.

The cache-coherence protocol for a COMA can adopt the techniques of other cache-
coherence protocols and add functionality for finding an item on a cache read miss
and for handling replacement [HLH92]. The search for the item compensates for the
lack of a home for data in a COMA. The replacement strategy must make sure that
the last copy of an item is not lost.

A protocol for a directory-based COMA built on a general network could have part
of the directory information statically distributed in NUMA fashion. The data
would be allowed to move freely, while the directory information of each item has
a home. The directory home could also be a synchronization point for replacement
and assure that the last copy of an item is not lost. The protocol could be similar
to those of NUMAs, but extended with the functionality of safe replacement and
finding a requested item.

Figure 3.3.a shows a COMA implementation on a general network. A read request
first goes to the home node of the datum, where its directory information always

36

Cache Only Memory Architectures

Network | 7 LRy .. e
------------ / \ 1 //\\‘ Y
TN N e ol /o i
E2 I — - - /N A |
‘AM| | AM A AM| [AM[| AM AM AM| [iAaM[[AM AM AM
H h dl |g d v d
| | | Ll — 1 | Al | |
PP P P PP P P PP P P
r r r
a. General network b. Hierarchy of links c. Hierarchy of buses
P = Processor r = requester =" = request
D = Directory h = home P = reply
AM = Attraction Memory d = location of data

Figure 3.3: Examples of how a read request can be serviced on COMAs implemented
with different topologies.

resides, to find out in which node a valid copy exists. One extra hop to that node
is often needed before the data value can be returned to the requesting node by a
third hop. A software-based implementation of this type, called distributed virtual
shared memory (DVSM), has been proposed by Li and Hudak [ILH89], where the
retrieval of and coherence among data are maintained by software. The items in
DVSM are page-sized, which enables the validity check of accesses and translation
to local physical memory to be performed by the MMU at runtime. A shared item
(page) resident in the local memory is tagged with read permission, and an exclusive
item 1s tagged with read and write permission. In DVSM terms this is called the
fized distributed manager algorithm. Another proposal for such a protocol, targeted
for hardware, has been proposed by Gupta et al. [GJS92]. A COMA based on the
proposals above cannot explore the communication locality and combining to the
same extent as a hierarchical COMA, since the home of a datum does not move. Yet
another solution has been proposed, where the home has the ability to move and
where sometimes the third hop can be avoided [HL91]. There also exists a similar
DVSM proposal called dynamic distributed manager [LH89]. A hierarchical COMA
relies on a hierarchical search algorithm to locate a requested item. A hierarchy can
also explore locality in communication in a natural way.

Figure 3.3 shows two possible hierarchical implementations, 3.3.c based on
buses [HLH92] and 3.3.b based on links [RW91]. State memories between each
level in the hierarchy, directories, contain enough information to guide a request
on its way to a copy of the requested datum [WH88, HHW90]. The search time is
proportional to the number of levels in the system, which are log,n where b is the
branching factor and n is the number of processors in the system. The topmost
bus (or node) of a hierarchy can easily become the bottleneck of the system. A fat
tree [Lei85] could be the solution to that problem, where the address domain is split

37

3.3 COMA Implementation Issues

into several distinct parts, each with its own top bus. Chapter 10 presents several
alternative solutions along these lines.

3.2.3 Software

Although no shared memory exists, the processors in a COMA—and subsequently
the programmer—are still given a coherent shared-memory view of the system. Ac-
tually, the programming model presented by a COMA architecture is more general
than that presented by the NUMA in-so-far as it is less sensitive to some optimiza-
tions.

Programs may be optimized for NUMAs by statically partitioning the work and
data so that a processor makes most of its accesses to the part of the memory that
is attached to its node [BSFT91]. Running a thus optimized NUMA program on a
COMA architecture would result in NUMA-like behavior, since the work spaces of
the different processors would migrate to their own attraction memories. However,
running an unoptimized version of the program on a COMA would also perform
well, since data are attracted to the processors which use them regardless of the
memory addresses of the data.

Another positive property is the COMA’s migration behavior, which adapts to dy-
namic scheduling in a general way: the work space migrates throughout the com-
putation according to its usage. A program optimized for a COMA could take this
into account. This property also simplifies the task of process migration for the
operating system. A process is migrated by moving its current program counter to
a new processor. The process’s active working set is then attracted to the AM of
the new processor by the protocol.

To a single user, the sum of the AMs looks like a single shared memory. Like a
cache-coherent NUMA | a single program can use all the available memory as its
primary memory, thus avoiding unnecessary disk accesses—the property of scalable
memory. The AM of the node where the program is run acts as a huge second-level
cache.

Even if most of the underlying functionality of a COMA is hidden from the pro-
grammer, some optimizations, or lack thereof, will have an impact on performance.
Although the replication entity is small, a COMA still suffers from true sharing
and false sharing, as shown by our study. One of the studied applications has been
rewritten to explore the ability to migrate small data entities, resulting in a miss
frequency reduction of one order of magnitude. The hierarchical COMA could also
benefit by an understanding of the hierarchy by the application scheduler, and thus
keep communication local to a branch of its tree. Such rewriting can be seen in two
applications studied in Chapter 7.

38

Cache Only Memory Architectures

3.3 Comparing COMA to Other Architectures

The COMA is reminiscent of a nonuniform memory architecture (NUMA), like the
DASH [LLG190] and Alewife [CKA91], in that all the shared memory is physi-
cally divided among the processors. In a NUMA. however, different portions of the
data are semi-statically allocated to each memory unit according to the semi static
mapping of the pages to local node memory.

In a COMA, an item has no home and might be moved by the protocol to reside in
any or many AMs according to its usage.

Compared to a NUMA, the COMA suits a larger class of applications. The differ-
ences between a COMA and a NUMA can be divided into four somewhat related

areas:

e Fine-grain Migration — In a COMA, the only copy of an item will be moved
close to where it is being used. Migration is also possible in a NUMA through
page migration, but with a larger grain.

e Massive Replication — More than one copy can exist in the system. This
property can be found in a NUMA, but to a much smaller extent.

¢ Dynamic Adjustment of Address Space — The ratio between replication
and memory size is adjustable dynamically, so that either applications that
benefit by massive replication or applications that require a large address space
can perform well.

e Layering of Remote Accesses — Attraction memories add another memory
system layer to fill the speed-size gap for remote accesses, making multipro-
cessors with long remote accesses less sensitive to hit rates in small caches.

3.3.1 Migration

In a NUMA, a virtual page is physically allocated to a physical page with its location
fixed to one of the nodes. For some applications, allocating the page to the node
which first accessed it is a good strategy. For other applications, where a master
processor initiates the memory before the parallel part of the execution starts, this
strategy would create a memory bottleneck at the master’s node. Regardless of
the strategy used to first locate a page, its usage might be changed by a dynamic
scheduling strategy in the application itself or a process-migration strategy in the
operating system. When implementing an operating system on a NUMA, effort has
been devoted to algorithms that move a page to the new node when a process is
migrated [BSFT91]. Other suggestions rely on specialized hardware to monitor the
access-pattern behavior of a page and help the operating system decide where a

39

3.3 Comparing COMA to Other Architectures

page should reside [SJG92a]. This strategy will also help migration in dynamically
scheduled algorithms, given a coarse data-grain size. The proposed hardware sup-
port for detection and migration is far from simple, however, and the migration of
entities smaller than a page is not possible.

The migration of data is natural to the basic COMA. Data in quanta of items are
moved close to their usage in the system, i.e., if there is only one copy of an item,
its location is decided by its usage. Moving larger entities, like pages, can have a
performance advantage over moving several smaller adjacent items. In Chapter 8, a
simple hardware-based prefetcher will be shown to improve COMA performance in
this respect.

3.3.2 Replication

The same datum might exist simultaneously as several copies in a multiprocessor
with caches. In some applications, large sets of data are requested by many (all)
processors. Allowing many (all) processors to have their own copy of a popular
data set can have a large impact on the performance. Replication is the amount of
duplicated copies of items in the system. NUMA can support replication of read-
only data, like instructions, by its virtual memory system in that every processor
can have its own copy of a page with code in its local memory.

COMA supports massive replication of data because additional copies are allowed
in other AMs. This property is similar to that of remote-node caching in a NUMA.
The local caches of a NUMA can store copies from outside the node’s home. There
might be several copies of a cache line cached in different nodes at the same time.
This replication is limited by the size of the caches in a NUMA. NUMA caches are
also used to compensate for the lack of fine-grain migration support; i.e., instead of
migrating the only instance of an item to where it is currently being used, one copy
stays in the home node, while another copy is moved to the cache of the remote
node. The replication ability of a NUMA can be increased by introducing large
second-level caches. However, the memory invested in the second-level cache of one
node cannot be used by the other nodes, i.e., memory scalability is violated.

The potential for replication is much greater in a COMA than a NUMA. Replication
in a COMA will keep increasing as long as there is space in the AMs. When a
steady state is reached and the AMs are full, further replication of a datum will force
replacement to occur, decreasing the replication of another datum. So, replication in
a COMA is predetermined by how much larger the sum of the AM sizes is compared
to the current size of the item space.

40

Cache Only Memory Architectures
3.3.3 Variable Item Space

One motivation for shared memory is the scalable-memory property that increases
the generality of the architecture; i.e., a single program run on one of the proces-
sors may use the whole shared memory and thus avoid unnecessary page swapping.
A COMA has yet another property that increases its generality: variable address
space. Some programs can benefit by massive replication. Other applications do not
benefit at all by massive replication, but require a large physical address space. The
single program example above illustrates such a case. Multiprogramming—several
simultaneous users—is another example where a large memory space is preferable to
massive replication. In contrast, database and knowledge-based applications are ex-
amples that benefit from extensive replication. Replication is supported in a NUMA
by its second-level caches. The ratio between replication of read/write data and
physical address space is predefined by the size of the NUMA caches and that of the
physical memory. A COMA has the potential for massive replication of read/write
data. In order to provide massive replication with a limited amount of AM memory,
the number of different items in the system must be limited, i.e., the item space
must be cut down. In a COMA, this adjustment of the item space can dynamically
be controlled by the operating system.

Physical
address
size A

——
“

Mem,[ot

NUMA mem*=f~""""""" !

'
1 h e
T =

NUMA cache Replication

Figure 3.4: A NUMA has a statically fixed relationship between the size of the caches
(replication) and the physical memory, while a COMA dynamically can
change its working point to suit the application.

As stated before, a COMA will increase replication until space runs out in the AMs.
At this point, the amount of replication is determined by the size of the item space
presently mapped by the operating system. A large, mapped item space results in
a lower amount of replication, and vice versa, as shown in Figure 3.4.

41

3.3 Comparing COMA to Other Architectures

The item space is divided into pages of traditional-architecture size, and the item
pages (“physical pages”) not in use are kept on a free list. When a new item page is
needed, a page from the free list can be used. So far, pages in a COMA are handled
similarly to pages in a traditional architecture. A page-reclaiming algorithm can be
used to move pages to the free list.

The operating system of a COMA can also decide to purge all the items on an item
page and move the page to a purge list. Item pages on the purge list do not occupy
any physical locations in the AMs, thus permitting a higher degree of replication
for other item pages belonging to the same set in the AMs. The pages on the
purge list should be equally distributed over the mapping of addresses into physical
AM memory to effectively support extra sharing. The purged pages require extra
bookkeeping.

What size should the address space be for the application run? This is determined
by two parameters: the frequency of pages in/out and the pattern of replacement
traffic at steady-state execution, as shown in Table 3.1.

The possibility of a variable address space, as described above, is a completely new
property not yet studied in an architecture. The algorithms described probably need
some adjustment and tuning through experimentation on real machines. The cost
of a page in/out and the cost of a replacement should be included in the strategy.

Page in/out Replacement frequency
frequency Low ‘ High

Low OK addr. space too large
High addr. space too small | buy more memory

Table 3.1: Adjusting the address space to the application.
A NUMA with COMA-like behavior can be implemented by using half the available

memory as “shared memory” and half the memory as remote-access caches. Such a
system would have a maximum physical address space of half the maximum size of
a COMA, and a maximum replication of half the maximum replication in a COMA,
if the same amount of memory is used. If memory is considered as being cheap, this
can be compensated for by adding more memory for the NUMA implementation.

3.3.4 Layering of Remote Accesses

Fast memory is relatively expensive. Normally, only a fraction of the memory system
will be built with memories of the fastest kind. Layering the memory system into
several layers of caches with increasing size and access times is a way of making
uniprocessors fast, yet less sensitive to the hit rate of one specific layer. Upon a
miss in a small one-cycle first-level cache, a second-level cache hit of eight-cycles

42

Cache Only Memory Architectures

latency could prevent a twenty-cycle main-memory access. With a twenty-cycle
latency to the main memory, a miss rate of five percent can be accepted and a
reasonable efficiency can still be achieved according to the discussion in Chapter 2
(Figure 2.1). However, in a multiprocessor, the latency of a remote miss is in the
hundred cycle range. The fraction of misses that can be tolerated is therefore in the
one percent range. Relying on the second-level caches as the only layering of remote
accesses might create too great a speed-size gap to the remote memory.

Another way of viewing the large attraction memories is as an extra layer in the
large speed-size gap between the (second-level) cache and the remote shared memory
space, which is slow and huge. One example where this picture becomes clear is the
memory-scalability example—a single running processor element using the entire
shared memory as its main memory. The sum of all the node memories acts as
the huge, but very slow, main memory of that single processor. Even though the
memory is scalable in that all of it can be used, the access time to it could still make
such use unattractive. An acceptable hit rate in the local cache would be crucial to
behavior. In a COMA, the large attraction memory of the running node acts as a
second- (or third-) level cache, making execution less sensitive to an acceptable hit
rate in small caches.

The layering might be just as important in a multiprocessor, but less obvious. The
large second-level cache of a NUMA works well up to a certain data set size per
processor. Increasing the data set above a certain critical size could result in a
sudden and unexpected performance drop. A similar drop in performance could
also be expected from a COMA, but for a much larger data set size, as will be seen
in Chapter 7. The COMA is therefore a more general architecture.

Private data residing in the relatively slow local memory benefit from caching in
a NUMA. The second-level caches of a NUMA can be used to layer accesses both
to local and to remote memory. Layering private data and replicating remote data
interfere with each other. A remote datum with the potential of avoiding a remote
access of around 100 cycles might be replaced by a private datum with the potential
of preventing a 10 cycle delay. The replacement strategy in that case is not obvious,
and should include some cost function for replacement. For this reason, an optimal
organization for a NUMA might be to have large (second-level) remote caches adja-
cent to the local memory, dealing only with replication. Such a second-level cache
layers remote accesses in a similar manner to the attraction memory of a COMA.

A COMA may also use a second-level cache between its attraction memory and
its first-level cache. The purpose of this cache is to fill the speed-size gap between
the attraction memory and the processor cache, and not to fill the speed-size gap
between the processor cache and the remote memory.

43

3.3 Comparing COMA to Other Architectures

3.3.5 Drawbacks of a COMA

The massive migration and replication abilities of a COMA are beneficial to perfor-
mance. However, one negative property of a COMA is its higher price of locating
a requested datum on a read miss. Since no home for a datum exists, there is no
obvious place where that datum can be found. COMA’s search for the datum on
a read miss is expected to add extra latency compared to the NUMA, even though
there might be cases where a hierarchical COMA could explore the shorter latencies
of communication locality. As pointed out earlier, only capacity and conflict misses
are removed by a larger cache. The coherence misses remain. A COMA has to pay
in search time for each coherence miss. On the other hand, it is rare that a NUMA
finds a clean copy of a datum in its home on a coherence miss [SJG92a]. Thus, an
additional hop in the network is needed to retrieve the Dirty copy. A NUMA with a
three-hop miss time that is shorter than the COMA’s miss time could outperform a
COMA in applications where coherence misses are dominant. Comparing COMAs
and NUMAs implemented on identical networks, COMAs pay for only one extra di-
rectory lookup for each coherence miss.? This is caused by the extra layering offered
by the attraction memories. An extra memory layer adds latency to the accesses
missing in its layer. A request is not sent out on the network before its miss in the
attraction memory is determined.

Another drawback is the COMA’s usage of extra memory components. The memory
overhead of a COMA can be divided into two parts: the extra memory needed to
implement the associativity of the AM and the extra memory used by the cache-
coherence protocol. Compared to a NUMA, only the AM overhead should be
counted, since the NUMA has the same requirement for implementing a cache-
coherence protocol as the COMA. The extra bits needed per item in an AM are
log,(am * ways), where am is the maximum number of attraction memories, and
ways is their associativity. So, 64 AMs, each with 4 ways, need 8 extra bits. An
item size of 16 bytes results in a 6 percent memory overhead.

At first glance, it looks like the access time to the attraction memories should be
long. For each access to the attraction memory, the COMA has to make a directory
lookup to determine if the item is present in the directory and in the right state.
However, a similar directory lookup also has to be performed by the cache-coherent
NUMA. An access to the local memory of the node has to be combined with a
directory lookup to determine if the cache line is in the right state, e.g., a read of
a cache line that is Dirty in another node is not allowed. This is identical to the
attraction memory access. An attraction memory with more associativity will add
a small extra latency for reads, and a longer latency for writes as discussed in more
detail in Chapter 6.

?This is discussed in more detail in Chapter 4.

44

Cache Only Memory Architectures

It is also tempting to assume that the implementation of a COMA implies a greater
complexity. We have found no support for that assumption. Apart from the extra
memory overhead accounted for, there is no extra hardware needed for a COMA
implementation compared to a NUMA. Actually, the need for a second-level cache
is smaller in a COMA than in a NUMA—a possible source of simplification. The
attraction memory of a COMA also removes the need for the remote-access caches

used in NUMAs.

R

NUMA COMA
Programming model Shared memory | Shared memory
Program address Virtual Virtual
Coherence address Physical address | Item identifier
Address binding Static Dynamic
To/from disk Page Page
Migration quanta Page Item
Replication Y. cache size 0 < > memory
(Physical) Address Space >_memory S memory < AM size
Who decides repl/addr space | HW designer 0S + HW monitoring

Cache-only memory architectures (COMA) can provide the effects of large caches at
a small extra cost—all of the memory is organized like caches. We briefly described
a few alternative implementations of COMA and identified four properties which
make COMA more general than NUMA: fine-grain migration, massive replication,
dynamic adjustment of address space, and layering of remote accesses. Finally, we

discussed the drawbacks of COMA, all of which can be regarded as minor.

45

A Quantitative Performance
Study

HICH parallel architecture—NUMA or COMA—is preferable, and when? In
Chapter 3 we gave reasons why COMA can be regarded as more general than
NUMA. Here we compare the relative performances of some NUMA and COMA

implementations.

Comparing different architectures is difficult—especially if they differ in many im-
portant respects. In this study we have favored evaluating a large design space over a
single, detailed study. We chose a simple and easy-to-understand analytical model,
based on the varying behaviors of capacity and coherence misses. A time-consuming
simulation may have cut possible design space, but it would not have produced more
accurate results, unless very detailed models were used.

We model ten possible implementations of COMA and NUMA executing eight dif-
ferent applications. The models allow for general studies of the effects of different
technologies, topologies, and numbers of processors.

We also present models of three real architectures, one NUMA and two COMAs,
and compare how their relative performances vary with the number of processors.

48

A Quantitative Performance Study

4.1 Analytical Study

This study is partly inspired by a paper comparing COMA and NUMA performance
by Stenstrom et al. [SJG92a]. We felt that this study compared one instance of an
unoptimized COMA, a hierarchy of links with a branching factor of four, to a com-
pletely different NUMA, built on a 2-D mesh. Furthermore, we could not recognize
the latency equations used for the COMA, or the technology parameters chosen.
During the ISCA19 conference, where that paper was presented, we performed a
back-of-the-envelope calculation resulting in a completely different result. That
method was slightly refined together with Per Stenstrom and has been expanded
here to cover several configurations.

Analytical models often describe simplified models of some more complex system.
This is also true of the model described here. Simplicity enables explanation and
understanding of the study. With the help of computers, the effect of varying a pa-
rameter is determined in seconds rather than days. This study emphasizes variation
rather than accuracy, in contrast to the detailed simulation study in Chapter 7. We
vary the following parameters in our model:

e Two architectures— NUMA and COMA.

e Four topologies—a link-based hierarchy, a bus-based hierarchy, a two-
dimensional mesh, and a three-dimensional mesh.

e Branching factors—their variations have an impact on the performance of
hierarchical architectures.

e Three implementation technologies—today’s, influenced by the tech-
nology used in the hierarchical DDM design and the mesh design of the
DASH [Len91], and tomorrow’s, exemplified by the technology used in the
Tera-DASH proposal [Len91], and a future technology.

e Latencies of different sized machines—up to 1024 processors.
e Three first-level cache sizes—4 kbytes, 16 kbytes, and 64 kbytes.

e Eight applications—from the SPLASH suite [SWG91]:
MP3D, particle-based wind tunnel simulator
PTHOR, logic simulator
Locus Route, standard cell router
Water, N-body molecular dynamics simulator
Cholesky, factorizing sparse matrices
LU, LU decomposition program
Barnes-Hut, N-body problem solver
Ocean, Ocean basin simulator

49

4.1 Analytical Study

4.1.1 The Simple Analytical Models

The time a processor performs useful work is often referred to as its busy time. In
this study we assume that the busy time for all studied architectures is identical.
Only the time the processors are idle waiting for some external action, like global
communication, differs. We compare the performance of the different architectures
by comparing how much idling they do while waiting for global communication or
slower memories. One of the main factors slowing the execution of an application
is the time the processors spend waiting for remote data read accesses. Our mod-
els consider only this source of penalty. Each node consists of a processor-cache
pair and an attraction or local memory connected to the network. The systems are
modeled with first-level caches of various sizes. We distinguish between coherence
misses and capacity misses ! to those caches. The fractions of misses from each of
the two categories are multiplied by the average latency for that category, and their
products are added in Equation 4.1 to form the miss penalty for the architecture.
The miss penalty is the time the processor waits for memory and network accesses.
By misses we mean the fraction of misses in the total number of accesses. The
latency i1s measured as the number of processor clocks for servicing the misses, the
miss penalty is the average number of idle cycles per data access.

Miss penalty:

miss penalty = misseSeon * Leon + Miss€Seqp * Legy (4.1)

All capacity misses are assumed to hit in the attraction memory of the COMA, and
the AMs are assumed to be infinitely large. This is a valid simplification only if the
data set per processor is smaller than the size of each AM for real-sized applications,
assuming fully associative AMs. As a comparison it can be noted that the AMs of the
KSR1 and DDM implementations are two orders of magnitude larger than ordinary
sized NUMA caches. In cases where infinitely large attraction memories are not
realistic due a large data set, a judgement can be made without any analytical
studies, since the relatively small caches of a NUMA would suffer greatly.

For sequential consistency, the time a processor spends waiting to perform writes
is also significant. That delay is not modeled here, and the comparison is therefore
only valid for weaker forms of consistency where the write delay can be hidden. This
is a potential disadvantage for the hierarchical topologies and their rapid responses
to write requests [LHH91]. Other factors, like synchronization delay and barrier
wait caused by uneven load balancing, also add delay not modeled here, but are less
important for this kind of comparative study, because the different architectures are
expected to have the same behavior in this respect. Our model does not take into

'We also included conflict misses into the capacity miss category. Compulsory misses will be
discussed later.

30

A Quantitative Performance Study

account the positive combining effect, which can be found in hierarchical COMAs,?
nor does it model contention for resources, such as network or memory. Not modeling
contention may well be an advantage for the NUMA architecture, since its poor hit
rate results in more network and directory activities. Contention might also be a
problem in hierarchical systems, unless some bandwidth-increasing method is used
at the top. Finally, the effect of locality in communication possible in hierarchical
systems is not modeled.

I Network
Directory | Tgir Memory Trem
[Tib [
T
Cache
| Tproc
Proc

Figure 4.1: The structure of an ideal processor node of NUMA or COMA.

In this study we assume an ideal implementation of a processor node according to
Figure 4.1. Details from several alternative COMA node implementations can be
found in Appendix C. A hit in the processor cache is assumed to take one processor
cycle, the time unit in which all other latencies are expressed. The time it takes to
access the first word of a local NUMA memory or a local AM is denoted T,.,,, and
the time for a directory state lookup and protocol validation is Ty;.. The time on the
local bus Ty, includes arbitrating, sending the read request, and transferring the first
word of data. The time spent in the requesting processor to initiate and terminate
a transaction is denoted 7,,,., including the time for reading the remaining words
and to restart the processor. The equations also contain n, representing the number
of processors. We assume an optimization where a NUMA can detect the need for
a remote access by looking at the address on the local bus, adding no extra latency.
A COMA has to perform a directory lookup before the need for the remote access
is detected. For each topology, the average time for communication between two
random processors is called T},,,.

?Discussed in Chapter 5.

51

4.1 Analytical Study

----------- "-»""--.___
T T
h?f? ___________ S) Network
’ *T‘hop
d A
; s ' Home Tqir
: Directory Memory : Directory Memory
' "t | Y S LT . Tmem
| | ST 1
--------- ~ . SRR S
o | }
i Cache | Tproc Cache
: - [
Requester: Proc Proc

Figure 4.2: An illustration of a NUMA remote read access, when the requested datum
resides clean in the home node.

4.1.2 Limitations of the Study

For sequential consistency, the time a processor spends waiting to perform writes
is also significant. That delay is not modeled here, and the comparison is therefore
only valid for weaker forms of consistency where the write delay can be hidden.
This is a potential disadvantage for the hierarchical topologies and their rapid re-
sponses to write requests [LHH91]. Other factors, like synchronization delay and
barrier wait caused by uneven load balancing, also add delay not modeled here, but
are less important for this kind of comparative study, because the different archi-
tectures are expected to have the same behavior in this respect. Our model does
not take into account the positive combining effect, which can be found in hierar-
chical COMAs [Hag92] nor does it model contention for resources, such as network
or memory. Not modeling contention may well be an advantage for the NUMA
architecture, since its poor hit rate results in more network and directory activi-
ties. Contention might also be a problem in hierarchical fat tree systems, unless
the root is wide enough. Finally, the effect of locality in communication possible in
hierarchical systems is not modeled.

4.1.3 Latency in General Networks

Using these parameters, we can now express the coherence and capacity miss laten-

cies for a NUMA or COMA built of a general network.

52

A Quantitative Performance Study

Capacity misses are caused by a processor referencing a datum which there has not
been space for in the processor’s cache. In a NUMA, any miss to a datum that
belongs to a remote node will force a remote read. Figure 4.2 illustrates such a read,
where the remote copy is “clean”, with the following latency components:

The processor cache arbitrates for the local bus and sends the read command and the
address (Tp). The request is transferred to the home node, i.e., the node in which
the directory information for this datum resides (7},,). The home node performs a
directory lookup (7y;,) which indicates that the datum resides clean in the memory
of the home. The directory arbitrates for its local bus, sends the read command,
accesses its memory, and receives the first data word (Tj + Trnen). The data is sent
back to the requesting node (7},,), which arbitrates for its local bus, sends the write
command and transfers the first word of data (7};). The processor cache receives
the remaining words, and the processor is restarted (T,,,.).

Some optimizations are possible in the above example. Directory lookup and mem-
ory access in the home node can be overlapped; i.e., the access on the local bus can
start before it is determined if the datum resides clean in its local memory. This
optimization might cost unnecessary accesses on the local bus, but is probably worth
paying for. In the formulas below, we include this optimization, and have not added
Ty in the equation for a NUMA capacity miss.?

In Equation 4.2 for L.,,_nuama, the cache line is found in the memory of the re-
questing node with a probability of 1/n and found “clean” in a remote home node
with a probability of (n — 1)/n. When the datum is found in the memory of the
requesting node, the latency is: T}, + T + Tproc-

Coherence misses are caused by some other processor writing to a datum. We assume
that the datum of a coherence miss resides dirty in some processor’s cache. In a
general network, a NUMA needs three hops for most of the coherence misses, that is,
when the datum resides dirty in a node other than the home, and the requesting node
is not the home node. For 1/n of the coherence misses, the home and the requesting
node are identical and only two hops are needed. For another 1/n misses, the dirty
datum resides in the home node, resulting in another two-hop component, as can
be seen in Equation 4.3 for L.,n_numa. For all cases, one directory lookup in the
home node, Tj;,, and one access to the cache with the dirty copy, Teiche, are also
needed,* as well as two accesses on the local and one on the remote bus, 3 * T},.

An example of a remote access of a COMA based on a general network can be found
in Figure 4.3. L.,n_coma in a general network is quite similar to L..,—nvara, but
one extra Ty;, is required at the requesting node before the need for a remote request
is detected. The L.,n_nuara differences are shown as dashed lines in the figure.

3Given the technology considered in Subsection 4.1.6, Ty < T35 + Tinerm .-

4The directory lookup and the cache access can be overlapped if the cache with the dirty copy
is in the home, i.e., for 1/n of the cases. This has a negligible impact on performance, and has
been left out of this equation.

33

4.1 Analytical Study

Network

AN G— T3

(Directory Memory irectory \ Memory Home Memory
'\‘ Tdir(coma)\% le’\‘ DS Tmem coma) Directory
oS N

1

I I I I I
3\ | 1
=

T T
cache | Tproc Cache | cache(numa) Cache

I

Figure 4.3: An illustration of a COMA remote read access, when the requested datum
resides in a node other than the home node. The differences to a NUMA
“dirty” coherence access are shown as dashed lines.

Equation 4.4 sums up the latency for L.,s_conra on a general network. All capacity
misses are assumed to hit in the AM. A hit in the AM simply takes the memory
access time, T},,.,,,, the local bus time, T};, and the processor startup time, T}, ... The
directory lookup is performed in parallel with the data access, the local bus action,
and part of the processor start time, and its latency is hidden.?

NUMA and COMA based on general-networks

n—1

Lcap—NUMA — T(QThop + 2le) + Tmem + le + TpTOC (42)
n—2 2

Leoh—NUuma = TgThop + gQThOp + Tair + Teache + 3T + Tproe (4.3)
n—2 2

Leoh—coma = TgThop + gQThop-l_QTdiT—l_Tcache—l_ngb + Loroc (4.4)

Lcap—COMA = Tmem + le + Tproc (45)

4.1.4 Calculating Communication Latency Tj,,

Tink corresponds to the communication delay between two adjacent network nodes.
It includes the latency of the link and the fall-through latency of the node. The
average communication latency between two random processor nodes in a two-
dimensional mesh, called one hop, is 2/3\/n * T}k, assuming random distribution
of traffic. In a three-dimensional mesh, the average time per hop is about /n Tji..

>This is discussed in detail in Appendix C.

o4

A Quantitative Performance Study

In a serial link, the information is divided into small sequential packages. On a
mesh, the first of these packages contains the destination, e.g., X and Y coordinates.
Next comes the transaction code and address of the datum. Before the address and
transaction code can be used to perform a directory lookup, an extra delay, T)..,
has to be accounted for. T,.. includes the time to receive the necessary information
and to synchronize with the node. The total communication latency for 2- and
3-dimensional meshes is given in Equations 4.6 and 4.7.

n=j*b

L I '_1 1

P (same top cluster:

n

i*b b

«_J o

n

Figure 4.4: A request from a processor (the black box) in a subsystem of j processors
has to pass the top with a probability of (b—1)/b. This is an approximation
valid for large values of j.

A general network can also be a hierarchy of links or buses, similar to Figure 3.3.b
and 3.3.c, but without the directories between the levels. The number of levels in
a hierarchical architecture, [, is logpme{n), where bmax is the maximum branching
factor. We assume that the lower-level buses utilize the maximum branching factor.
The top bus has the remainder branching, b, calculated as n/(bmaz="). Assuming
a random distribution of communication in a hierarchy, approximately 1/b of the
hops are within the same top cluster as shown in Figure 4.4. We only consider
locality explored at the highest level in the hierarchy.

The mean value for inter-node latency, T}, is given in Equation 4.8. The equation
for a hierarchy of buses (Equation 4.9) is similar to that of a hierarchy of links. T},
is the time it takes to arbitrate for a bus and to transfer transaction code and ad-
dress. Unlike the link hierarchy, there is no top to pass through, thus removing one
Tyus. Within the same bus, all traffic is assumed to be word-wide and synchronous,
removing the need for 7,... A two-level bus hierarchy can be mapped nicely on to

6 Communication between levels two, three, and higher,

three-dimensional space.
however, is carried on links—similar to the link-based case. The equation for more
than two levels (Equation 4.10) is therefore reminiscent of the equation for the links,

but with a constant delay for the lower bus levels of 4 Tj,.

6As discussed further in Chapter 6, Figure 6.5.

)

4.1 Analytical Study

Hops:
. 2
2—dim.mesh : Th,, = g\/ﬁTlmk + Thee (4.6)
3—dim.mesh : Thyy = 0Tk + Thee (4.7)
b—1 1
link— hier. : Thop == 72 [Tlmk + ZQ([—l)Tlmk—l-Tmc (48)
b—1 1
bus—hier.: Ty, = TZlTbuS—I—ZZ(l—l)TbuS—TbuS (4.9)
. b—1 1
bus—hzer(1> 2) . Thop = T(l - 2)2 Tlmk —|— Z(l - 3)2 Tlmk —|—
+ 4Tbus + Trec (410)

The NUMA miss penalty for all topologies can be derived by inserting the Tj,,
of the corresponding topology into Equations 4.2 and 4.3. The COMA latencies
for a protocol based on a general network can also be derived by inserting the
corresponding Tj,, into equation 4.4.

4.1.5 COMA with Hierarchical Protocol

Miss penalties for hierarchical COMAs with a hierarchical protocol are different,
because of the directory structure. The hierarchical-protocol COMA assumes a
directory memory between each level, to guide a request to a data value. The link-
based implementation also has a directory at the top. So, when traveling between
the levels in the hierarchy and through the top, directory lookups are needed. As
mentioned before, a COMA also has to pay for one Tj;, when leaving the requesting
node, and an additional Tj;, for each directory passed on its path to the datum.
Before a lookup can be performed in the directory between the levels in the hier-
archy, the address and transaction code must be received from the link, and the
asynchronous message synchronized. All of this is included in the Ty.,; component
together with the link delay between levels. The data reply transaction “knows”
who requested the data, and does not need to pay for any directory lookups in its
critical latency path when returning to the requesting node”—the return to sender
feature. Assuming a random distribution of communication, about 1/b of the hops
are in the same subsystem underneath the top, reflected in Equation 4.11. The
effects of locality further down in the hierarchy are regarded as negligible for this
discussion.

"Directory lookups and state changes can still be performed when forwarding data.

56

A Quantitative Performance Study

COMA with a hierarchical protocol:

link : Leoh—coma =

6_712 (T 4ir 4+ Tatever + Tiink) + %2(1— U)(Tair + Tatever + Trink) +

FTache + 31w + Throc (4.11)
bus: Leop—coma =

L@ Ty 41 T 4 (201 1) s 40~ 1) i) — 203 +

FTache + 31w + Throc (4.12)

bus : Leoh—coma>2) =
b—1 !
b -2 (1 = 2)(Tair + Tatever + Tiink) + 32(1_3)(%“’ + Tarevet + Thini) +

4Tdir + 8Tbus + Tcache + 3le + TpTOC (413)

A hierarchy of buses has an equation similar to that of a hierarchy of links (Equa-
tion 4.12), although there is no top to pass through, thus removing one Ty;,. How-
ever, the receiving side needs to snoop in its directory before it is notified to service
the request, adding a new Tjy;, again. Two T}, are then removed from Equa-
tion 4.12. The terms for T,.. are also removed, since both transaction code and
address are assumed to be latched in the directory at the end of Ty,s, why no extra
synchronization latency is needed in this equation. For the higher levels, the bus-
based and link-based COMAs account for the same delays, similar to the equations
for the hops.

The extra delay for transferring the data part of a reply has only been accounted
for in the receiving nodes of all architectures, included in the time 7,,,.. All along
the path from the remote node to the receiving node, pipelining of the data part
following the command part is assumed. Also, no extra time for error correction has
been included in any of the equations. We assume that error detection is performed
in parallel by hardware, and that recovery is handled by software, possibly using
some check pointing scheme.

4.1.6 Choosing Technology Numbers

There is a large variety of parameters to choose from when describing the latency
of memories and communication. In order to get a consistent set of parameters, we
have adopted the technology numbers used in prototype projects where available,
e.g., the link-based DASH [Len91] and our own experience with the bus-based DDM
prototype. All numbers are translated to a 33 MHz processor clock, which is the
clock rate of the DASH prototype. For the study of tomorrow, we use the technology
assumed by Lenoski in his design of the future TeraDASH [Len91], where applicable.

57

4.2 Analytical Study

TeraDASH assumes a DRAM speed of 50 ns and a clock frequency of 100 MHz. This
technology 1 just around the corner. We also try to estimate technology available in
the future comparable to 300 MHz. The numbers are presented in Table 4.1.

Para- Latency | Source | Brief Explanation

meters
Parameters of 33 MHz Technology

Teache—hit 1 DASH | 30 ns, the unit of latency

Ty 6 DASH | arb for local bus(2), send cmd(2), send 1st word(2)

Trnem 6 DASH | get 1st word(6)

Toroe 4 DASH | get remaining words(2), restart processor(2)

Tiink 2.5 DASH | fall through(45ns), network(35ns) 5’

Tair 10 DDM | arb(1), get old state(6), decode, to FIFO(3)

Tree 4 - receive additional cmd info from a link(2), sync(2)

Thus 4 DDM arbitrate(2), transfer cmd and address(2)

Tdlevel 5 - network(35ns), receive additional info(2), sync(2)
Parameters of 100 MHz Technology

Teachehit 1 TDASH | 10 ns, the unit of latency

Ty 6 TDASH | arb for local bus(2), send emd(2), send 1st word(2)

Trnem 9 TDASH | get 1st word(9)

Toroe 6 TDASH | get remaining words(4), restart processor(2)

Tiink 2.5 TDASH | fall through(20ns), network(4ns)

Tiink—hier 35 - fall through(20ns), network(15ns)

Tair 15 DDM+ | arb(2), get old state(9), decode, to FIFO(4)

Tree 4 - receive additional cmd info from a link(2), sync(2)

Tree—hier 5 - receive additional cmd info from a link(3), sync(2)

Thus 6 DDM+ | arbitrate(2), transfer cmd and address(4)

Tdlevel 6.5 - network(15ns), receive additional info(3), sync(2)
Parameters of 300 MHz Technology

Teachehit 1 - 3.3 ns, the unit of latency

Ty 15 MR arb for local bus(5), send ecmd(5), send 1st word(5)

Trnem 12 MR get 1st word(12)

Toroe 7 - get remaining words(5), restart processor(2)

Tiink 5 - fall through(10ns), network(4ns)

Tiink—hier 8 - fall through(10ns), network(15ns)

Tair 18 - arb(2), get old state(12), decode, to FIFO(4)

Tree 4 - receive additional cmd info from a link(2), sync(2)

Tree—hier 5 - receive additional cmd info from a link(3), sync(2)

Thus 13 MR arbitrate(5), transfer cmd and address(8)

Tdlevel 10 - network(15ns), receive additional info(3), sync(2)

Table 4.1: The characteristics of two technologies. Sources are: DASH, the DASH imple-
mentation, TDASH, the TeraDASH proposal, and DDM, the DDM prototype
project. MR numbers are from the Microprocessor Report magazine. The re-
maining numbers are estimated for this study.

38

A Quantitative Performance Study

4.2 Which Architecture is Better and When?

Using the above equations, we can calculate the average latency for coherence misses
and capacity misses for both NUMA and COMA architectures. There is still not
any obvious answer to the question of whether COMA 1is better, since we are lacking
information about the applications. However, for a given network we can calculate
the combinations of capacity and coherence miss rate for which both perform the
same by making both architectures’ miss-penalty equations equal (Equation 4.1).
For all applications with a higher ratio of capacity misses, COMA can be expected
to perform better.

COMA and NUMA perform the same:

miss penaltycopa = misspenallynuaa
(misseseon* Leoh +M188€Scap* Leap)coma = (MiSS€Scon* Leoh+Mmis8€Scap* Leap) NUMA
Leonnuma—Leoncoma

MESSESqy = kMisseseon (4.14)
Leapcoma— LeapNunra

This function of COMA and NUMA performing the same has been plotted in
Figure 4.5 for 256-processors systems built with four different networks. The slower
the network is, the lower is the curve, i.e., less capacity misses per coherence misses
are required in order to make COMA better than NUMA. This effect can also be
seen in Figure 4.5, where the number of processors is varied for a network built of a

3D mesh.

From the graphs we can see that the importance of COMA increases with the number
of processors, i.e, when the network latency gets longer. The explanation for this can
be seen in the formulas for capacity and coherence misses. For COMA the penalty
for capacity misses is a constant, while the penalty paid by NUMA keeps increasing
with n. The penalty for coherence misses keeps increasing with the number of
processors both for NUMA and COMA, but their absolute difference is constant
(only one Ty;, differ). So, the overhead paid by COMA for locating the requested
item is decreased relative to the coherence miss penalty.

Similarly, the importance of COMA is larger for network topologies with longer
latencies. It also seems that COMA’s importance increase with newer technologies,
where the ability to remove remote accesses is of increased importance, since the
speed gap between local communication and global communication is widened.

4.2.1 SPLASH Data

Classification of applications by cache-miss categories can be done through simula-
tion. To our knowledge, the only such classification of multiprocessor applications

39

4.2 Which Architecture is Better and When?

256 Processors, Varying the Network

l l l Fat Tree of IBuses
Capacity 6 .
Misses 4 COMA is better here ks
(%) 9 L /Mﬁﬂl——/
0 . I 1 2D Mesh |
0 2 4 6 8 10
Coherence Misses (%)
3D Mesh, Varying the Number of Processors
4 T T T T T

16 processo
C&paaty 5 COMA is better here WS/
isses -
(%) // 096 processors
0 | ! ! !

0 2 4 6 8 10
Coherence Misses (%)

3D Mesh, 256 Processors, Varying the Technology
4 | | |

| |
33 MHz Technology

Capacity COMA is better here
Misses 2

(%)

300 MHz Technology
! ! ! !

0 2 4 6 8 10
Coherence Misses (%)

Figure 4.5: Showing where COMA and NUMA perform equally.

published is a study of SPLASH by Gupta et al. [GJS92], presented in Table 4.2.
SPLASH contains the following programs:

MP3D, particle-based wind tunnel simulator;

PTHOR, logic simulator;

Locus Route, standard cell router;

Water, N-body molecular dynamics simulator;

Cholesky, factorizing sparse matrices;

LU, LU decomposition program;

Barnes-Hut, N-body problem solver; and,

Ocean, ocean basin simulator.

Using the SPLASH suite for quantitative comparison studies is strongly discouraged
by its authors [SWGY91]. Lacking other numbers, we hereby violate their advice,
confess our sins, and ask the reader to keep this in mind. The processor caches
in the Gupta et al. study are sized 4 kbytes, 16 kbytes, and 64 kbytes. The
small cache sizes were chosen to compensate for the small data sets used in the
simulation—often orders of magnitude smaller than realistically sized data sets (with
the exception of PTHOR). Note that for five of the applications the data set per

60

A Quantitative Performance Study

processor is actually smaller than 64 kbytes. The read misses in the processor
caches are divided into two categories: capacity misses and coherence misses. For
the reported numbers, conflict misses and a small amount of compulsory misses are
included in the capacity miss category. Compulsory misses were measured to be 0.9
percent for Cholesky, 0.26 percent for LocusRoute, and less than 0.1 percent for the
remaining applications. We have moved one percentage point from capacity misses
to coherence miss for Choleksy, since compulsory misses do not hit in the attraction
memory. Only accesses to global shared data are included in the collection of cache
statistics. The SPLASH numbers are compared to equality graphs in Figure 4.6 where
it can be seen that the performance of NUMA is only comparable with COMA for
a couple of applications even when caches sized 64 kbytes are used.

Applications and Data Set Size Per Node

Applications: MP3D | PTHOR | Locus | Water | Chol | LU | B-H | Ocean
Data Set Size/Proc: 34k 199k 77k 13k 62k | 40k | 25k 151k
Miss Type Cache Misses Divided into Categories (%)
Coherence 10 9 3 3 5 2 1 2
Capacity (4k) 7 12 11 10 22 21 41 52

Reducing Local Cache4+Memory Misses of a NUMA
by Page Placement and Migration Strategies

Capacity(Random 4k) 6 10 10 9 21 20 38 48
Capacity(Init. 4k) 21 15 9
Capacity(Migr. 4k) 5 8 6 6 5 16 37 9
Reducing Capacity Misses by Increasing the Cache Size
Capacity (16k) 6 7 6 5 6 8 20 28
Capacity (64k) 3 4 3 2 3 3 5 15

Table 4.2: The read misses of nonprivate data on a 16-processor machine divided into
different categories by Gupta et al. [GJS92]. Figures are in percent. The
coherence miss rate for Cholesky is here increased by one percent, and the
capacity miss rate decreased by one percent to compensate for compulsory
misses.

The reported numbers above rely on a random replacement of shared pages in a
NUMA, while private pages are placed in the node of its processor. This is a com-
mon placement strategy for a NUMA, but the nature of the non-uniform memory
allows more optimal distributions of data over nodes. The behavior of different page
placing and migration strategies reported by Gupta et al. [GJS92] are also reported
in Table 4.2. The migration strategy used assumes extra hardware support by as-
sociating N counters with each page, given N processing nodes [BGW89]. A remote
access to a page increments the corresponding counter and decrements a randomly
chosen counter. When a counter reaches a value corresponding to some threshold,
the page is migrated. The migration capability results in COMA-like behavior for
large items, but requires substantial hardware support. Read/write pages cannot,
however, be duplicated, and can only exist in one copy. The effect of initial place-

61

4.2 Which Architecture is Better and When?

COMA equals NUMA

60 | | T T T I
Cache 4k &
50 & Cache 16k +
Cache 64k O
3D mesh, 16 proc —
40 % 3D mesh, 256 proc — _|
3D mesh, 4096 proc - - - -
Capacity
Misses 30 |- 1
(%) +
w0k + < <& |
O
10 F N < <j N i
o+
D. - s | I__l\ =
0 I R — —T 7

B-H LU,OcLo,Wa Chol 5} 6 7 8 Pthor MP3D
Coherence Misses (%)

Figure 4.6: Comparing the SPLASH suite to the equality graph: COMA=NUMA. Each
application is reported for three different cache sizes, with varying capacity
misses as a result. The coherence misses are not affected by the cache size,
which is why the applications names (initials) are marked along the coherence
axis.

ment has also been studied. Here, the same algorithm as for page migration is used,
but each page is only moved once. In Figure 4.7 it can be seen that Cholesky, which
has a dynamic allocation of work, suits the migration strategy. Ocean gets most of
its improvement from the initial placement. Still, most applications are far from the
equality lines.

The statistics were collected from a simulation of 16 processors. A fully mapped
directory scheme was used for the NUMA case. In this study we sometimes use the
same miss statistics to calculate performance even for larger numbers of processors.
This implies that the problem size increases with the number of processors, so that
the data set per processor stays the same. We expect this to be a fair estimate
for some applications, but not for others. For statically scheduled programs, like
MP3D, increasing the problem size with the number of processors should have no
effect on the calculation part of the program, while the synchronization will be
affected somewhat by the increased number of processors. For dynamically scheduled
programs with limited parallelism, like PTHOR, the miss characteristics will be
different when the problem size is increased together with the number of processors.

Using a fully mapped directory scheme when the number of nodes increases to the
hundreds is also clearly impractical. The effects of a limited pointer scheme should
also have been taken into account for directory-based implementations [CFKA90].

62

A Quantitative Performance Study

COMA equals NUMA

50 5 T T T T T T T
45 - Random placement < |
Initial placement -+
40 ~ Migration strategy 4k O
5 Migration strategy 0.5k X
35 - 3D mesh, 16 proc —]
30 3D mesh, 256 proc — _|
Capacity 3D mesh, 4096 proc - - - -
Misses 25 .
%
T o0 1 & ¢ -
15 F K 2
10 5 <><> % 7
5 N = 8 A
e

0 L s — — — — IEEEEE e

B-H LU,OcLo,Wa Chol 5} 6 7 8 Pthor MP3D
Coherence Misses (%)

Figure 4.7: Comparing the SPLASH suite to the equality graph when migration strate-
gies are applied.

This is especially important for the COMA architectures, where replication is more
common, and thus the probability of many processors sharing a datum might be

higher than for a NUMA.

4.3 Comparative Performance For Large Multi-
processors

Earlier we calculated the miss penalty for accesses to global shared data as the
average number of processor cycles a processor spends on misses. We can calculate
the average number of processor cycles required for accessing shared global data,
including both hits and misses, by also adding the average time the processor spends
on hits in its cache for accesses to global data.

Based on the miss-penalty equations, the mean time for a global data access can be
calculated as:

mean global access time = muss penalty + fraction hits x cache access time.

The mean access time for the different applications can be found in Table 4.3.
The column to the far left defines the ten different architectures compared in this

63

4.3 Comparative Performance For Large Multiprocessors

Architecture Applications and Data Set Size Per Node
Lcap/ MP3D Pthor | Locus | Water | Chol LU B-H | Ocean Avg | Avg
Leon DS:34k | 199k | 77k 13k 62k | 40k | 25k | 151k all 4
| 33 MHz technology, cache size 4 kbytes, bmax = 16
n = 256 processors
N mesh2 89/125 20 23 13 14 25 21 38 50 25 18
U mesh3 68/ 92 15 17 10 10 19 16 29 38 19 14
M h-link 55/ 74 12 14 8 9 16 13 24 31 16 11
A h-bus 51/ 67 11 13 8 8 15 12 22 29 15 11
C mesh2 16/135 15 15 5 7 10 5 8 13 10 7
O mesh3 16/102 12 12 5 6 8 5 8 12 8 6
M h-link 16/ 89 11 11 4 5 8 5 8 11 8 6
A h-bus 16/ 82 10 10 4 5 8 5 8 11 8 5
Dir: h-link 16/ 91 11 11 4 5 8 5 8 11 8 6
Dir: h-bus 16/ 89 11 11 4 5 8 5 8 11 8 6
n = 4096 processors
N mesh2 249/365 55 64 36 37 70 57 106 141 71 50
U mesh3 116/165 25 30 17 17 33 27 50 66 33 23
M h-link 65/ 89 14 17 10 10 19 15 28 37 19 13
A h-bus 69/ 95 15 18 10 11 20 16 30 39 20 14
C mesh2 16/375 39 36 10 14 19 8 11 20 20 13
O mesh3 16/175 19 18 6 8 11 6 9 14 11 8
M h-link 16/104 12 12 5 6 8 5 8 12 9 6
A h-bus 16/110 13 13 5 6 9 5 8 12 9 6
Dir: h-link 16/126 15 14 5 6 9 5 8 13 9 7
Dir: h-bus 16/128 15 14 5 6 9 5 8 13 10 7
| 100 MHz technology, cache size 4 kbytes, bmax = 16
n = 256 processors
N mesh2 94/132 21 24 14 14 27 22 40 53 27 19
U mesh3 73/ 99 16 18 11 11 21 17 31 41 21 15
M h-link 70/ 96 15 18 10 11 20 16 30 40 20 14
A h-bus 67/ 92 15 17 10 10 19 16 29 38 19 14
C mesh2 21/147 17 17 6 7 11 7 11 16 11 8
O mesh3 21/114 14 14 5 6 10 6 10 15 10 7
M h-link 21/119 14 14 6 7 10 6 10 15 10 7
A h-bus 21/115 14 14 5 6 10 6 10 15 10 7
Dir: h-link 21/122 14 14 6 7 10 6 10 15 10 7
Dir: h-bus 21/124 15 14 6 7 10 6 10 15 10 7
n = 4096 processors
N mesh2 254/372 56 65 36 37 72 58 109 144 72 51
U mesh3 121/172 26 31 18 18 34 28 52 69 34 24
M h-link 84/117 18 21 12 13 24 20 36 48 24 17
A h-bus 94/132 21 24 14 14 27 22 40 53 27 19
C mesh2 21/387 41 38 11 15 21 9 13 23 21 14
O mesh3 21/187 21 20 7 9 13 7 11 17 13 9
M h-link 21/140 16 16 6 7 11 7 11 16 11 8
A h-bus 21/155 18 17 6 8 12 7 11 16 12 8
Dir: h-link 21/172 19 19 7 8 12 7 11 17 12 8
Dir: h-bus 21/180 20 19 7 8 13 7 11 17 13 9
Table 4.3: Studying the variation in the average number of processor cycles per global

data access.

study.

“Dir” marks COMAs implemented with a hierarchical protocol and the

directories embedded in the hierarchy. The next column states their average delay
for capacity and coherence misses. The rest of the numbers describe the average
access time to global data. Applications to the left are the ones best suited for the
NUMA architecture, since their ratios of coherence misses are the highest. As can
be seen in the table, NUMA has a slightly shorter latency for coherence misses than

64

A Quantitative Performance Study

COMA, while COMA has a much shorter average delay for capacity misses. For
the application furthest to the left, MP3D, coherence misses are more common than
capacity misses. For MP3D, the average delay for accesses to global data for NUMA
and COMA seems to be quite even. The further we move to the right, the more it
favors COMA. The two rightmost columns report the mean value for all applications
(Avg). The mean value for the middle four applications (Avg4) is also presented,
cutting away the rightmost two applications with an unusually high capacity miss
rate, and the leftmost two application with an unusually high coherence miss rate.
All numbers are presented without decimals, to remind the reader that they are
estimates.

35

NUMA 3-D me

30 - NUMA 2-D mesh

25

NUMA hier-bus

Access

time 20 N
to COMA 2-D mesh
global 15 i
data

COMA 3-D mesh

10 % COMA hier-bus]

0 ! ! ! ! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000

Processors

Figure 4.8: The average access time to global data for six of the studied architectures,
varying the number of processors. The hierarchies of buses and links are
similar in performance. The link-based architectures are left out for clarity.
The curves are for 33 MHz technology and 4 kbytes caches.

The effect of varying the number of processors for a selection of the architectures
can be seen in Figure 4.8. It is clear that the architectures are divided into two
performance groups—COMAs and NUMAs. Within the groups, the differences be-
tween the architectures are small. In fact, the performances of the COMAs are so
close that some of them have been left out of the figure for clarity. In Table 4.3
it 1s easier to identify the differences. From the results it appears that a COMA
with a bus is the fastest for a small number of processors, while for large machines
in the 100 MHz technology the 3-D mesh COMA has a comparable performance.
However, this method is not sophisticated enough to distinguish such small differ-
ences. Before drawing general conclusions in this matter, a more detailed analysis

65

4.3 Comparative Performance For Large Multiprocessors

must be performed with a larger and more general set of programs. Many aspects
important for the choice between the mesh and the hierarchy are not modeled here:
contention, communication locality, write delay, and limited pointers. Also, if the
performance is so close, the choice of COMA architecture may involve other aspects,
such as which is the easiest/cheapest to implement.

A maximum branching factor of 16 is used for the hierarchical architectures in
Figure 4.8. A knee can be observed for those architectures at 16 processors. The
knee is largest for the hierarchical NUMA, since the increase in latency has a larger
impact on NUMAs than COMAs. A larger discontinuity than the one shown here
can be expected for real architectures. In all equations real numbers are used for the
variables, resulting in branching factors of 1.25 at the top for 20 processors, instead
of 2. Also, the latency for Tj,, in the meshes are calculated using real numbers.
Thus, a 2-D mesh of 20 processors is assumed to have the topology 4.47 x 4.47,
instead of 4 x 5. This allows for simpler equations and smother curves. In this study
we are interested in tendencies when the number of processors grow, rather than the
absolute performance at a specific number of processors.

The relative difference between NUMA and COMA increases with the number of
processors. The explanation for this can be seen in the column for capacity and
coherence misses. For COMA the penalty for capacity misses is a constant, 16 cycles,
while the penalty payed by NUMA keeps increasing. The penalty for coherence
misses keeps increasing with the number of processors both for NUMA and COMA,
but their absolute difference is constant (only one Ty;, differ). So, the overhead payed
by COMA for locating the requested item is decreased relative to the coherence miss
penalty.

The performances of the hierarchical architectures depend on the number of levels
in the hierarchy. Figure 4.9 shows how the average delay to global data is related
to the branching factor. Since the number of levels is logpmadn), it is not surprising
to see that the overhead levels off with the number of processors. As a comparison,

the delays for the 2-D COMA and 3-D COMA are also included.

Figure 4.10 shows how performance varies for one NUMA and one COMA archi-
tecture with variably sized primary caches. It is not surprising to note that the
differences between NUMA and COMA get smaller as larger caches are used. A
cache size of 64 kbytes is larger than the data set per processor used for five of the
eight applications. When the caches of the NUMA get larger than the data set, it
adopts a COMA-like behavior.

In the performance graphs it looks like hierarchical COMAs build as fat trees have
the biggest performance advantage for large systems. There are four alternative
implementations of such available: with links or buses, and as a general network,
or with directories between the layers of the hierarchy. We have avoided plotting
all the hierarchical COMAs in the graphs, since their performance is very close.

66

A Quantitative Performance Study

18 N

16 | D e -
o bmax=4
Access 3D mesh, -
time bmax=8

to bmax=16
global 8 -
data 6 - _
4 - —
2 - —

0 ! ! ! ! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000

Processors

Figure 4.9: The access time to global data when varying the branching factor of a COMA
architecture implemented with links. By comparison, the data for a 2-D mesh
COMA (top) and a 3-D mesh COMA (bottom) appear with dotted lines.

35 | |
NUMA 3-D mesh 4
30 .
25 .
Access 20 NUMA 3-D mesh 16k |
time
to
global 15

COMA hier-link 64k

data '/ NUMA 3-D mesh 64k |
10 / COMA hier-link 4k
7;; COMA hier-link 16k

0 ! ! ! ! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000

Processors

Figure 4.10: The access time to global data when varying the cache size.
Figure 4.11 shows a magnified performance comparison between the four. As can

be seen, the performance is similar for all four implementations for small systems,
while the general network solutions have an advantage for larger systems.

67

4.3 Comparative Performance For Large Multiprocessors

| | |
11 + H-link with directory ——
Links as a general network —

Hbus with directories ——
10 - Hbus as a general network - - - -

0 500 1000 1500 2000 2500 3000 3500 4000

Processors

Figure 4.11: Comparing the four different strategies of hierarchical COMA implementa-
tion.

I I
20 NUMA 3-D HM,O_,I\LH—ZI—'—
NUMA 3-D mesh 33 MHz
Access 15 _
time
t
global " COMA hier-link 100 MHz
data v COMA hier-link 33 MHz
5 _
0 | | | |
0 50 100 150 200 250
Processors

Figure 4.12: The access time to global data when varying the technology.

Figure 4.12 shows how the performance varies for one NUMA and one COMA when
moving from 33 MHz technology to 100 MHz technology. Both suffer from a latency
of more clock cycles for the faster technology.

The results from different parameter settings can be found in Appendix A.

The effect of the mean global access time on performance depends on how often
the applications make global accesses. If we assume that all other instructions are
performed in one cycle, assuming 100 percent hit rate in the cache for private data,

63

A Quantitative Performance Study

the average number of cycles per instruction can be calculated as:

CPI = (1 — global ratio) x 1 + global ratio * mean global accesstime.

Global ratio is the number of instructions performing a global access divided by
the total number of instructions executed. The global ratio for MP3D is 0.16, for
Water it is 0.07, and for Cholesky it is 0.20 [BS92]. As can be seen from Table 4.3,
for Cholesky and MP3D the global access time is the dominant part of the CPI
equation, while for Water it is a minor part. For all applications, the architecture
with the fastest global access time performs best, however, since we assume that the
busy times for the processors are identical.

4.4 Comparing Real Implementations

The analytical models have described ideal instances of a large variety of possible
COMA and NUMA implementations. In this section we try to model existing ma-
chines, with all their limitations and drawbacks. We conclude by comparing these
models with the ideal models.

4.4.1 KSR1

Recently, a commercial COMA architecture has been announced by Kendall Square
Research [BFKR92]. The KSRI1 architecture is different from the DDM in many
ways. It uses large items of 128 bytes and suffers from a much larger remote-
access delay. Its processors run at 20 MHz. The network consists of a ring-based
hierarchical structure with a branching factor of 32 at each level. Its processor
data caches, sized 256 kbytes, are accessed in two cycles. An access to its AM
takes 18 cycles. A remote access satisfied by the lowest ring yields a delay of 126
cycles at 20 MHz, while an access climbing yet another level in the hierarchy takes
600 cycles [Dun92]. We have been unable to obtain any information from KSR, so
the correct technology parameters for our model are lacking. However, translating
available information to 33 MHz® allows for a rough estimate of KSR1’s performance

(Table 4.4).

We model smaller caches to compensate for the small data set, 16 kbytes or 64
kbytes. We assume the same hit rate as in Gupta’s study, even though item sizes

differ.

8By multiplying all latencies by 1.65.

69

4.4 Comparing Real Implementations

Parameter

Value in this
comparison

Explanation

KSR1, n = 64 processors

1st level cache 16k/64k The actual size is 256 kbytes.

LCOMAllevel 208 1.65% 126

Leomazievets 990 1.65 % 600

b 2 b=n/32

Leap = Leap—coma 30 1.65 % 18

Leon 599 221 « Leomazicvers + £ % Leomatiever
DDM, n = 64 processors

1st level cache 4k /16k The actual size is 64 kbytes.

LooMmatiever 105 1.65 % (60—|—4)

Loomasievels 196 165*(115—1—4)

b 3 b=n/24

Lcap = Lcap—COMA 20 1.65 * (8 + 4)

Leon 169 2 Leap+ 222 (5 % Leomanicvets + T Leomatievel)

DASH, n = 64 processors

1st level cache 4k /16k The actual size is 64 kbytes.

2nd level cache 16k/64k The actual size is 256 kbytes.

Londievel cache 15 Access time to 2nd level cache.

Liocal fini 29 Fill from local cluster memory.

c 16 Number of clusters is n/4.

L3 hop 101 77 + 64/c (estimated)

L3 hop 132 96 + 94/c (estimated)

Lcoh 130 %Llocalfill + %(%[Bhop + %LZ hop)
Leap 96 =B Ligeat it + 223 (52 Lonop + L Liocar sitt)

Table 4.4: Estimates of real machine parameters, translated to a clock rate of 33 MHz.

4.4.2 DDM

A prototype design of the DDM is near completion at SICS. The hardware imple-
mentation of the processor/attraction memory is based on the TP881V system by
Tadpole Technology, U.K. Each such system has up to four Motorola 88100 20 MHz
processors, each with two 64 kbytes cache/MMUs with access times of two cycles.
The attraction memory in each node is 32 Mbytes in size.

Read accesses from a cache to the attraction memory take eight cycles per cache
line. A remote read to a node on the same DDM bus takes 60 cycles at best, most
of which are spent making local bus transactions (a total of four accesses). Read
accesses climbing one step up and down the hierarchy take approximately 115 cycles.
For all accesses an extra four cycles is added for the latency of going through the
first-level cache.

In Table 4.4, the timing is specified for the DDM. The cache sizes modeled are

four times smaller than those modeled for the KSR1 machine. Six nodes of four

processors are hosted on the lowest level bus, i.e., 24 processors. The next level bus

70

A Quantitative Performance Study

is expected to have a branching factor of eight. Since the DDM has a cluster size
of four, (n — 1)/3 of the capacity misses will be handled locally. This effects only
small values on n.

4.4.3 DASH

DASH is a NUMA architecture built at Stanford University. It has 16 processor
clusters connected by two two-dimensional meshes; one mesh for requests and one
for replies [Len91]. Each cluster is built from a commercial product from Silicon
Graphics which has four 33 MHz MIPS R3000 processors and 16 Mbytes of memory.
Each processor has write-through 64 kbytes instruction and data caches, and a
unified second-level cache of 256 kbytes. DASH implements a fully mapped directory
cache-coherence protocol. An interface designed at Stanford connects the processor
node to the network. The interface contains the directory information and a remote-
access cache, mastering the remote actions. A read hit in the second-level cache takes
15 cycles. The second-level cache cuts the access time for some data missing in the
smaller first-level cache, but it also adds extra delay to the local memory. A hit
in the local memory takes 29 cycles, while a two-hop remote read access takes 101
cycles and a three-hop read takes 132 cycles.

Like the DDM, DASH has a cluster size of four and (n — 1)/3 of the capacity misses
and coherence misses are handled locally. Unlike the DDM, this research project
already has a machine running with 48 processors.

It is modeled with the same size first-level cache as the caches in the DDM, and
with second-level caches sized equally to the KSR1 machine.

4.4.4 Estimated Performance

The equations for L., and L, for each of the machines in Table 4.4 can be inserted
in Equation 4.1, and their mean global access time can be calculated. For the DASH
we calculate how many accesses hit in the second-level cache, and add its second-level
delay for those accesses.

The average mean global access time for each of the architectures is shown in
Figure 4.13. More detailed figures are given in Table 4.5. Note that the num-
bers reported are the access times to global data normalized to processor cycles at
33 MHz. The processors of the DDM and the KSR1 run at 20 MHz. As can be
seen, the DDM has the lowest latency, while the DASH and KSRI1 architectures
alternate as second. Up to 32 processors, the KSR1 only needs one level, and its
penalty for coherence misses is constant. Above 32 processors, the huge latency

71

4.5 Comparing Real Implementations

40 T | I |
35 o -
KSR 16k cache
30 -]
At{icess 25 - DASH 1st:4k 2nd:16k |
Ime
to 20 N
global
data 15" DDM 4k cache ____ i
wk/ T T T DOM Lotk onTaer
5 L _
0 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Processors

Figure 4.13: The average of the mean global access time over all applications calculated
using the performance-estimation method described for different numbers
of processors.

for the second-level ring has effect. The exploration of locality is a necessity for
this architecture. For the DDM and DASH architectures, the effect of clustering is
visible for the performance of few processors. This gives DASH an advantage over
KSRI1 for up to 16 processors. The next crossover point, after which DASH performs
better, lies around 38 processors.

A large second-level cache could delay the access time of a node’s local memory. In
applications exploring improved hit rates in local memories—possibly with a success-
ful page-migration strategy in a NUMA or by an attraction memory—introducing
a second-level cache might actually slow down execution. We wanted to try this
hypothesis for the DDM and modeled a DDM equipped with a second-level cache
of four times the size of its first-level cache. It has an access time of ten cycles and
adds five extra cycles of latency for all accesses missing in the second-level cache.
As can be seen, the second-level cache adds only marginally to performance.

What if KSR1 had been a NUMA? A NUMA with a latency similar to KSR's
would have resulted in terrible performance. In Figure 4.14 we compare the three
architectures with a NUMA with latencies similar to KSR1’s. The T}, for two levels
is 400 cycles, the Tj,, for one level is 70 cycles and the cache size is 16 kbytes.

72

A Quantitative Performance Study

Architecture Applications and Data Set Size Per Node
Lcap/ MP3D Pthor | Locus | Water | Chol | LU B-H | Ocean Avg | Avg

Leon DS:34k | 199k | 77k 13k 62k | 40k | 25k | 151k all 4

n = 16 Processors
DDM 4k 20/ 82 11 11 6 6 9 7 10 14 9 7
DDM 4k,16k 20/ 82 11 10 5 5 6 4 6 9 7 5
Dash 4k,16k 65/ 92 15 15 8 9 11 10 18 25 14 9
KSR 16k 30/208 24 22 8 10 12 6 10 16 14 9
DDM 16k 20/ 82 11 10 5 5 4 6 9 7 5
DDM 16k,64k 20/ 82 11 10 5 5 6 4 6 9 7 5
Dash 16k,64k 65/ 92 13 13 6 7 7 5 8 16 9 6
KSR 64k 30/208 23 22 7 9 11 5 5 12 12 8

n = 32 Processors
DDM 4k 20/106 14 14 6 7 10 7 10 14 10 7
DDM 4k,16k 20/106 14 13 6 7 9 6 9 13 10 7
Dash 4k,16k 80/109 18 18 9 10 12 11 21 30 16 11
KSR 16k 30/208 24 22 8 10 12 6 10 16 14 9
DDM 16k 20/106 14 13 5 6 7 4 7 10 8 6
DDM 16k,64k 20/106 13 12 5 6 7 4 6 10 8 6
Dash 16k,64k 80/109 15 15 7 8 8 6 9 19 11 7
KSR 64k 30/208 23 22 7 9 11 5 5 12 12 8

n = 64 Processors
DDM 4k 20/137 17 16 7 8 11 7 11 15 12 8
DDM 4k,16k 20/137 17 16 6 8 11 6 10 14 11 8
Dash 4k,16k 93/125 20 20 11 12 14 12 24 34 18 12
KSR 16k 30/599 63 58 16 22 27 10 14 28 30 19
DDM 16k 20/137 17 15 6 7 8 5 7 11 10 7
DDM 16k,64k 20/137 16 15 6 7 8 5 6 10 9 6
Dash 16k,64k 93/125 17 17 8 9 9 7 10 21 12 8
KSR 64k 30/599 63 57 15 21 26 9 9 24 28 18

n = 192 Processors
DDM 4k 20/160 19 18 7 9 12 7 11 16 12 9
DDM 4k,16k 20/160 19 18 7 8 11 7 10 15 12 8
Dash 4k,16k 115/156 24 24 13 14 16 14 29 41 22 14
KSR 16k 30/860 89 81 21 29 38 13 16 36 40 25
DDM 16k 20/160 19 17 6 8 9 5 7 12 10 7
DDM 16k,64k 20/160 19 17 6 8 9 5 6 11 10 7
Dash 16k,64k 115/156 21 21 9 10 11 8 11 25 14 9
KSR 64k 30/860 89 80 20 29 37 11 12 32 39 24

Table 4.5: The mean global access time estimated for the different architecutres. The
unit of delay is 30 ns, i.e., comparable to 33 MHz.

4.5 Comparing the Models of the Ideal and Real
Systems

As can be seen in Table 4.4, the latency numbers achieved modeling the ideal systems
earlier do not correspond to the latency numbers of the real prototypes. This is
mostly because the equations model ideal systems, while the architectures are built
on top of commercially available ones, leading to a number of compromises.

Both the DDM and DASH suffer from one extra 7}, when a requested datum reaches
the requesting node. Also, when a requested datum arrives at a node, it is first
written to the local memory before the processor can access it. The interface logic
of DASH (remote access cache) adds delays that are not included in the ideal model.

73

4.5 Comparing the Models of the Ideal and Real Systems

120 -
100 - -
Access 80 - m

time H-NUMA: 1-level hop: 70, 2-level hop: 400, 16k cache
to L -

global %0

data 40 - KSR 16k cache |

DASH 1st:4k 2nd:16k
20 - DDM 4k cache |

0 ! ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180 200
Processors

Figure 4.14: What if KSR1 had been a NUMA? A NUMA with a remote delay similar to
the KSR1 caches of 16 kbytes is compared to the other three architectures.
Note the scale on the y axis.

35 -
DASH 4k cache
30
25
Access
time 20 k-]
to DASH 1st:4k 2nd:16k
global
data L _
15 DDM 4k
10 1+ .
COMA HierBus 4k
e i
0 ! ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180
Processors

Figure 4.15: Validating the two analytical methods by comparison.

DASH also implements error checking and recovery each time a message enters a
node. The DDM prototype does not implement the return-to-sender feature, adding
extra terms of Ty, .

74

A Quantitative Performance Study

We compare the access times to the global data of the parameterized analytical
model, and the model based on real machines, in Figure 4.15. In the figure, the
curve for a DASH with only its first-level cache is included since two-level caches are
not modeled by the ideal models. Note that a second level cache has a large effect
on the performance in a NUMA.

We can see that the ideal models for both implementations are about 50 percent
better than the real machines, except for when the clustering effect is seen for the
lowest number of processors.

75

4.5 Comparing the Models of the Ideal and Real Systems

S

50 4 —
- 40
B] —
[S]
5
>]
E 30—:]
%] = = MP3D
g — = Average
=] = Ocean
5 204 ~
o]]
] -4
2]
o]
Z 1

) |_|_H |—I—H

0

NUMA: mesh2 mesh3 h-link h-bus COMA: mesh2 mesh3 h-link h-bus Dh-link Dh-bus

Our analytical study defined a set of equality lines, defining the capacity miss rate
where NUMA and COMA have comparable performance as a function of the coher-
ence miss rate. The study shows that COMA s clearly better than NUMA for most
of the SPLASH benchmarks assuming reasonably sized data sets. The study did not
take network contention into account. If network contention is included, an even
larger advantage of COMA can be expected since its large caches reduce communica-
tion. The study shows a larger difference between NUMA and COMA than between
different network variation studied. The optimum network seems to be a fat tree in
combination with the COMA protocol for a general network.

Many aspects important for the choice of network are not modeled here: contention,
communication locality, write delay, and limited pointers. Also, if the performance
is so close, the choice of network and protocol may involve other aspects, such as
which is the easiest/cheapest to implement.

We also studied the performances of three real architectures, DDM, DASH, and
KSR1. Here, the high latency of its network made the performance of the KSR1
COMA worse than the DASH NUMA if the number of processors is greater than 32.
The DDM, which is a COMA with a latency comparable with DASH, performs the
best for the whole range .

76

Part 11

IMPLEMENTING COMA-THE
DDM

77

A DDM Primer

HE Data Diffusion Machine (DDM) [WHS8] is a hierarchical COMA with its
directory information distributed in the network. The bus-based DDM architec-

ture is introduced in this chapter by first looking at its smallest part, the DDM with
a single bus.

The single-bus DDM consists of several large attraction memories connected by a
bus. Fach attraction memory has a processor connected to it. The properties of the
attraction memory architecture, bus behavior, and protocol are discussed. The larger,
hierarchical DDM is then introduced as an extension to the single-bus architecture.
The hierarchical DDM connects several single-bus DDMs in a hierarchical network.

The chapter ends with a detailed description of the architecture and a discussion of
some itmportant COMA issues like handling the shared memory space.

80

A DDM Primer

5.1 Single Bus DDM-a Small COMA

We introduce the DDM architecture by first looking at a small machine built around
a single bus. The cache-coherence protocol for a COMA can adopt existing tech-
niques used in other cache-coherence protocols and be extended with the functional-
ity of finding a datum on a cache-read miss and handling replacement. The system
described here therefore has many similarities with existing cache-coherent single-
bus architectures, such as the Sequent Symmetry.

5.1.1 The Architecture of a Node

A DDM node in this description consists of a processor and an attraction mem-
ory. The attraction memories of the minimal DDM are connected by a single bus.
Data distribution and coherence among attraction memories are controlled by the
snooping protocol memory above, and the interface between the processor and the
attraction memory is defined by the protocol memory below.

A cache line of an attraction memory, here called an item, is viewed by the protocol
as one unit. The attraction memory stores a small state field per item and an
address tag for implementing its associativity. The architecture of the nodes in the

single-bus DDM is shown in Figure 5.1.

The DDM uses a split-transaction bus, where the bus is released between a request-
ing transaction and its reply, e.g., between a read request and its data reply. Delays
between request and reply may be of arbitrary length, and there might be a large
number of outstanding requests. The reply transaction will eventually appear on
the bus as a different transaction.

Unlike other buses, the DDM bus has a selection mechanism, assuring that at most
one node is selected to service a request. This guarantees that each transaction on
the bus does not produce more than one new transaction for the bus, a requirement
necessary to avoid deadlock. Figure 5.1 shows how several nodes are connected
together by the DDM bus. Selection and arbitration are handled by two state
machines. Subsystems on a DDM bus can try to get selected with different priorities.
Arbitration logic will then determine which subsystem to select. On top of the bus
is the top protocol. 1t is a simple protocol containing no state memory.

5.1.2 The Protocol of the Single Bus DDM

The protocol of the DDM is similar in many ways to the write-once protocol
(Figure 3.2). The write-coherence part of the protocol described here is of the

81

5.1 Single Bus DDM-a Small COMA

Arbitration,

Selection Top Protocol

DDM BUS
--}-v------ e ‘
' OA ATTRACTION ATTRACTION
| MEMORY MEMORY
STATE + DATA
CONTROLLER MEMORY
i z
e | |
PROCESSOR PROCESSOR

Figure 5.1: Architecture of a single-bus DDM. Processors are below the attraction mem-
ories. Located on top of the bus are arbitration and selection.

write-invalidate type so that, in order to keep data coherent, all copies of the item
but the one to be updated are erased on a write.

The protocol also handles the data attraction (read) and replacement when a set in
an attraction memory becomes full. The snooping protocol defines a new state and
a new transaction to send as a function of the transaction appearing on the bus and
the current state of the item in the attraction memory:

PROTOCOL : current state X transaction — new state X new transaction.

The different states are explained in Table 5.1. The first three states, Invalid (I),
Exclusive (E), and Shared (S), correspond to the Invalid, Reserved, and Valid states
in the write-once protocol. The Dirty state in that protocol, meaning “this is the only
cached copy and its value differs from that in the memory,” has no correspondence in
a COMA. New states in the protocol are the transient states Reading (R), Waiting
(W), and Reading and Waiting (RW). The transient states were created to serve
the split-transaction bus and remember outstanding requests.

The transactions carried on a DDM bus are listed in Table 5.1.

A processor writing an item in state E or reading an item in state E or S will
proceed without interruption. A read attempt of an item in state I will result in a

82

A DDM Primer

State Description
I Invalid This subsystem does not contain the item.
E Exclusive This subsystem and no other subsystem contains the item.
S Shared This subsystem and possibly other subsystems contain the item.
R Reading This subsystem is waiting for a data value after having issued a read.
A Answering This subsystem has promised to answer a read request.
W Waiting This subsystem is waiting to be exclusive after having sent an erase.
RW Reading and This subsystem is waiting for a data value,later to become exclusive.
Waiting
Transaction Description
e erase Orders recipient to erase all copies of the item.
x exclusive Acknowledges an erase request.
r read Requests to read a copy of the item.
d data Carries the data in reply to an earlier read request.
i wnject Carries the only copy of an item and is looking for
a subsystem to move into, caused by a replacement.
o out Carries the data on its way out of the subsystem, caused by a

replacement. It will terminate when another copy of the item is found.

Table 5.1: Transactions and states of the DDM. For the lowest level in the hierarchy,
“subsystem” refers to the attraction memory.

Nread/Ndata

Nerase/

Nread Pread

NOTATION:

Pread/Nread

Ndata in—trans/out-trans

P= from processor
N= to/from network

Pwrite/
Nread

Pwrite/

Nread/Ndata
Nerase

Ndata/Nerase
Nack

Nerase/Nread

Nerase/Nread Pread

Nack/Nread Pwrite

Figure 5.2: A simplified representation of the attraction memory protocol not including
replacement.

read request and a new state R as shown in Figure 5.2. The selection mechanism
of the bus will select one attraction memory which contains the item to service the
request, eventually putting data on the bus. The requesting attraction memory, now
in state R, will grab the data transaction, change state to S, and continue.

Processors are only allowed to write to items in state E. If the item is in S, all other
copies have to be erased and an acknowledge received before the writing is allowed.

83

5.2 Single Bus DDM-a Small COMA

The attraction memory sends an erase transaction and waits for the acknowledge
transaction exclusive in the new state, W. Many simultaneous attempts to write
the same item will result in many attraction memories in state W, all with an
outstanding erase transaction in their output buffers. The first erase to reach the
bus is the winner of the write race. All other transactions bound for the same item
are removed from the small output above buffers, OA. Therefore, the buffers also have
to snoop transactions. The OA can be limited to a depth of three, and deadlock can
still be avoided with a special arbitration algorithm. The losing attraction memories
in state W change state to RW while one of them puts a read request in its output
buffer. Eventually, the top protocol at the top of the bus replies with an exclusive
acknowledge, telling the only attraction memory left in state W that it may now
proceed. Writing to an item in state I results in a read request and a new state RW.
Upon the data reply, the state changes to W and an erase request is sent.

5.1.3 Replacement

Though large, the attraction memories run out of space, forcing some items to leave
room for more recently accessed ones. If the set where an item is supposed to reside
is full, one item in the set is selected to be replaced.

Preferably, the oldest item in state S, of which there might be other copies, is
selected for replacement. Replacing an item in state S generates an out transaction.
The space used by the item can now be reclaimed. If an out transaction sees an
attraction memory with a copy of the item, it terminates; if not, it is converted to an
inject transaction by the top protocol. An inject transaction can also be produced by
replacing an item in state E. The inject transaction is the last copy of an item trying
to find a new home in a new attraction memory. In the single-bus implementation
it will do so firstly by choosing an empty space (state I), and secondly by replacing
an item in state S; i.e., it will decrease the amount of sharing. If the item-identifier
space that corresponds to the physical address space of conventional architectures
is not made larger than the sum of the attraction memory sizes, it is possible to
devise a simple scheme that guarantees a physical location for each item.

Often, only a portion of the physical address space is used in a computer. This is
especially true for operating systems eagerly reclaiming unused work space. In the
DDM, the unused item space may be used to increase the degree of sharing if the
unused items are purged. The operating system might even change the degree of
sharing dynamically, as discussed in Section 3.3.3.

What has been presented so far is a cache-coherent single-bus multiprocessor without
physically shared memory. Instead, the resources are used to build huge second-level
caches, called attraction memories, minimizing the number of accesses to the only
shared resource left: the bus. Data can reside in any or many of the attraction
memories. Data will automatically be moved where needed.

84

A DDM Primer

5.2 Hierarchical DDM-a Large COMA

The single-bus DDM, as described above, can become a subsystem in a large hier-
archical DDM by replacing the top with a directory, which interfaces between the
bus described and a higher level bus of the same type in a hierarchy; see Figure 5.3.
The directory can answer the questions: “Is this item below me?” and “Does this
item exist outside my subsystem?”

E Directory
Attraction
L 1 Memory

D D p | Processor
| |
| | | |
D D D D
1 1 1 1
| | | | | | | | | |
AM | |AM | |AM AM AM AM AM | |AM | |AM AM
| | | | | |
P P P P P P P P P P

Figure 5.3: Hierarchical DDM, here with three levels.

The directory is a set-associative status memory, which keeps information for all the
items in the attraction memories below it, but contains no data.

From the bus above, the snooping protocol directory above behaves very much like
the memory above protocol. From the bus below, the directory below protocol be-
haves like the top protocol for items in the Exclusive state. This makes operations
involving items local to a bus identical with those of the single-bus DDM. Only
transactions that cannot be completed inside its subsystem or transactions from
above that need to be serviced by its subsystem are passed through the directory.
In that sense, the directory can be viewed as a filter.

The directory as shown in Figure 5.4 has a small output buffer, output above (OA),
to store transactions waiting to be sent onto the higher bus. Transactions for the
lower bus are stored in the buffer output below (OB), and transactions from the
lower bus are stored in the buffer input below (IB). A directory reads from input
below when it has the time and space to do a lookup in its status memory. This is
not part of the atomic snooping action of the bus.

5.2.1 Multilevel Read

If a read request cannot be satisfied by the subsystems connected to the bus, the next
higher directory retransmits the read request onto the next higher bus. The directory

89

5.2 Hierarchical DDM-a Large COMA

DDM BUS
DIRECTORY
OA
Y |
CONTROLLER STATE MEMORY
I I
IB OB
A
DDM BUS

Figure 5.4: The architecture of a directory.

also changes the item’s state to Reading (R), marking the outstanding request.
Eventually, the request reaches a level in the hierarchy where a directory, containing
a copy of the item, is selected to answer the request. The selected directory changes
the state of the item to Answering (A), marking an outstanding request from above,
and retransmits the read request on its lower bus. Transient states R and A in the
directories mark the request’s path through the hierarchy, shown in Figure 5.5, like
unrolling a red thread while walking in a maze [HomBC].

A flow-control mechanism in the protocol prevents deadlock if too many processors
try to roll out a red thread to the same set in a directory. When the request finally
reaches an attraction memory with a copy of the item, its data reply simply follows
the red thread back to the requesting node, changing all the states along the path
to Shared (S). Many processors often try to read the same item, creating the “hot-
spot” phenomenon [P*85]. Combined reads and broadcasts are simple to implement
in the DDM. If a read request finds the red read thread rolled out for the requested
item (state R or A), it simply terminates and waits for the data reply which will
eventually follow that path on its way back. Stenstrom reports that combining
situations are rare for most studied programs, but found one application, LU, where
47 percent of the read requests got combined in the DDM hierarchy [SJG92b].

Extra latency is introduced with every directory lookup. If the directories are imple-
mented with slow memories and /or if the number of levels in the hierarchy is large,
this latency will become the dominant part of the read latency. However, half of the
lookups can be removed from the critical path. If a read request carries the identity
of the requesting node, the returning data knows which node is the requester. The
data can find its way back without any lookups. As the data returns, the directory

86

A DDM Primer

iR A
promriiaaao "] — 1
D [[|
: i1 data reply
:'R(| A S
S——— ! B !
| | T A | ' _|“‘ | | | |
I I I R I S S I I I
[[— [[[[—
Pl|P||P Px P Py Pzl | P || P P

Figure 5.5: A read request from processor Px has found its way to a copy of the item
in the attraction memory of processor Py. Its path is marked with states
Reading and Answering (R and A), which will guide the data reply back to
processor Px.

lookup can be performed in parallel with the forwarding of the transaction, and not
on the critical latency path. Only requests utilizing the combining effect will suffer
from the directory lookup latency. We call this technique return to sender.

5.2.2 Multilevel Write

An erase from below to a directory with the item in the Exclusive state (E) results in
an exclusive acknowledge being sent below. An erase that cannot get its acknowledge
from the directory will work its way up the hierarchy, changing the states of the
directories to Waiting (W), marking the outstanding request. All subsystems of a
bus carrying an erase transaction will get their copies erased. The propagation of
the erase ends when a directory in the Exclusive state (E) is reached (or the top),
and an acknowledge is sent back along the path marked with state W, changing the
states to Exclusive (E). The return-to-sender technique can also be employed for
the forwarding of the acknowledge to the requester.

A write race between any two processors in the hierarchical DDM has a solution
similar to that of a single-bus DDM. The two erase requests are propagated up
the hierarchy. The first erase transaction to reach the lowest bus common to both
processors is the winner, as shown in Figure 5.6. The losing attraction memory (now
in state RW) will restart a new write action automatically upon receiving the erase.

87

5.2 Hierarchical DDM-a Large COMA

exclusive acknowledge

~
erase request :
(winner) Wi
; | T N
W (loser) | W é(
S ey ! : !
| | | i e i — | |
L Y y
| | | WAk | W || | |
| | — | | | | —
P P||P Px P Py Pz| | P || P P

Figure 5.6: Write race between two processors, Px and Py, resolved when the request
originating from Py reaches the top bus (the lowest bus common to both
processors). The top can now send the acknowledge, exclusive, which follows
the path marked with Ws back to the winning processor Py. The W states
will be changed to E by the ezclusive acknowledge. The erase will erase the
data in Px and Pz, forcing Px to redo its write attempt.

5.2.3 Replacement in the Hierarchical DDM

Replacement of a shared item in the hierarchical DDM will result in an out transac-
tion propagating up the hierarchy and terminating when a subsystem with a copy
of the item is found. If the last copy of an item marked with state S is replaced,
an out that fails to terminate will reach a directory in state E and be turned into
an inject.! Replacing an item in E generates an inject transaction, which then tries
to find an empty space in a neighboring attraction memory. Inject transactions will
first look for an empty space in the attraction memories of the local DDM bus, as in
the single-bus DDM. Unlike the single-bus DDM, an inject failing to find an empty
space on the local DDM bus will turn to a special bus, its home bus, determined
by the item identifier. On the home bus, the inject will force itself into an attrac-
tion memory, possibly by throwing a foreigner and/or shared item out. The item
home space is equally divided among the bottommost buses, and space is therefore
guaranteed on the home bus.

The home bus, as described, is different from memory locations in NUMASs in that
the notion of a home is only used after failing to find space elsewhere. When the
item is not there, its place can be used by other items. Another difference is that
the home is a bus and not a node, i.e., any attraction memory on that bus will do.

The hierarchy as described here has a single top bus which easily could become the
bottleneck of the system. This bottleneck can be widened using several techniques
discussed in Chapter 10.

I'Note that the top of the DDM hierarchy considers all items to be in state E.

88

A DDM Primer

5.2.4 Arbitration

A centralized arbiter chooses the next subsystem to send a transaction on the bus.
The number of outstanding requests must be limited to avoid deadlock and guar-
antee progress in the execution. Filling all buffers with requests would make it
impossible to service any of the requests. It is also important that a request trans-
action not result in more than one data reply. We have selected a bus arbitration
for the DDM bus with three priority levels to avoid the deadlock problem:

1. The subsystem selected to service the previous transaction (if any) is given the
highest priority. The last transaction on the bus might have resulted in a new
transaction for its output-above buffer. Being given the highest arbitration
priority entitles it to send a new transaction during the next cycle; i.e., there
can never be an increased number of transactions in the output-above buffer
caused by snooping on the DDM bus above.

2. Transactions from the above directory are given the second highest priority.
This prevents new transactions from the subsystems from entering the bus,
unless a subsystem is selected, while there are requests or replies from higher
subsystems arbitrating for the bus.

3. Lowest priority is given to the nonselected subsystems which are serviced in a
round-robin fashion.

5.2.5 Flow control

In order to guarantee the completion of a DDM bus transaction, there should always
be enough space left in the output-above buffer to accept a lookup from above.
Because of arbitration priority, a selected request from above would only temporarily
increase the number of transactions in that buffer. A small amount of extra space in
the output-above buffer will thus guarantee the completion of a DDM transaction.
A transaction from below to either a directory or an AM is only handled if there
is enough space in the output-above buffer. This might prevent a transaction from
the processor from completing; i.e., the processor might be stalled.

Any device connected to a DDM bus can temporarily halt the bus by asserting the
brake signal of the bus. When there are only a few spaces left in the input-below
buffer underneath a directory, the DDM bus below will be stalled by a brake below
signal. If the output-below buffer of a directory is almost full, the bus above is
suspended by a brake above signal. A processor node may also pull the brake above
when it gets congested, e.g., if reads and writes to the AM take longer than a single
DDM transaction.

89

5.4 A Closer Look at the Protocol

5.3 A Closer Look at the Protocol

The protocol is defined as four state machines: attraction memory below, attraction
memory above, directory below, and directory above. The state machines define a
selection priority, a new state, and a new transaction as a function of the current
transaction type doing the lookup and the current state in the corresponding state
memory. The directory-below protocol also looks at whether or not a subsystem
tried to be selected. The regularity of the protocol simplifies its representation and
implementation. In writing, the protocol can be defined in a table format indexed
by the current state and the current transaction type. Each state machine can be
implemented by a PROM, addressed by the current state and the current transac-
tion, plus some additional logic. The number of different states and transactions
thus only affects the size of the PROM, not how difficult an implementation would
be. A fifth table, top, defines a simple stateless function at the top of the hierarchy.

The output-above buffers snoop the transactions on the DDM bus above them.
Some transactions on this bus purge other transactions involving the same item in
the output-above buffers. The arbitration scheme used allows for these buffers to be
short. The output-above buffer should have a minimum depth of three in order to
avoid deadlock. None of the other buffers perform any snooping and can be made
deep at a low cost. They are not part of the atomic snooping action, which also
allows for an asynchronous coupling between the levels in the DDM.

The state machines of a single-level DDM are defined in Table 5.2. Each state
has its own column and each transaction its own row. Actions have the for-
mat: guard—NEWSTATE:transaction-to-sendj, 4., where Index A means to the
bus above and Index B means to the bus below. The subsystems can try to be
selected with different priorities. The action taken for a granted selection and the
action taken for a refused selection can differ. The guard for a successful selection
of priority n is (seln—), and the action for a refused selection is (—sel—). No guard
means that the action defined in the square will always be carried out. An empty
square means no action and () represents impossible combinations.

Table 5.3 defines the additional functionality required by a multilevel DDM. The
state machine directory below is not part of the atomic selection action, but it
monitors attempts at selection. “None tried to be selected” (¢ = 0—) and its
inverse (¢ > 1—) are part of the directory-below protocol.

The directory operates like a filter, keeping transactions that can be serviced locally
from spreading to the rest of the system. A simple scheme can prevent the directory
from looking at all transactions. The scheme, called the input-below filter (IBF),
can save some of the bandwidth of the directory state memory. Its functionality is
defined in Table 5.3, and its location is shown in Figure 5.7.

90

A DDM Primer

In table | Transaction In table State.
Invalid
r read request .
d dat 1 E Exclusive
ata reply . S Shared
e erase reques R Reading
X exclusive acknowledge ..
w Waiting
o out (replacement of shared) . ..
. .. . RW Reading and Waiting
i inject (replacement of exclusive) ;
A Answering
|| ATTRACTION MEMORY BELOW || || TOP ||
Trans- State Trans- a=0— a>1l—
action I | E | S | R | W | RW action
read Riry 12 L L [] [} [} r new item
e XB XB
write RW:r 412 L Wie 2 [} [} [} d
X
replace Ly Lo 4 [] [] [o ip
i go home
|| ATTRACTION MEMORY ABOVE ||
Trans- State
action 1 | E | S | R | w | RW
r sell—S:d 4 sell—S:d 4 sel2—
—sel—0 —sel—S:dy —sel—
e? [] I:- sell—Rir s | sell=RW:iry | sell—=RWiry
—sel— —sel—RW:- —sel—
d [} S:L sell—W:e 4
—sel—
X [[sell—Riry E:L sell—RW:r 4
—sel— —sel—
ot [} sell0— sell—S: L sell0— sel2—W:e 4
—sel— —sel—S:- —sel—
i seln—HE:- [} [} sell—S: L [} sel2—W:e 4
—sel— —sel— —sel—

§ This situation is impossible.
L The processor may continue with its operation.
seln— Selection of the nth priority succeeded. The priority increases with the number.
—sel— The attempt to become selected failed.

1

Preceded by a replace of the old item.

2 The processor is suspended. The processor will be revived by a L for this very item.
3 An e on the DDM bus kills r, e, d and o in OA.
4 An o on the DDM bus kills r and d in OA.

Table 5.2: The protocol of the single-bus DDM.

91

5.4 Protocol Examples

I DIRECTORY BELOW I

Trans- States
action 1 | E | g | R | W | A || INPUT BELOW FILTER ||
T Rira Trans- || a=0— | a > 1—
action
e E:xp Wiy [[Wiy r T
e e e
d [} [} S:d 4 d d d
X
o a =0—E:ip | a=0—loy [[a =0—loy o o o
a>1—S:dy i i i
il [} a=0—liy [} [} [} a =0—loy
a>1—Arp
|| DIRECTORY ABOVE ||
Trans- States
action I | E | S | R | W | A
r sell—Arrg | sell—A:xrp sel2— sel2—
—sel—0 —sel— —sel— —sel—
2 [] Liep sell—R:r 4 Lep Liep
—sel—
d [} S:dp S:-
X [[sell—R:r 4 E:xp [
—sel—
o® [} sell0— sell—S:dp sell0— sell—S:-
—sel—S:dp —sel—S:-
i seln—FE:ip [[sell—S:dp [[
—sel—S:dp

a = 0— No subsystem tried to be selected or had the item.

a > 1— At least one subsystem tried to be selected or had the item.
1 The transaction might be sent by the directory itself.

2 e on the DDM bus kills r, e, d and o in OA.

3 6 on the DDM bus kills r and d in OA.

Table 5.3: The protocol of directories of a hierarchical DDM.

5.4 Protocol Examples

A few examples will help explain what happens at the different levels of the DDM.
The figures in the examples show the state changes and transitions for just one
address. State transitions and bus transactions are indexed to indicate in which
order they take place.

Table 5.4 shows a picture of an initial, two-level system with the item residing in the
attraction memories of two of the twelve processors, P2 and P4. Thus, the copies
of the item in both P2 and P4 are in the S state, and, in the parent directories
above them, the item is in the E state. Everywhere else the item is in state I
(nonexistent). Note that the top actually does not store any state information.
Here it is still marked with an E, indicating that our picture of the system can very

92

A DDM Primer

DDM bus
OA DIRECTORY
I
CONTROLLER STATE MEMORY
I I
B OB

Figure 5.7: Connecting the input below filter (IBF).

E

I S I S I I I I I I I I
P1 P2 P3 P4 P5 P6 P7 PS8 P9 P10 P11 P12

Table 5.4: The initial system.
well be a subsystem of a bigger machine.

When any of the processors P1-P4 read or write the item, actions similar to those
of the single-bus DDM occur. The directory above the bus has the item in state E
and anticipates a response to a read request from somewhere in its subsystem. Upon
an erase request from below, the directory will issue the acknowledge transaction,
exclusive, since the item is exclusive to its subsystem. No unnecessary bus traffic
will be generated outside the subsystem.

93

5.4 Protocol Examples

E
7‘2 d5
E2AZS IZRSs I
7‘3 d4 7‘1 d6
I ss 1 s I ILRLS I 1 | I I

P1 P2 P3 P4 P5 P6 P7 PS8 P9 P10 P11 P12

r! Indicates a read transaction on the bus in phase 1.

IR Indicates a state transition from the invalid state to Reading in phase 1.

The actions in the different phases are explained below.

L' A read by P6 to an item I generates a read and changes the state to R.

2 The directory detects a nonlocal action and repeats the read upward, changing its state to R.

3 A directory in state E answers the request by changing its state to A, sending read below.

* One of the memories, P2, is selected to service the read. It stays in S and sends data.

® The directory in state A has promised to answer. It sends date above and changes its state to S.
% The directory in state R is waiting for the data. It changes state to S and sends the data below.
" The attraction memory in state R is waiting for the data. It receives the data and changes state
to S.

NOTE 1: Many subsystems on a bus may have an item in state S. Letting all of them reply with
the data would produce unnecessary bus transactions; instead, one is selected in phase 4.

NOTE 2: After phase 3, the return path for data is marked with As and Rs.

Table 5.5: Multilevel read.

5.4.1 Reads

Multilevel reads involve several buses. The choice of a split-transaction bus means
that there is no need to lock all the buses for the entire read operation. In Table 5.5
we start with the same state as Table 5.4. Now P6 tries to read the item. The path
of the request is marked: state R marks the path of the read request on its way up,
and state A marks the path on its way down. The data transaction may use these
states to find its way back to the requesting attraction memory.

If the return-to-sender technique is used, i.e., if the read request carries the identity
of the requesting processor, the reply can be forwarded more quickly, since its path
is known before the directory lookup. The state transitions shown here will still take
place, even on the return path. However, the forwarding of data is done in parallel
with the lookup, instead of after the lookup.

Table 5.6 shows the combining read implementation. A read request finds the red
read thread rolled out for the same item (state R or A), and terminates. Table 5.6
differs from Table 5.5 only in that P10 also reads the item between phases 1 and 4.

94

A DDM Primer

E
7‘2 7‘<5 d5
E2AZ>S I2REs I<RESs
7‘3 d4 7‘1 d6 7‘<4 d6
I s%s 1 s I 2RSS I 1 I I¥RSs 1 I

P1 P2 P3 P4 P5 P6 P7 PS8 P9 P10 P11 P12
<4 P10 also reads before phase 4.
<% A second read request will appear on the top bus generating no extra action.

67 The data originally intended for P6 will also be received by P10.

Table 5.6: Combining read and broadcasting.

EZE
€2$3
s21 SAWAE s21
63 €1$4 63
I si1 1 si1 I SLWEE 1 1 I Si1 1 I
P1 P2 P3 P4 P5 P6 P7 PS8 P9 P10 Pl1 P12

L P6 tries to write to the shared item, generates an erase (e), and changes state to W.

2 The directory detects a nonlocal erase, changes its state to W, and retransmits erase above.

3 Directories in state S receiving an erase from above change state to I and repeat the erase below.
The top directory detects a local erase in its subsystem and replies with an ezclusive (x) below.
45 The exclusive transaction uses the trail of Ws to find the “winning” processor. It is guaranteed
that there is at most one path of Ws to the leaves of the net.

NOTE: The acknowledge of the erase (exclusive) is sent when the erase reaches the top, not when

1t reaches the memories.

Table 5.7: Multilevel write.

95

5.5 Directory Replacement and Mapping

EZE
€2$37‘5d8
s21 SZwWAESAZLs SZw2I12Rr2s
63 €1$47‘6d7 61637‘4d9610
I si1 1 si1 I SLwW2igELs 1 1 I siwirwlw
PI P2 P3 P4 P5 P6 P7 PS P9 P10

1=2 Like Table 5.7, both erases work their way up toward the top bus.

3 The erase originating in P6 is the winner and is carried on the top bus. All other directories
change their states to I and retransmit the erase below.

4 P10 receives the bad news (erase). Instead of just invalidating it starts a read transaction.

> P6 becomes the exclusive owner of the item and carries out the write.

" The read from P10 reaches P6, which changes state to S and sends data containing the new value.
10 The data reaches P10, which changes state to W and once more sends an erase. We wish it
better luck this time.

Table 5.8: Write race.
5.4.2 Writes

While the main goal of a read is to find and deliver an item, writing involves worrying
about consistency. Processors are allowed to write to an item only when it is in state
E. If the item is in state S, all other copies are erased before writing is allowed. A
subsystem waiting for all other copies to be erased uses the transient state W to
mark its intention. Table 5.7 starts with the final state of Table 5.6: P6 writes to a
shared item.

Table 5.8 is identical to Table 5.7, except that both P6 and P10 try to write at the
same time. It shows how a write race is handled by the protocol.

5.5 Directory Replacement and Mapping

As discussed earlier, replacement of a shared item will result in an out transaction
propagating up the hierarchy and terminating when a subsystem with a copy of the
item is found.

Replacing an item in state E generates an inject transaction. If an inject transaction
fails to find a new home on the lowest level, as described earlier, the directory
converts it to a go home transaction, just like in the single-bus case. If the last copy
of an item marked S is replaced, an out will be unable to find another copy in the
system. However, when the out eventually reaches a directory in state E, it will be
converted into an inject. The out carries the data value, which is rarely used, to

96

A DDM Primer

make this conversion possible. Moving the last two items out at the same time is a
special case of the above.

5.5.1 Preferred Home Location

The refugee transaction inject that failed to find a new home is converted to the go
home transaction as described earlier. Although we have tried to avoid any notion
of a home location for items, this emergency situation requires it. The item space
is equally divided among all directories at the same level, so that each item has one
preferred bus. The directories can check if a transaction is in their portion of the
item space and can guide the go home to its home bus. The home item space of a
bus is smaller than the sum of the sizes of the attraction memories connected to that
bus, in that each item is guaranteed a space, possibly by throwing shared and/or
foreign items out. An attraction memory seeing a go home belonging to its home
bus will try to be selected with the following priority:

sel?—it has an empty space in the corresponding set,
sell—it has a shared item in the corresponding set, and
self—it has an item not belonging to the subsystem in the corresponding set.

A replacement might take place to make space for the home-coming item. A subsys-
tem with the item in a transient state does not try to be selected. This will create
a rare situation in which none of the subsystems try to be selected in support of
the go home transaction, which will turn upwards again. It will be returned to the
home bus soon again. The go home transaction is thus buffered in the IB and OB
buffers for these rare situations. The preferred location, as described, is different
from the memory location of NUMASs in that the item only goes there after failing
to find space elsewhere. When the item is not there, its place can be used by other
items.

5.5.2 Replacement in a Directory

Baer and Wang have studied the multilevel inclusion property [BW88] with the
following implications for our system: a directory at level 2 + 1 must be a superset
of the directories, or attraction memories, at level . In other words, the size of
a directory and its associativity (number of ways) must be B; times that of the
underlying level 2, where B; is the branch factor of the underlying level ¢ and size
means the number of items.

size(Diriyr) = By *size(Dir;)

associativity(Diriy1) = Bi* assoctativity(Dir;)

97

5.6 Directory Replacement and Mapping

Even if implementable, higher level memories become expensive and slow if those
properties are fulfilled for large hierarchical systems. The effects of the multilevel
inclusion property are limited in the DDM, however, since it only stores state infor-
mation in its directories and does not replicate data at higher levels. Yet another
way to limit the effect is to use directories with smaller sets (less number of ways)
than what is required for multilevel inclusion. These so-called imperfect directories
can be endowed with the ability to perform replacement. The probability of replace-
ment can be kept at a reasonable level by increasing associativity moderately higher
up in the hierarchy. A higher degree of sharing also helps keep probability low. A
shared item occupies space in many attraction memories, but only one space in the
directories above them. Directory replacement can be implemented in the DDM by
an extension to the existing protocol, which requires one extra state and two extra

transactions [HHW90].

A drawback of directory replacement is the problem of finding a good replacement
strategy. The least recently used algorithm (LRU) would not work. The directories
simply do not monitor which items are used by the processors. Random replacement
is probably the best one can do. The effects of directory replacement have yet to be
studied.

5.5.3 Implicit State in a Directory

The directories, as described earlier, store state information about all the items
residing in their subsystems, with the most common states being Exclusive and
Shared. The absence of state information for an item is interpreted as the Invalid
state. Having Invalid as the implicit state saves space, since most items are expected
to be in that state, and subsequently will not occupy any state memory. Introducing
a preferred location opens up the possibility of saving more memory.

If an item most commonly resides in its home and nowhere else, the implicit state
for all items in the home item space of a directory should be Exclusive. The implicit
state for items outside the home item space is still Invalid.

This does not change the ordinary protocol, only the representation of the states.
Subsequently, only items residing outside their subsystems will need entries in the
directory, which will drastically reduce its size. The size of the directory decides
how many foreign items should be allowed in the subsystem and how many items
should be allowed to move out. Freeing up space in the directory is equivalent to
bringing an item home or throwing a foreigner out. The technique is only practical
to a limited extent, however, since having too small directories prevents sharing and
migration, resulting in drawbacks similar to those of NUMAs.

98

A DDM Primer

5.6 Handling the Memory System

An architecture with only caches and no physical memory may have a “physical”
address space larger than the sum of the memories in the machine. This is appealing
to applications where a large “name space” can be beneficial. With a large name
space, the need for garbage collection can be suppressed, since garbage will eventu-
ally be sent to secondary storage, and not occupy any primary memory resources.
We call such a memory system a large address space system. The implementation
of such a system must include some item reservoir with some backing storage where
all the overflow items turn.

The intention of the DDM is to produce a general-purpose architecture that looks
like a shared-memory machine to the user in order to suit many of the existing
programs and operating systems. This also requires some traditional aspects of a
memory system to be implemented, e.g., virtual memory and protection. A limited
address space is more appropriate here where the address space is smaller or equal to
the amount of memory in the system. In order to allow for effective direct memory
access (DMA), to/from input/output devices, some extra overhead is needed in a

COMA.

5.6.1 Virtual and Physical Memory

Virtual memory is used for many reasons. It allows for a larger data set than the
physical memory available. It also allows for multiple address spaces and memory
protection. Two processes, possibly located on the same processor, may use identi-
cal virtual addresses for accessing their own private address spaces. These virtual
address spaces may be mapped to disjoint physical addresses, or they may partially
overlap. This behavior of virtual addresses causes difficulties for coherence protocols.
Instead, the translation from virtual to physical addresses is often performed by a
memory management unit (MMU), located between the processor and the coherent
cache. The operating system maps pages of virtual memory to pages of physi-
cal memory. Address translation is kept in tables in global memory. The MMU
translates a virtual address to a physical address through a lookup in the global
translation table, but may also cache translation information locally, thus avoiding
accesses to global memory. During execution, the page might get unmapped (paged
out) and remapped (paged in) to a new physical page. The operating system keeps
a free list of physical pages not in use.

A COMA does not need all the functionality of the mapping of virtual addresses to
physical addresses, but does require that the addresses be unique, i.e., a translation
from multiple address spaces to one unique address space. This is part of the
functionality implemented in an MMU, so MMUs could be used to translate to
unique addresses.

99

5.6 Handling the Memory System
5.6.2 Limited Address Space by DMA Nodes

Trying to allocate more virtual memory than physical memory in a machine intro-
duces the need for secondary storage. Dedicated nodes interface the diffusion world
to the sequential world. They allow for DMA transfers of contiguous sequential
parts of the item space and are subsequently called DMA nodes.

From the DDM bus the DMA node looks like any attraction memory, containing
a protocol similar to that of the AMs. From the other side, pages can be DMAed
to and from its memory. The memory of the DMA node is organized like fully
associative page frames.

When the operating system decides to send a page to secondary storage, it first
invalidates its entries in the MMUs and then gives an order to the DMA node of
the home bus to send it to secondary storage. The DMA node first allocates a page
frame for that item page (physical page), then gets all the items into state E, and
finally writes the page frame to disk and erases the page frame.

Trying to access a virtual page that has been paged out reverses the process. Initially,
a page frame is allocated for the item page (physical page), and the page is read to
the frame from the disk. Secondly, the virtual page is mapped to the item page in
page tables. Thirdly, the process might start accessing that page by using the DDM
protocol. Items are attracted to the attraction memories of the processors using it.
To reuse the page frame later for paging a new page in or out, any remaining items
in the frame—mnot yet attracted by any attraction memory—must be forced into the
system by inject transactions.

5.6.3 Distributed Limited Address Space

A more appealing strategy is distributed limited address space. Instead of some
dedicated DMA node per home bus, any or many of the nodes may host secondary
storage.

When the operating system decides to send a page to secondary storage, it first
invalidates all translation entries of the page in all the MMUs, and then gives an
order to a selected node to send the page to its secondary storage. The selected node
first gets all the items into the new state Exclusive-immune to make them immune
to replacement, possibly by replacing other items. Then, it starts the DMA transfer
to disk. Each item read by the DMA will automatically be invalidated, freeing up
space again.

Trying to access a paged-out page reverses the process. The operating system orders
the node holding the page on its disk to write the page to a selected item page.
The node first allocates space in its attraction memory by putting the items of the
selected item page in the state Exclusive-immune, possibly by replacing other items.

100

A DDM Primer

Then, it starts the DMA transfer from disk, changing states to Exclusive. Finally,
the virtual page is mapped to the item page by the operating system.

5.6.4 Birth of New Items

Upon receiving a request to create a new virtual page, the operating system takes a
page from the free list and maps the virtual page to it. If the virtual page corresponds
to a page on disk, the schemes described above will bring the contents of that page
into the machine. If no page corresponds to the virtual page, none of the items
are yet in the machine. The first access to each item on that page will return a
transaction new item as a response, interpreted as a zero-filled item. Thus, a new
item is born the moment it is first accessed, such as when a stack grows. The data
value of a new item is by definition zero, making a compact representation for sparse
arrays and eliminating the need to zero-fill pages.

101

5.6 Handling the Memory System

x % Sk oKk x

The Data Diffusion Machine is a hierarchical COMA based on buses with direc-
tories between each level in the hierarchy. The buses are of split-transaction type
and released between a request and its reply. Its cache-coherence protocol of write-
invalidate type. The DDM protocol also handles attraction of data and replacement.
The directories between the levels in the hierarchy serves as filters, and only requests
not satisfied otherwise are transferred through the directories.

We described the DDM protocol, the DDM bus and how to implement a limited
address space. We also described some possible optimizations in the directory struc-

ture.

102

DDM Prototype Implementation

UILDING a prototype ts time-consuming, but gives invaluable insights to where

the real difficulties of parallel architectures lie. The real behavior of a large par-
allel architecture can never be simulated. Nor can real questions about the operating
system be understood. Our development effort has been reduced by taking a commer-
cial product as a starting point.

The hardware implementation of the processor/attraction memory is based on the
TP881V system by Tadpole Technology, U.K. Each system has up to 32 Mbytes
of data memory, and up to four Motorola MCS88100 20 MHz processors, each with
64 kbytes instruction and 64 kbytes data cache.

A single VME-sized board is being designed at SICS, the DDM Node Controller
(DNC). It interfaces the Tadpole node to the DDM bus. The DNC contains proto-
col state machines and memory for address tags and state code. It turns the data
memory into the data part of the attraction memory. The DDM bus is implemented
with the electrical specification of the Futurebus in the rack backplane.

104

DDM Prototype Implementation

6.1 The Motorola 88000 Family

The processor of the DDM prototype was chosen for the functionality of its caches.
The processor cache of the Motorola 88000 family simplifies the design of a large
second-level cache, like the AM. It also has an MMU well suited to multiprocessors.
We decided we would be able to produce a DDM prototype faster and with less
design effort using this family than with any other commercial processor available
at the time of the decision.

The Motorola MC88100 CPU is a RISC processor with Harvard architecture; i.e.,
the CPU has two separate buses: one for data, and one for instructions [Mot89a].
Both buses, called P buses, have identical characteristics. The processor is referred
to as a 15-17 VAX-MIPS machine; this, of course, heavily depends on how fast
the memory system is and on what programs are run. There is a combined cache
and memory management unit (CMMU) chip MC88204 between the P buses and a
memory bus called M bus.

— |ICMMU
[ICMMU

CMMUi M bus
CMMui

— |ICMMU
— [CMMU Memory

— [CMMU
— [CMMU

Figure 6.1: Multiprocessor configuration of the 88000 family.

88100

88100

88100

88100

The CMMU is supplied with a copy-back cache-coherence protocol similar to the
write-once protocol discussed earlier (Figure 3.2). It allows many CMMUs to be
connected to the same memory, as shown in Figure 6.1. A centralized arbiter selects
one CMMU at a time to be the master of the M bus. CMMUs that are not masters
are called slaves. Slaves can snoop the transactions on the bus. If any of the slaves
sees a transaction on the bus that interferes with its private updated copy of a
datum, it gets a snoop hit. The CMMU that got the snoop hit stops the master
by asserting a retry signal on the bus (marked “intercepted” in Figure 3.2). The

105

6.2 The 88000 Family and the DDM

master immediately stops, backs off the bus, and turns into a slave with the need to
arbitrate for the bus again. The CMMU that got the snoop hit is granted the bus
and can update the memory during the next cycle.

An input pin on each CMMU can turn off the snooping. This is useful to the
instruction cache. A page can also be declared as being local instead of global. A
control bit, set by the master, will tell the slaves whether a transaction on the M bus
is global (has to be snooped) or local (no snooping necessary). The bus carries the
following transactions: read, write, and read with intent to modify. The transactions
can be for a single byte, or the whole cache line. The master can “lock” the bus
and transfer several transactions during one tenure. An atomic operation, zmem,
exchanges the contents of one register and a memory word.

The MMU of the MC88204 contains a page address translation cache (PATC) with 56
page-translation entries for 4 kbytes-sized pages and a block address translation cache
(BATC) of six entries, holding a translation for 512 kbytes-sized blocks [Mot89]. The
page address translation cache uses the FIFO replacement strategy. Entries in the
address translation caches can be invalidated on a page or segment basis—or the
whole address-translation cache can be invalidated by the processor writing to a
control word. The control word is also mapped into the address space of the M bus
and may be accessed by the other processors.

6.2 The 88000 Family and the DDM

In our implementation, the rest of the DDM looks like yet another CMMU to the
local M bus of a cluster. A missin the local attraction memory looks like a coherence
action from that CMMU. The key to the design is the retry signal of the M bus,
used to integrate the coherence protocols of the CMMU and the protocol of the
attraction memory.

6.2.1 Interfacing the DDM and the M bus

The DDM Node Controller (DNC) contains the memory below protocol (MBP) and
an associative state memory (ASM). The combined functionality of an 88000 multi-
processor configuration and the DNC can be found in Figure 6.2. The MBP checks
each transaction on the bus for validity. If it is a read of an Invalid item, for ex-
ample, the DNC asserts the retry signal. The retry signal makes the current bus
master stop and release the bus, while the MBP initiates necessary actions. The
DDM system will then start to retrieve the requested item; meanwhile, the DNC
that asked for the value will not be granted the bus. Only after the item is retrieved,
and the DNC has written it to memory, can the CMMU be granted the bus and
redo its transaction.

106

DDM Prototype Implementation

DDM bus
DI po Yoa ¥

MAP

|

CMMU
—MBP
CMMU

ASM
OB
88100

CMMU

CMMU
CMMU Memory

CMMU
CMMU
Mbus

Figure 6.2: DDM implementation based on the 83000 family.

88100

A

88100

88100

The DNC also hosts the memory above protocol (MAP) and the output above FIFO
(OA) for transactions bound for the DDM bus. The OA contains the transaction
code and the item identifier of the transaction, but no data. The MAP can access
the M bus by putting an M bus transaction in the output below FIFO (OB). The
OB only contains address and transaction code. Transactions on the M bus from
the OB have the data FIFOs data in (DI) and data out (DO) as an implicit source
or destination. Data is retrieved from the node’s data memory and put in the DO
by a read line in the OB. Data is written from DI to the node’s memory by putting
a write line in the OB.

6.2.2 Implementing the DDM Protocol

There are several ways an AM and its protocol can be implemented based on the
functionality of the retry signal. We will start by looking at a direct-mapped imple-
mentation of the AM, i.e., a one-way set-associative implementation. The location
of data in the node’s memory is determined by looking at the lower bits of its item
identifier. The address space of the memory is mapped over and over again sequen-

107

6.2 The 88000 Family and the DDM

tially to cover the whole item identifier space. The higher order bits of the item
identifiers are stored as address tags in the associative state memory (ASM).

A read request on the M bus is snooped by the memory below protocol, which keeps
asserting wait states on the bus until the transaction has been approved by the
protocol. The MBP compares the address tag bits stored in the ASM to the higher
order bits of the item identifier on the M bus and the state stored in the ASM
is checked; e.g., a read request to a present item in the Shared state is approved.
It the transaction is approved, the MBP simply drops its wait signal, allowing for
the transaction to be completed. If the transaction was not approved, e.g., a read
request to state Invalid, the MBP:

1. asserts the retry signal, forcing the CMMU to release the M bus,

2. sets the address tag bits in the ASM to the higher order bits of the item
identifier,

3. changes the item’s state to Reading, and,

4. puts a read request in the output above buffer.
When the data reply eventually comes back, the memory above protocol:

1. puts the data part of the transaction in the DI,
2. puts a write line transaction in the OB containing the item identifier, and,

3. changes the item’s state to Shared.

The output below buffer has the highest priority on the M bus and gets the M bus
next. It writes the contents of the DI to the item’s location in the attraction memory.
During the time from its first request for the item until the data are returned on
the M bus, the requesting CMMU is blocked from arbitrating for the M bus. When
the CMMU can repeat its request again, it will not be interrupted by the memory
below protocol.

A write transaction on the M bus to an item in an inappropriate state is intercepted
in a similar way by the memory below protocol, and necessary actions are taken
before the CMMU is released to arbitrate for the bus again. So, from the viewpoint
of the CMMUs, the DNC and the rest of the DDM looks like yet another CMMU,

only slower and noisier.

If the node sees a read request on the DDM bus, for which it has the item in state
Exclusive, the node should change state to Shared and send a data transaction on
the DDM bus according to the DDM protocol. The memory above protocol, thus :

108

DDM Prototype Implementation

1. puts a read line transaction in the OB,
2. puts a data transaction in the OA—its item identifier only—and,

3. changes the item’s state to Shared.

The OA will not arbitrate for the DDM bus before the data out (DO) contains data.
The data is put in the DO by the OB performing its read line for the item on the
M bus. Note that performing a read line on the M bus gives all the CMMUs a chance
of snooping the transactions. If a CMMU has the item in cache state Dirty, it can
assert the retry signal and force the OB to redo its read line. Before it has a chance
of doing so, the dirty CMMU updates the memory and changes cache state to Valid.
Now the OB can redo its read line without any complaints from any CMMU.

The snooping facility of the CMMUs is also be used when a MAP snoops an erase
transaction on the DDM bus, for which it has the item in state Shared. It not only
changes the ASM state to Invalid, but also transmits a dummy write word on the
M bus to make sure that all copies of the item are erased from the CMMUs.

A complete specification of the protocol as implemented in the prototype and in
the performance simulator can be found in Appendix B. Real-world problems have
forced us to make some modifications to the protocol explained in Chapter 5. The
biggest differences are the four new states:

EW Exclusive Writing The awaited write acknowledge has arrived, but
the item has still not been modified.
EA Exclusive Answering A read request was received while in state EW.
WP Waiting Prefetcher Corresponds to state W, but this write request
was initiated by the prefetcher.
RWP Reading and Corresponds to state RW, but this write request
Waiting Prefetcher was initiated by the prefetcher.

The reason for the two first states is to avoid write bouncing. We found cases
in our simulator where two nodes trying to write to the same item resulted in a
large amount of transactions between the two nodes, but none succeeded with a
single write. When a node received the acknowledge for its write request, a read
request from the other node arrived before the writing was performed. When finally
the CMMU tried to write to the item, the item’s state had already changed to
Shared, and the writing was prohibited. This protocol deficiency was found through
simulations. The first and simplified simulator of the DDM was not detailed enough
to model this behavior. It took a second, and very detailed, simulator [Lo6f90],
to monitor the write bouncing. This implementation-specific problem exemplifies
the difficulties of formal verification of a protocol, unless the formal proof includes
implementation details.

109

6.2 The 88000 Family and the DDM

To avoid the write bouncing, we introduced the new state Exclusive Writing, to
which an item is changed on a write acknowledge. When the CMMU writes the first
time, the item changes state to Exclusive. If a read request is received before the
first write is performed, the request for the item is remembered by the new state
Exclusive Answering, and the reply sent after the first successful write has been
performed by the node. With this mechanism, we guarantee progress in that at
least one write will be performed each time the item is moved.

The other two new states are related to the prefetcher discussed in Chapter 8. If
a write is stimulated by the prefetcher, it would be fatal to require a write before
the item was released from the node. The prefetching might have been speculative,
and the item never written to by any CMMU, resulting in deadlock. The protocol
is also extended with a new bus signal, has data (hd), asserted on the DDM bus by
any subsystem which has a data copy of the item in its AM and/or OA.

6.2.3 A Direct-Mapped Attraction Memory

A direct-mapped AM has a specific item always mapped to the very same location,
so there is no need to compare tags before we know in which set an item should
reside if it is there. We can assume that the transaction will succeed and start the
read line before approval from the MBP is received. A processor cache that has
already read three words can be forced to restart before reading the fourth, and
last, word of a cache line. The MBP can therefore wait until the very last cycle
before deciding whether to force a retry or not. This allows for state lookup and
data transfer to overlap. In most situations, the delay of accessing the ASM will be
completely hidden, adding no extra latency to the functionality of the AM, i.e., no
wait states are inserted by the MBP.

It seems that the latency for accessing the ASM cannot be hidden on a write, since
overwriting parts of another item would be fatal. There is, however, tull inclusion
between a processor’s (data) cache and its AM; in other words, there can be no copy
of an item in the processor’s cache unless there is also a copy of the item in the AM.
This, together with the fact that a write to memory (AM) is never performed by
the CMMU unless it already contains a copy of the item [Mot89], hides the ASM
access—even from write accesses. Accesses from the DNC to the AM can also be
performed without additional delay on the M bus, since the state of the item is
checked before the access starts, e.g., the erase of a Shared item by the write word

on the M bus.

A direct-mapped cache is advantageous over a multiway associative implementation
for shortening access time to the AM, but it also increases conflict misses. More
associativity is expected to increase the hit rate in the AM. One can imagine situa-
tions for which a directly mapped attraction memory could be fatal for performance,
for example mapping code segment of a tight loop and its data to the same location

110

DDM Prototype Implementation

in the attraction memory. However, if code pages are handled the right way by the
operating system, instruction caches need not be coherent, i.e., the instructions of
that tight loop can still reside in the instruction cache while they are being pushed
out of the attraction memory by the data. Still, mapping two data areas “on top
of” each other could be fatal.

Another drawback of a directly-mapped attraction memory is its limitation for repli-
cation of popular items. In order for one item to get replicated in all attraction
memories, no other item for the same set of the attraction memory can be present
in the machine, i.e., the item space cannot be larger than the size of one attraction
memory. For two-way attraction memories, the item space can be 0.5 %3~ AM size,
and for four-way attraction memories, the item space can be 0.75 % Y~ AM size.

6.2.4 Set-Associative Attraction Memory

It is possible to implement a set-associative memory with almost no extra access
latency for read accesses. If AM organization is multiway set-associative, part of
the address of the physical memory location in the data part of the AM must be
generated based on the result of a multiway comparison in the ASM. This means
putting the ASM lookup on the critical path.

We propose a set-associative AM implementation that is optimized for the read
access. The algorithm used is the MRU algorithm—guessing that the entry last
used in the set will be the one asked for next time as well. There is no fixed location
in the set for the MRU entry; instead, a fast last-accessed memory (LAM) is added.
[t contains one pointer of log,(ways) bits per set, pointing to the entry last accessed
in the set. The contents of the LAM are used as part of the address to start the
read access immediately.

It the AM’s data part is built of DRAMs, access to the LAM can be hidden. Half
the DRAM address® is not needed during the first access cycle. By putting the LAM
pointer in that part of the address, no extra delay is introduced. The comparisons
of the address tags in the ASM are started in parallel with the data access. The
comparison tells which set—if any—contains the item and if the item is in the correct
state. If the LAM guess turns out to be the right one, no further action is taken.
It another entry contains the right address tag, a retry signal is asserted, and the
LAM is updated. The same transaction will then be restarted, but with the correct
LAM pointer.

The LAM can also be used to implement a better replacement strategy. It con-
tains enough information to implement the least-recently-used replacement algo-
rithm (LRU) for a two-way cache. For an AM with greater associativity, it can be
used to implement the not-most-recently-used (NMRU) algorithm. When the M bus

!The column-access strobe (CAS) part.

111

6.3 Prototype Implementation

above erases an entry in the AM, the LAM should be made to point to a different
way (instead of pointing to an item in Invalid).

During our simulation studies, the hit rate of the LAM guesses is is high. However,
we have not yet studied data sets of a realistic size, which disables any conclusions
from being drawn. The positive effects of returning the MRU data first in large
multiway caches have been studied by Chang et al. [CCS8T].

6.3 Prototype Implementation

Attempting to save development effort and time, we searched for commercially avail-
able board systems implementing most of the desired functionality. We evaluated
all known board systems based on the 83000 family. Most systems lacked the pos-
sibility of connecting yet another master board to the M bus. Tadpole Technology,
U.K., had a design that suited us.

6.3.1 Building on TP881V

All cards in the Tadpole design TP881V have an interboard bus connector that
carries a proprietary M bus. Many cards can be stacked together to build a complete

system. One card, the base module, is connected to the VME backplane. The
TP881V is divided into the following cards:

e The base module contains interfaces among the M bus and Ethernet, VME bus,
two SCSI buses, and four TTY interfaces. The board also contains EPROM

and timers.

e The processor module contains up to 32 Mbytes DRAM and a Hypermodule
containing MC88100 and CMMUs. Hypermodules can host from one to four
MC88100 processors.

e The memory module can host up to 64 Mbytes DRAM. This card is not
directly needed in the DDM design, but could be useful in future upgrades.

Tadpole made some modifications to its product before shipping it to us. They
mounted most of the programmable PAL components on sockets. This allows us
to replace the PALs and change address mapping, DRAM timing, and arbitration.
They also disconnected the VME signals from the backplane, freeing up the back-
plane for the DDM bus. In order to avoid large redesigns, we limited our changes to
reprogramming the PALs and avoided adding extra connections and circuits. Thus,
we have been unable to implement the functionality of disallowing a requesting
CMMU from arbitrating for the bus until its reply comes back from the DDM bus.

112

DDM Prototype Implementation

Backplane
Ethernet
SCSI
TTY

_
() () 2 m LL w

+— +— u04 Y— Sy
22 22 | 88§ 8 o w| | &
So Sy | £88 = T
<0 a N O x x w ol ol < @
© @ S< o S| | o]l £| E
T S| Wl | | F
Interboard Mbus
Memory Module Processor Module Base Module

Figure 6.3: Basic TP881V system from Tadpole

Instead, we have modified the arbitration algorithm from a prioritized scheme to a
round-robin scheme. This enables other CMMUs to get the bus between successive
accesses from a CMMU waiting for a DDM reply to come back. We estimate this
approximation of the arbitration procedure to account for a performance drop in
the five-percent range.

6.3.2 A Pipelined DDM Bus Implementation

The split transaction bus makes pipelined implementation straightforward. The
pipelining of the prototype’s DDM bus was proposed by Anders Landin [Lan92].
The pipeline can be divided into several distinct phases. If the different phases
use different resources they might very well overlap. A transaction is divided into
five phases: Arbitration, Transaction, Lookup, Selection, and Data, as shown in

Table 6.1.

Phase: _ 1 2 3 4 5 6 7 8 9
Transaction 1 | Arb Trans Lookup Sel Data Data
Transaction 2 Arb Trans Lookup Sel Data Data
Transaction 3 Arb Trans Lookup Sel Data
Transaction 4 Arb Trans Lookup

Table 6.1: An example of a pipelined DDM bus

During the first phase, the sender of Transaction 1 asserts its arbitration line and
gets the grant back. During the next phase, it puts the transaction code and the

113

6.3 Prototype Implementation

item identifier on the bus. All nodes read the current state of this item and do a
protocol lookup during the Lookup phase. During the Selection phase the nodes
try to get selected according to the result of the protocol lookup. At the end of
this phase, receivers are determined. During the (optional) Data phases, data is
transferred from the FIFO of the sending node to FIFOs of the receiving nodes.
The Data phases are only needed if the transaction carries data. In order to allow
the Data phases of Transaction 1 to occur at the same time as the Trans phase of
Transaction 3, the data and address of a transaction must be carried on separate
lines; i.e., a nonmultiplexed bus. If a subsystem knows that it will be selected during
the Selection phase, it can forward a new transaction at the end of the Lookup phase;
otherwise, it must wait until the end of the Selection phase before forwarding the
transaction—if it was selected.

We decided on a conservative bus design initially, since high bus speed is not a
primary research goal. The DDM bus in the prototype operates at 20 MHz, with
a 32-bit data bus and a 16-bit address bus. Each phase takes 100 ns. We use
the drivers developed for the Future bus for all parallel signals, like address and
data. A new transaction starts every fourth cycle, i.e., a transaction frequency of 5
Mtransactions/s. It provides a moderate bandwidth of about 80 Mbytes/s, which is
enough for connecting up to eight nodes, i.e., up to 32 processors.

6.3.3 The DDM Node Controller

The organization of the DDM node based on the TP881V system can be found in
Figure 6.4. The DDM Node Controller (DNC) [Lan92] is a heavily integrated and
pipelined implementation. We use Xilinx chips for implementing the data paths and
Mach chips from AMD for implementing the control logic. The design integrates
the functionality of MAP and MBP in one pipeline design. The ASM is a 60 ns
single-ported SRAM. The choice of SRAM, rater that DRAM, simplifies the imple-
mentation. Its relatively fast access time is motivated by the modest implementation
technology used elsewhere (Xilinx), consuming much of the available access time.
The ASM is interleaved between lookups from MAP and MBP in such a way that
each one can do a lookup every fourth cycle. This lookup frequency matches the
transaction frequency of the DDM bus. Transactions on the M bus take between
eight and twelve cycles. The lookup bandwidth required by the M bus is much lower
than its available bandwidth. All the write-back operations to the ASM are mapped
into M bus slots, so M bus transactions might sometimes be delayed four cycles. For
simplicity, we decided to make the very first implementation of the attraction mem-
ory direct mapped, as described in Section 6.2.3. The implementation details of the
DNC lie outside the scope of this dissertation [LLH91].

The TP881V has a small part of its address space allocated to control registers. The
control registers of the device circuits, the interrupt circuit, and the control registers

114

DDM Prototype Implementation

DDM bus
o TP881V :
3 R ORY Interface [~ ?t?/sxld),(2 :
(AM Data) — Ethernet
DNC - I ~ - | _ M bus
' I I [T I 1 [I
AM Cache || |Cache || [Cache || |Cache
State || ¢ [mMmu || [MMU || [MMU || [MMU
3 VB : [[T [T [T

Figure 6.4: The implementation of a DDM node consisting of four processors sharing
one attraction memory.

of the CMMU are mapped into this space. The original system uses this address
space for sending software interrupts between the processors, and for managing the
address-translation caches of the CMMUs. The DNC maps the control spaces of all
the other nodes into a special “non-attraction” part of each node’s address space,
allowing for remote write accesses. This entitles any processor to send a software
interrupt to any other processor. It also enables any processor to invalidate the
contents of the address translation cache of any other processor, helpful for “TLB
" 1.e., the coherence actions involving the MMUs necessary when a page
table entry is modified.

coherence,’

The protocol in the DNC has one more optimization than the protocol described
earlier. The device sending an erase to the topmost bus can send a write acknowledge
to its subsystem immediately, removing the need to involve the top. This speeds up
the write response for sequential consistency.

A DDM node consists of three VME-sized cards: a processor module including
32 Mbytes DRAM, a base module card with SCSI and Ethernet interfaces, and the
DNC card. We can fit six DDM nodes, power, and directory into a VME rack
with 21 slots. The directories are yet not designed, but could be implemented using
DNCs with small modifications. Figure 6.5 shows a possible packing technology for
a large DDM. With an integration higher than the one used in our prototype, eight
processor clusters will fit in a box rather than six. Up to a two-level DDM can
rely on buses. The second-level split buses connecting eight clusters are 30 cm long.
A DDM of three levels must rely on point-to-point connections at its top. Each
point-to-point link is about 60 cm long.

115

6.3 Prototype Implementation

50cm

1st level bus i3 procs

8 nodes

il -

32 processor cluster

28cm

Pow| |

2nd I/evel buses

/

Dir Dir

Pow Pow

Pow Dir Dir Pow

256 processor system
K" Link E """"""""""""""""""""""""""""""""""""" E

<\ 1 1024 procs

= sm— I

256 Proc. 256 Proc.

|256 procs | |256 procs | |256 procs | |256 procs |

1 024 processor system

Figure 6.5: The packing technology used for the DDM prototype, and its possible ex-
tension.

6.3.4 The Performance of the DDM Node

Read accesses to the attraction memory take eight cycles per cache line—one more
than the original TP881V system. Write accesses to the attraction memory take
twelve cycles compared to ten cycles in the original system. A read/write mix of
3/1 to the attraction memory results in access time to the attraction memory being
on the average 16 percent slower than the original TP881V memory.

Since the directory has yet not been designed, its latency is estimated based on the
numbers from the DNC design. A remote read to a node on the same DDM bus
takes 60 cycles at best, most of which are spent making M bus transactions (a total
of four accesses). Read accesses climbing one step up and down the hierarchy add
about 55 extra cycles. Write accesses to state S take at best 35 cycles for one level

116

DDM Prototype Implementation

CPU State Delay, one Delay, two
access | in AM | level (cycles) | levels (cycles)

read I 60 115
write S 35 60
write I 70 145

Table 6.2: The remote latency in the prototype DDM.

and 60 cycles for two levels, as shown in Table 6.2. To these numbers must be added
an extra latency of four cycles for going through the processor caches.

6.4 Memory Overhead

Extra memory is required to store state bits and address keys for the set-associative
attraction memories, as well as for the directories. We have calculated the extra bits
needed if all items reside only in one copy (worst case). An item size of 128 bits is
assumed; it is the cache-line size of the Motorola MC88204.

A 32-processor DDM, i.e., a one-level DDM with a maximum of eight direct-mapped
attraction memories, needs three bits of address tag per item, regardless of attraction
memory size. As stated before, item space is no larger than the sum of the sizes of
the attraction memories. Each attraction memory is one eighth of the item space.
There are eight items that could reside in one set. Three bits are needed to tell
them apart. Each item also needs four bits of state. An item size of 128 bits gives
an overhead of (3+4)/128 = 5 percent.

By adding another layer with eight 8-way set-associative directories, the maximum
number of processors comes to 256. The size of the directories is the sum of the sizes
of the attraction memories in their subsystems. A directory entry consists of six bits
for the address tag and four bits of state per item, using a calculation similar to the
one above. The overhead in the attraction memories is larger than in the previous
example because of the larger item space: six bits of address tag and four bits of
state. The total overhead per item is (64+4+6+4)/128 = 16 percent. A larger item
size would, of course, decrease these overheads.

117

6.4 Memory Overhead

S

The DDM prototype is near its completion at the Swedish Institute of Computer Sci-
ence. The prototype DDM s built with commercially available MC88100 processors.
The design ties the copy-back caches and instruction caches of four processors to an
attraction memory sized 32 Mbytes. We base our design on a computer system by
Tadpole Technology to cut the design effort. A small overhead in access time and
memory size is observed in the design.

118

Simulated Performance of the
DDM Prototype

IMULATION is a core technology for research in the computer architecture field.

It is important to evaluate architectural ideas using large realistic programs and
problem sizes. An attempt in that direction was presented in the quantitative study
in Chapter 4. Rather than cover a large design space, which was the driving force of
the quantitative study, this chapter presents a simulation study aimed at accuracy
and detail for one specific architecture—the prototype DDM.

We developed an execution-driven simulation environment, which can run parallel
programs written in C. A detailed DDM simulator describes the prototype DDM. It
allows us to study the behavior of the prototype and to collect statistics one cannot
gather in a real implementation. However, it has a slowdown of approximately 1000
times, which limits the problem size of the studied programs. Nor does it take the
effect of the operating system into account, which is another major drawback.

The simulation of the DDM shows encouraging behavior for the studied programs.
We present our simulation method, the performance of the DDM, and some internal
dynamic statistics. We also study the effects when the data set is changed and the
communication locality explored in the SPLASH programs. Finally, the behavior of
the TLB accesses on a COMA s studied.

120

Simulated Performance of the DDM Prototype

7.1 Simulation Technique

In order to produce interesting simulation results, the study of a parallel architec-
ture should involve the following components:

—_

. Efficiency, allowing for long runs and large working sets.
2. Large real applications.
3. A realistic model of the architecture.

4. Efficient and flexible analyzing tools.

The DDM simulator has gone through three distinct phases. A first trace-driven
simulator, implemented in Prolog, described and debugged a protocol similar to
the one described in Chapter 5. This simulator was based on hierarchical time
control. Based on the same time control, a second, more efficient and more detailed,
trace-driven simulator was developed in C++. It modeled the prototype DDM as
described in Chapter 6. As a third step, this simulator was turned into an execution-
driven simulator.

7.1.1 Modeling the DDM

Controlling time can be time-consuming in a simulation of a parallel architecture.
One method is to advance each processor one cycle at a time, another method is
to order events in some event queue. Both methods can lead to high overhead in
time control. Instead, our simulator is built using a hierarchical time control, and
explored the hierarchical structure of the DDM architecture in the time control.
The simulator is driven from the top of the hierarchy. The OA buffers underneath
the top bus first arbitrate for the bus. If any of them wants to send a transaction,
the time on the top bus is advanced with the time the bus is occupied for sending
that transaction. Otherwise, the time is advanced just one time step. During that
time, none of the subsystems can talk to each other, and therefore their time can
individually be advanced the same amount of time. This hierarchical time control
method is used throughout the hierarchy all the way down to the roots. It allows
for time to advance in larger steps at the roots.

The C4++ simulator [L6f90] is parameterized with data from our ongoing prototype
project, and accurately describes its behavior. It has partly been used for perfor-
mance evaluation, and partly for protocol debugging. The M bus and the protocols
of the CMMU are modeled according to the user manual [Mot89]. The page-address
translation cache, corresponding to a translation-lookaside buffer (TLB), is modeled

121

7.1 Simulation Technique

with 56 entries. On a TLB miss, all necessary transactions are sent on the M bus. A
page-translation descriptor is retrieved from a faked page handler, implemented as
a C++ object. The page handler has a scrambled free list containing item-identifier
pages not in use. The first time a virtual page is touched, a new page is allocated
from the free list. No penalty is added for “reading from disk” since we assume that
all pages are already in the machine when the simulation starts. The DDM initially
has empty caches and AMs. The first read request for each item is sent to a special
AM, which makes all necessary transactions for returning the data.

7.1.2 Modeling the Processors

Traditionally, the simulation of multiprocessors has been trace-driven [EK89]. Files
containing address traces from execution on a shared-memory architecture are pro-
duced by some tracing tool. The files are later used as inputs to an architectural
simulator. Trace-driven simulation has three major drawbacks.

1. A multiprocessor with an appropriate amount of processors is needed to pro-
duce the traces, i.e., it takes a supercomputer to build one.

2. The files with address traces are huge. Modern processors can execute around
100 Minstructions and make 25 Mdata references per second. Simulating one
multiprocessor consisting of 100 processors running for one second would re-
quire trace files of around 50 Gbytes (125 Maddresses * 4 bytes * 100 proces-
SOTS).

3. Trace-driven simulation of a multiprocessor system faces serious validity issues
since it cannot represent the interaction of processes in the target architecture
correctly [Bit90]. The relative speed between processors on the architecture
generating the traces might differ by as much as 20 percent from that of the
simulated target architecture.

Originally, we used Abstract Execution (AE) [Lar90], a modified GNU-CC compiler,
to produce memory traces and adapted the trace-driven method. Programs compiled
with AE write a minimum of information to a file when executing. We ran our
parallel application as several parallel time-sliced processes on a SPARC station, and
produced one file per process. The AE tool also produces an unpacking program,
a road map, that turns the saved information into address traces, both data and
instruction addresses. We used the road map to later unpack and feed the traces
into the simulator. AE traces virtual addresses. We modified the unpacking program
to translate from virtual addresses to unique addresses, a necessity for simulating
a COMA. UNIX has a function called mmap to set up its shared memory. The
translation tables were generated by trapping the mmap function.

122

Simulated Performance of the DDM Prototype

Using AFE to produce memory traces from the execution of parallel applications has
several advantages. AFE can be used on an ordinary SPARC station, i.e., it does not
take a supercomputer to build one. AE only saves a small amount of information
on the file, which reduces the problem of the large files by one order of magnitude.
The validity problem of trace-driven simulation remains, however. Using the AE
trace-method on a single workstation may magnify the error, since each process is
run for a time slice at a time.

7.1.3 Execution-Driven Simulation

SAMPLED

SIMULATION PROCESS

HW

EVENTS

]]
L] L] L] L]
F’OSt—'
processing
read, A read, A read, A read, A
write, A write, A write, A write, A
instr, A instr, A instr, A instr, A

Application gccAE @ @ @ @ [ijc\s‘

ACCESSES yACCESSES yACCESSES ACCESSES

-
SPARC MEMORY {

Figure 7.1: The structure of execution-driven simulation.

Inspired by the Tango simulator at Stanford [DGH90], we modified our trace-driven
system to become execution driven. It models the parallel applications as if they
were running on a real physical implementation of the architecture.

Instead of having each application process writing to a file, their trace information
is immediately translated to unique addresses, and sent to a process simulating the
DDM on the fly, as shown in Figure 7.1 The execution speed of each process is deter-
mined by how fast the information in its stream is consumed by the simulated DDM
architecture, stalling the application process if necessary and making the relative
execution speeds of the processes that of their execution on the DDM architecture.
All simulation results reported here are produced using this method.

The simulation model is instrumented with counters of hardware events, periodically
sampled into a large statistics file. The technique has been used to simulate up to
196 processors running programs of up to 2 CPU minutes simulated single-processor

123

7.2 Simulating the Prototype

time. The simulation currently runs the programs 1000 times slower than execution
on a single SPARC station. The number of simulated processors has a small effect
on the slowdown if the application simulated has an ideal speedup, which allows for
large machines running large applications to be studied.

The sampled statistics are processed after the completion of the simulation runs.
From each simulation run, several hundred plot files may be extracted, allowing for
the dynamic internal behavior of the architecture to be studied. Only a fraction of
the information obtained is presented here.

7.2 Simulating the Prototype

We studied the behavior of the DDM by running three of the programs used in the
quantitative study (Chapter 4). We identified one of them, MP3D, as the toughest
one for a COMA. The other two, Cholesky and Water, appeared midway through
the applications in that study. They are interesting since they represent two differ-
ent program behaviors. Water is statically scheduled with barrier synchronization,
and Cholesky is dynamically scheduled and uses a task queue as its means of syn-
chronization.

7.2.1 Pitfalls

In Chapter 2 we discussed pitfalls to watch for when scalability and efficiency were
calculated. Identical pitfalls exist when simulating an architecture. The simulation
speed limits the simulation study to a small and often unrealistic problem size.
Often, the data-set size per processor is comparable to the size of the first-level
caches. If the number of processors is increased while the problem size is held
constant, the data set per processor will decrease. This leads to the positive effect
of increased hit rates in the small caches when the data set suddenly starts fitting
into the caches. One can imagine applications for which the hit rate can change from
zero percent to almost one hundred percent as the number of processors increases.
By choosing parameters correctly, any architecture with small first-level caches can
display an attractive speedup. Actually, superlinear speedup, i.e., efficiency greater
than one, can be achieved.

If the problem size is small enough to fit in the processor cache of a single processor,
the positive effect of an increased hit rate in the first-level caches will not be so
large while increasing the number of processors. However, if the whole problem
set fits in the small caches, COMA-like behavior can be seen even for non-COMA
architectures.

124

Simulated Performance of the DDM Prototype

A third problem arises if the problem size is too large. If the data set for the whole
application cannot fit into the local memory of a node, the cost of remote accesses
is paid when the application is run on a single processor. When the number of
processors is increased, the data set per processor might suddenly fit in local memory.
The result is similar to the positive caching effect. This may also result in superlinear
speedup.

Ideally, problem size should be scaled to the number of processors, unless the ap-
plication is run normally with a small data set. This can be done on real machines,
but is harder to achieve on a simulator, since the simulation time for a large system
would be too long. When simulating with constant problem size, care must be taken
to identify—or avoid—these effects.

7.2.2 Simulation Setup

Here, three programs from Stanford Parallel Applications for Shared Memory
(SPLASH) [SWG91], MP3D, Water, and Cholesky, and one matrix multiplication
program are used. The SPLASH programs represent applications used in an engi-
neering computing environment. They are written in C and use the synchronization
primitives provided by the Argonne National Laboratory (ANL) macro package.
They were developed for the FEncore Multimax, a UMA architecture with small
caches tied by a single bus to a single shared memory. In Chapter 4, we identified
MP3D as the toughest one for a COMA which makes it interesting to study, while
Cholesky and Water, appeared midway among the SPLASH applications. They are
interesting since they represent two different program behaviors. Water is statically
scheduled with barrier synchronization, and Cholesky is dynamically scheduled and
uses a task queue as its means of synchronization.

The original versions of the programs are used. One of them, MP3D, was also studied
in two versions that were rewritten to make better use of the data diffusion ability
of a COMA. An additional application, Cholesky, was simulated using a modified
hierarchical scheduler.

We used the largest problem sizes that our patience could bear, i.e., a simulation
time of about one day per run. Still, the problem size was far from realistic in many
cases. We tried to identify this by exploring what would happen to the architecture
when the data set was increased. The nature of a COMA, with large resources for
“second-level caches,” should have made the DDM less sensitive to the small-cache
effect. Actually, a better hit rate in the data caches resulted in a poor hit rate in
the AMs, and vice versa.

The numbers we present are for DDMs with only two or fewer hierarchical levels
and clusters of processors at the leaves, classified by their branch factor from top to

125

7.2 Simulating the Prototype

bottom T'x I x C, or T' x C, where:

T is the branch factor at the top DDM bus,
I is the branch factor at the intermediate DDM bus, and,
(' stands for number of processor in one cluster, sharing an M bus.

Many different protocols for the DDM have been designed [HLH91, LHH91]. The
simplest protocol, used here, provides sequential consistency, as described in Ap-
pendix B. The tables in the appendix are, in fact, IATRX output produced by the
simulator.

For configurations 1 x 1 and 4 x 1, the DDM network has not been simulated.
Instead, a 100 percent hit rate in the AM is assumed. The speedups presented in
the graphs are self-relative, i.e., compared to the execution time for 1 x 1. A hit
is defined as a read or write that can be completed without stalling the processor.
The hit rates for instructions in the processor caches and the AMs are close to 100
percent for all configurations and applications. The numbers reported for the data
cache (Dcache) and AM hits are for data only. The node miss rate, defined as the
ratio of accesses missing in both the Dcache and the AM, is also for data only.

We present our results in graphs where speedup is a function of the number of proces-
sors. For comparison, we also show the linear speedup (Speedup = # Processors)

and the algorithmic speedups (UNIT DELAY) reported by Singh et al. [SWG91].

The architecture modeled in this study differs slightly from the first DDM prototype.
The processor caches in the simulator are 16 kbytes, compared to 64 kbytes in the
prototype. This partly compensates for the small problem size in the simulation.
The attraction memory modeled is two-way set-associative, using the last-accessed-
memory technique, while the prototype implements a directly mapped attraction
memory. DNC functionality is greatly simplified in the simulator. The associative
state memory is modeled as if it was implemented by dual-ported memory rather
than interleaved between the two buses. We do not model contention for writes back
to the associative state memory.

For comparison, we also show the speedup for the DASH prototype [Len91] of 16 pro-
cessors for cases where the numbers reported are for comparative problem sizes. Al-
though these numbers are from real—not simulated—prototype hardware the prob-
lem size is about the same as for our simulations. The DASH prototype is built from
clusters of four 33 MHz MIPS R3000 processors. Each processor has write-through
64 kbytes instruction and data caches and a unified second-level cache of 256 kbytes.
The DASH prototype implements release consistency. DASH was presented in more
detail in Chapter 4.

126

Simulated Performance of the DDM Prototype

7.2.3 Application Performance

70 |
LINEAR

60 - UNIT DELAY]

.l DDM |

40 - .

Speedup

30 - —

20 .

10 L DASH |

0 ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80
Processors

Data Set 192 molecules 384 mols.
Topology Ix1] 8x4 [2x8x4]| 64xl 2x8x4 | 4x8x4
Hit rate Dcaches (%) 99 99 99 99 98.9 98.9
Hit rate in AM (%) 100 50 44 12 65 58
Node miss rate (%) - 0.5 0.6 0.9 0.4 0.5
Busy rate:M bus (%) 2 21 31 32 26 37
Busy rate:DDM bus (%) - 24 39 80 30 40
Busy rate:Top bus(%) - - 25 - 20 53
Speedup/#Processors 1/1 | 28.7/32 | 52/64 | (39.5/64) || 53/64 95/128

Figure 7.2: The speedup for WATER with 384 molecules running two time steps. The
unit delay is reported for 288 molecules and does not include cold-start
effects. DASH simulates 512 molecules.

Water is an N-body molecular dynamics application that evaluates forces and po-
tentials in a system of water molecules in the liquid state. It has a static scheduler
and uses barriers for synchronization. Water is simulated running two time steps

and 192/384 molecules.

The working set is only 320/640 kbytes. The execution time of this application is
O(n?) to the number of molecules, so simulating a real-sized working set is difficult.
The small working set results in an extremely good hit rate in the data cache.
Misses in the data cache are caused mostly by invalidation misses, which the AM
can do nothing about. The speedup shown for WATER in Figure 7.2 is almost
ideal. Some statistics are presented in Figure 7.2. Note the difference in the AM hit
rate between 64 x 1 and 2 x 8 x 4. The processors in a cluster share data in their

127

7.2 Simulating the Prototype

common AM, resulting in an increased hit rate for the four processors. Note, too, the
decreased node miss rate when the data set is doubled to 384 molecules. Running
this application with real-sized working sets will continue to provide impressive hit
rates for large attraction memories.

70 | |
LINEAR
60 - -
50 UNIT DELAY |
40 -
Speedup
30 -
MP3D-DIFF
20 |- -
MP3D-DIFF-FS
10 -
M
ASH
0 I ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90
Processors
Application MP3D -DIFF-FS ~DIFF
Topology 1x1 | 2x8x2 2x8x2 2x8x2 [4x8x2
Hit rate Dcaches (%) 80 86 90 92 93
Hit rate in AM (%) 100 40 53 88 76
Node miss rate (%) - 8.4 5.0 1 1.7
Busy rate: M Bus (%) 40 86 76 54 53
Busy rate:DDM bus (%) - 88 83 24 29
Busy rate:Top bus(%) - 66 60 13 36
Speedup/#Processors 1/1 6/32 13/32 19/32 27/64

Figure 7.3: Speedup for MP3D with 75000 particles at steady state, i.e., the execution
time of steps two through five. The unit-delay curve is for 3000 particles.

MP3D simulates the pressure and temperature around an object flying at high
speed through the upper atmosphere. The primary data objects are particles
(air molecules) moving around in a 3-dimensional “wind tunnel,” represented by
space-cell objects. The simulation is performed in discrete time steps, in which
each molecule is moved according to its velocity and possible collision with other
molecules, the flying object, and the boundaries. The algorithm is parallelized by
statically dividing the particles among processors such that each processor moves
the same particles each time.

128

Simulated Performance of the DDM Prototype

Moving a particle involves updating the state of the particle and the state of the
space cell where the molecule currently resides; in other words, all processors write
to all space cells, resulting in poor locality. Between each move phase, some admin-
istrative phases are performed, like moving or removing particles from the entrance
of the wind tunnel and calculating collision probabilities for each space cell. Simu-
lating 75,000 particles and 14x24x7 space cells results in a total work space of about
4 Mbytes.

MP3D is normally run with the whole memory filled with data objects, mostly
particles. The algorithm has poor locality, especially in the move phase, resulting
in poor scalability on the DDM, as for other architectures. MP3D is normally run
for many simulation steps. To avoid the cold-start effect in our tables, we present
the steady-state behavior of the last four simulation steps.

100

90 N [\4 "MP3D’ —

80 L 'MP3D-DIFF” — _|
70 - 2

AM hit 0T i
1t

40 o anduitd A S VAN _
30 - -
20 -
10 -
0 AVSEW I I I

12M

AM 8M
Cycles

Figure 7.4: Dynamic behavior of the hit rate in one attraction memory over time for the
original MP3D and the modified version MP3D-DIFF on the topology 2x8x2.
The move phases of the last four simulation steps can easily be identified by
their higher hit rates. The first step includes the cold-start effect and takes
longer time. The execution time of the last four steps represents the steady-
state behavior of the simulation. The improvement of MP3D-DIFF by about
three times comes partly from an increased hit rate in the processor caches
from 86 percent to 92 percent (not shown here).

MP3D-DIFF is a rewritten version of the program, where a better hit rate is
achieved [And91]. The distribution of particles over processors is based here on
their current location in space [SWGI1]; in other words, all particles in the same
space cells are handled by the same processor. The update of both the particle state
and the space-cell state is now local to the processor. When a particle is moved
across a processor border, its data are handled by a new processor; i.e., the particle

129

7.2 Simulating the Prototype

data diffuse to the attraction memory of the new processor. The rewriting adds
some 30 extra lines.

The move phase is now optimized, since most operations are local to the proces-
sors. Only the diffusion of particles generates traffic. Efficiently supporting such a
diffusion of the major data structure requires a COMA architecture. In a COMA,
the particle data that occupy the major part of the physical memory are allowed
to move freely among attraction memories. Rewriting the same code for a NUMA
involves adding one extra layer of indirection in accesses to the particle data and
explicitly copying particle states between the local memories.

The move phase that is the dominant phase of the application now shows an im-
proved speedup. The move phase that accounted for 93 percent of execution time on
a uniprocessor now occupies around 50 percent of execution time on 32 processors.
Improving speedup above 32 processors means optimizing the other phases, since
they now are the dominant part of the execution.

MP3D-DIFF somewhat improves the communication locality of the application.
Adjacent space cells are handled by adjacent processors. This improves the locality
in the diffusion of particles. As the number of processors increase while the number of
space cells is constant, a negative effect on the node miss rate can be expected, since
the number of space cells per processor decreases, with increased particle diffusion
as a result.

The steady-state execution speed of the modified MP3D-DIFF is about three times
that of the original MP3D on 32 processors. The number of remote accesses is
decreased to about 10 percent of the original number. An earlier version of MP3D-
DIFF had each particle represented by 44 bytes, resulting in a fair amount of false
sharing, so that two processors wrote to different parts of the same cache line and
therefore appeared to share data, resulting in conflicting writes. The false sharing
disappeared when each particle instead was made 48 bytes to better suit our 16-
bytes cache line. The effect of false sharing can be studied as MP3D-DIFF-FS in
Figure 7.3, where all the different runs are compared. Figure 7.4 compares the hit
rates in the AM of the MP3D and MP3D-DIFF. Figure 7.5 shows the bus-busy rate
for MP3D and MP3D-DIFF. The MP3D clearly suffers from a serious bus-contention
problem on the second-level bus of our prototype. By changing the algorithm, the
communication rate drops, and the contention is gone.

Work on improving the cache behavior for MP3D has also been reported by Cheriton
et al. [CGM90]. In that study, machines with small caches were used. Such machines
are not practical when applying this method to real-sized problems.

Reported speedups for MP3D-DIFF and MP3D-DIFF-FS are relative to the execu-

tion of the original MP3D on a single processor.

130

Simulated Performance of the DDM Prototype

100 |
W 'MP3D’ j
80 'MP3D-DIFF’ — ||
Bus 60 I |
busy
rate
(%) 40 | i
20 \/\j V[
0 | |
AM 8M 12M
Cycles

Figure 7.5: The load on the second-level bus over time for MP3D and MP3D-DIFF

Cholesky factorizes a sparse positive definite matrix. The matrix is divided into
supernodes that are put in a global task queue to be picked up by any worker. Locks
are used for the task queue and for modifications in the matrix. We have used
two input matrices as input to the program. The large matrix besstklh occupies
800 kbytes unfactored and 7.7 Mbytes tfactored. Besstk 15 has a speedup of about 17
using 32 processors and seems to have potential for more speedup on larger DDMs
(Figure 7.6). The smaller matrix besstk14, which yields a worse speedup, has been
reported for the unit delay. Its input matrix occupies 420 kbytes unfactored and
1.4 Mbytes factored. Its speedup on 32 processors is 9.6.

From the numbers in Table 7.6 it is interesting to note that the larger matrix not
only has a better speedup, but also produces less traffic. It is divided into larger
supernodes than the smaller matrix, resulting in more local execution per commu-
nication unit.

This application really highlights the danger of drawing general conclusions based
on a small data set. Any architecture with small first-level caches would report good
behavior for the small matrix because of a hit rate of 96 percent in the Dcache, a
node miss rate of around 4 percent. However, simulating the larger matrix (usually
neglected) would have resulted in an 11 percent node miss rate without a second-
level cache instead of the achievable 2.8 percent.

Cholesky-H The scheduler part of Cholesky has been modified so that each cluster
also has its own task queue, and task migration is hierarchical. Initially, all tasks
reside in one global task queue. All processors retrieve jobs from the global queue
and put newly created jobs in their local cluster queues. When the global queue
is empty, the processors start retrieving tasks from their cluster queues. When the

131

7.2 Simulating the Prototype

35 | |
LINEAR
30 MATRIX
25 | n
20 n
Speedup besstk1b
15 UNIT DELAY -
10 besstk14 -
5 |
0 I I I I I I I
0 10 15 20 25 30 35 40 45
Processors
Application Cholesky:bcsstk1h besstk14 || besstk14-H MATRIX
(large matrix) (small) || (hier.sched.) || 500x500
Topology Ix1 | 8x2 [2x8x2 || 2x8x2 2x8x2 8x4
Hit rate Dcaches (%) 87 88 89 96 96 92
Hit rate in AM (%) 100 81 74 6 24 98
Node miss rate (%) - 2.3 2.8 3.8 3.2 0.16
Busy rate:M bus (%) 27 63 60 70 60 55
Busy rate:DDM bus (%) - 57 66 80 70 4
Busy rate:Top bus (%) - - 49 70 41 -
Speedup/#Processors 1/1 | 10.6/16 | 17/32 9.6/32 11/32 29.1/32

Figure 7.6: Statistics for matrix programs. The unit delay is for besstk14.

cluster queue is empty, a processor first looks for jobs in its binary brother cluster.

Secondly, the two binary cousins are checked for tasks, etc.

Not only are tasks

kept local to a bus this way, but the probability of retrieving a job related to one
the clusters previously worked on is higher. The most notable difference between

besstk14 and besstk14-H in Table 7.6 is that the traffic on the top bus has decreased,
even though the execution speed is about 10 percent faster. The reported speedup

is relative to the execution of the unmodified program on a single processor.

Matrix is a program multiplying two 500-by-500 matrices using a blocking
algorithm[LRW91]. The blocking algorithm is interesting, since it makes effective
use of caches. Once a portion of a matrix (a block) has been read to a cache, it is

used many times before being replaced with a new block.

LCalculated by toggling the least significant bit of the processor ID.

132

Simulated Performance of the DDM Prototype

The blocking algorithm is yet another example of part of the working set being
attracted and worked on locally, resulting in increased speedup and low commu-
nication. The algorithm has a block size larger than the data cache, resulting in
extensive use of the AM. The work space is about 3 Mbytes. It shows a speedup
close to ideal on a DDM (Figure 7.6), generating extremely little communication.
An even more optimal design would be to do the blocking in two levels, with very
large blocks kept in the AMs, and smaller blocks read to the data caches.

7.3 Communication Locality

In the quantitative study we assumed that communication between processors was
randomized and that the retrieval of data on a read miss did not explore the locality
in the hierarchy. How true that is for these applications can be seen by counting the
number of read transactions at each level and calculating their distribution. The
studied topology is 2 x 8 x 2. The reads on the buses are counted and divided
into three categories: reads on the top bus (top), reads on the two intermediate
DDM buses (ddm), and reads to disk (disk). The disk node is located on the top
bus. A read request going from one subsystem to the other appears twice on the
DDM buses and once on the top bus. A read request to the disk node appears
once on the DDM bus and once on the top bus. A read request that is local to a
DDM bus only appears on one DDM bus. Read attempts for the disk were deducted
and the fraction of the read attempts local to the lowest bus and not passing the top
was calculated as locality. Locality is the probability that a read request to another
attraction memory will be local to the lowest bus.

readsthroughtop = top— disk

localreads = ddm — disk — 2readsthroughtop = ddm + disk — 2top

local reads B ddm + disk — 2top
reads through top + local reads ddm — top

locality =

If the distribution of reads is random, 7/15 (= 0.47) of reads are local to a bus
and 8/15 pass the top bus. As can be seen in Table 7.1, there exists some locality
in the communication, but it is not excessive. This is not surprising, since the
applications were written for an architecture where communication locality did not
pay off. Extensive communication locality was only found in the modified versions
of Cholesky-H and MP3D-DIFF. In Cholesky-H, a read request is local to the lowest
bus with a probability of 0.78, while the probability for MP3D-DIFF is 0.80.

133

7.4 Speeding up TLB Fills

Application Top Disk | DDM | Actual | Random
Bus Read Bus | Locality | Locality
MP3D, 40000 particles 66385 598 | 203277 0.52 0.47
MP3D-DIFF, 40000 particles || 4360 415 24118 0.80 0.47
Cholesky, besstk14 358911 | 91990 | 952729 0.55 0.47
Cholesky-H, besstk14 197277 | 92411 | 668020 0.78 0.47
Water, 196 molecules 80482 | 13785 | 295246 0.69 0.47

Table 7.1: Calculating locality: What is the probability that a read access will be local
to the lowest-level DDM bus? The topology for all runs has been 2x8x2. For
MP3D and MP3D-DIFF steady-state numbers are reported, while the rest of
the reported numbers are for the full run.

7.4 Speeding up TLB Fills

30k - A

Data
MMU Miss Miss
Accesses
per
100000
cycles [/WW W\W
A N —
10k Data Miss [-

/ .

AM 8M 12M
Cycles

Figure 7.7: The sum of accesses to all attraction memories when running MP3D divided
into different categories. The area below the bottom line is the number of
hits made by data accesses. The area between the two lowest lines is the
number of access hits by the MMU. The next area is the number of data
accesses missing in the AM, while the small topmost area is MMU accesses
missing in the AM.

We have stressed the importance of simulating large working sets for appropriate
behavior in cache accesses. This is also true when simulating correct behavior for

TLB accesses. Our simulator models the MMU in the Motorola 88204 chip. The

134

Simulated Performance of the DDM Prototype

TLB has 56 entries and a FIFO replacement algorithm. Page size is 4 kbytes, so
a TLB might contain translations for 224 kbytes at the same time. In some of the
simulations, each processor accesses a much larger address space than that. This is
true of the MP3D with 75000 molecules. Figure 7.7 shows the accesses to the AM
when running MP3D, and Figure 7.8 shows the results from running MP3D-DIFF.
Data Miss and Data Hit represent the ordinary data accesses missing and hitting in
the AM. MMU Hit indicates the accesses of the MMU’s table walk that hit in the
AM, while MMU Miss indicates the missing ones. As can be seen in the figure, a
small fraction of the MMU accesses miss in the AM during the first time step, after
which the AM contains all the page descriptors of interest to the processor and will
serve as second-level cache for the MMU as well. During the following time step, the
hits in the AM by the MMU account for 10 percent of all its hits. If these accesses
instead had resulted in remote accesses, performance would have been decreased by
five to ten percent.

Datd Miss:
80k |- | '; R

MMU Hit:

Accesses
per

100000

cycles
MMU Miss
20k Data -
Data Miss Hit
MMU Hit

5M
Cycles

Figure 7.8: Accesses to attraction memory when running MP3D-DIFF divided into dif-
ferent categories.

The task of caching MMU accesses is even more important in MP3D-DIFF, where
each processor makes almost random accesses in the data space of 4 Mbytes. If
every TLB fault made a TLB fill using slow remote accesses, much of the gain of
the modified algorithm would be lost. However, the data for the page table walk
is cached in the AMs, cutting delay and communication needs. As can be seen in
Figure 7.8, accesses made by the MMU account for about one third of all accesses
to the second-level cache. They are five times as frequent as data accesses that miss
in the AM. Fortunately, only a small portion of the MM Us—mostly when execution

135

7.4 Speeding up TLB Fills

begins—miss in the AM. After studying such behavior by the MMU, we should ask

ourselves if TLB and/or page sizes really are suited for multiprocessor applications

with large data sets.

136

Simulated Performance of the DDM Prototype

R
100
] E_—
95
& 904 mmm Node Miss
£ == Hit AM
= C—— Hit 1st Level
T
85
80
CHOLESKY MP3D -DIFF-FS -DIFF WATER

Figure 7.9: The effects of the large attraction memories increase with the size of the data
set. Here, the behavior of a small data set (to the left) is compared to larger
data sets (to the right) for some applications. For the MP3D applications,
the number of particles is increased while the number of space cells is held
constant.

A detailed execution-driven simulator of the DDM has been developed. It models a
detailed implementation of the DDM. Programs from the SPLASH suite with the
largest bearable problem size were used to evaluate the DDM. The importance of the
attraction memory increased with a larger data set (Figure 7.9). Good speedup was
reported for two of the three studied SPLASH applications. The poor locality of the
third application, MP3D, was tamed by restructuring its distribution of work from
being static to being dynamic. That restructuring also increased its communication
locality. Communication locality was also enhanced for Cholesky by adding hierarchi-
cal knowledge to its dynamical scheduler. Finally, the importance of a second-level
cache for the accesses made by the MMU was shown to be significant to performance.

137

Part 111

OPTIMIZING COMA

139

Prefetching—ROT

ISSES REMAIN even when caches of the largest possible size are used. The

goal of a one-percent miss rate, stated in Chapter 2, is met in the prototype
DDM only for a few parallel applications. For others, additional latency-hiding
techniques are needed. Prefetching a datum to the register bank or the cache prior
to a request by the processor is one method of reducing the misses.

The hardware-based prefetching technique presented here detects access patterns
made by the processor and brings expected continuation data closer to the processor.
The technique also adjusts the prefetch distance of the pattern so that the prefetched
data arrive right on time to be used. We call this right-on-time prefetching (ROT).

This chapter explains the technique and its usage. Results from uniprocessor simu-
lation and its effect on the DDM simulator are presented. Finally, some suggestions
for implementation end the chapter.

142

Prefetching—ROT

8.1 Introduction

The hit rate in the second-level caches of uniprocessors increases with their size,
but it has been shown generally to be much lower than that of a first-level cache.
This is true even when second-level caches are one order of magnitude larger. Most
of the locality is exploited by the first-level cache, and therefore never reaches the

second-level cache [SL88].

As mentioned earlier, uniprocessor cache misses are classified into three cate-
gories [HS89]. Clapacity misses are caused by a fixed cache size (the cache is too
small), conflict misses by too many active blocks mapping to a fraction of the sets
(not enough associativity), and compulsory misses by the cache line being touched
for the first time. The first two categories of misses can be avoided by increasing
the size of the caches, and the second category can also be decreased by more asso-
ciativity (more ways). Compulsory misses cannot be decreased without prefetching
and are the dominant cause of misses for uniprocessors with large caches [HS89].

All misses removed by the first-level caches belong to the first two categories, but
none of the compulsory misses are removed. Subsequently, accesses to the second-
level cache will have a higher ratio of compulsory misses. Table 8.1 shows the
numbers reported by Hill and Smith [HS89] for a trace from VAX 11 interactive
users under ULTRIX.

H Miss Rate Components for a First Level Cache H

Cache size | Degree of | Total miss | Compulsory Ratio of misses
(bytes) associativity | ratio (%) | misses (%) | being compulsory (%)
16k 4 5.0 0.9 18
32k 4 3.8 0.9 23
64k 4 2.8 0.9 32
128k 4 1.6 0.9 55

Table 8.1: Numbers reported by Hill and Smith, page 1625.

From the table we can see that:

o First-level cache: 32 kbytes, second-level cache: 128 kbytes. A two-
level cache system with a first-level cache of 32 kbytes has a miss rate in the
first level of 3.8 percent. A cache of 128 kbytes has a 1.6 percent miss rate;
in other words, the miss rate in the second-level cache, sized 128 kbytes, is
1.6/3.8 = 42 percent. Of the misses in the second-level cache, 56 percent are
compulsory misses (0.9/1.6).

143

8.2 Existing Prefetching Techniques

e First-level: 32 kbytes, second-level: co. An infinite second-level cache
connected to the 32 kbytes first-level cache would have a 24-percent miss
rate(0.9/3.8), completely compulsory.

e First-level: 128 kbytes, second-level: co. A first-level cache of 128 kbytes
and an infinite second-level cache would have resulted in a 55-percent miss
rate in the second-level cache, completely compulsory.

From these numbers we can conclude that the benefits of techniques removing com-
pulsory misses in uniprocessors can be equal in importance to the benefits of large
second-level caches.

This introduces a need for second-level prefetch strategies, just as there is a need
for second-level caches. Unnecessary traffic is to be avoided; yet, the strategy might
require prefetching data far ahead of its use. The head start by the prefetcher is
determined by three factors: frequency of accesses to data to be prefetched, size
of the prefetch quantum, and the remote delay. The miss frequency is difficult to
determine and might be as frequent as every cycle. The remote delay might vary
for different parts of the address space (e.g., NUMAs and architectures with a cache
hierarchy) and might also be affected by current workload.

8.2 Existing Prefetching Techniques

Prefetching is discussed below divided into two groups: hardware-controlled and
software-controlled prefetching. These have different properties and might very well
coexist in a complementary fashion.

8.2.1 Hardware-Controlled Cache Prefetching

Fetch Always prefetches the next consecutive address for each access to a cache
regardless of whether it is a hit or miss in the cache. This technique removes many of
the misses, but is clearly impractical since too many prefetches have to be performed.

Prefetch On Miss fetches the next cache line as well as the current one on a
cache miss. It halves the number of misses for a purely sequential address reference

stream [SL88].

Tagged Prefetch associates a tag with each cache line. When a block is fetched
(or prefetched), a tag associated with the block is set to zero. Accessing a block with
a tag equal to zero advances the tag to one and causes a prefetch of the successor
block. This method differs from the previous one in that it prefetches on a hit
rather than on a miss. This can reduce the number of misses in a purely sequential
reference stream to zero, given that the latency of the prefetch is short enough.

144

Prefetching—ROT

Stream Buffers [Jou90] can provide a larger prefetch distance. The prefetching
distance is the number of pipelined prefetches needed to avoid misses. Each miss
triggers a prefetch stream to start. A stream buffer organized as a FIFO prefetches a
fixed number of cache lines starting at a cache-miss address. The buffer is placed by
the side of the cache. The address of the head entry of the FIFO buffer is compared
to all accesses from the processor. If there is a match, the data of the head entry
is removed from the buffer and sent to the processor, and another cache line is
prefetched from the memory to the buffer.

8.2.2 Virtual or Physical Addresses?

Should the prefetching be performed on virtual or physical addresses? In general,
that question cannot be answered by the prefetch designer, who must adapt to the
existing architecture. Most computers have physical caches, i.e., the translation from
virtual to physical addresses takes place between the processor and the first-level
cache. In such systems, the prefetching scheme monitors and prefetches physical
addresses. A prefetched stream of addresses passing a physical page border might
continue on to another physical page, and the prefetching should be discontinued.
Passing a page border can be detected by the least significant bit of the page-address
toggle when the next address to prefetch is calculated. Some operating systems can
allocate adjacent virtual pages to adjacent physical pages; crossing a page border
would then be no problem.

Some systems have their MM Us located in the second-level cache [WBL89], allowing
the prefetcher to monitor virtual addresses. This has the advantage of monitoring
contiguous addresses when page boundaries are crossed. Indirectly, prefetching vir-
tual addresses automatically prefetches TLB entries as well. Fatal MMU errors
caused by eager prefetching must be avoided, however, possibly by adding a differ-
ent type of prefetch operation.

8.2.3 Software-Controlled Schemes

Software-controlled schemes prefetch virtual addresses. Typically, the compiler tries
to move the loads as early as possible, thus prefetching the values to registers. The
CPU is not stalled on loads. Only a register without a value that is used as an

operand stall the CPU.

The values can also be brought into the processor cache prior to use. Special
prefetching instructions—mnonblocking reads and writes provided by modern CPUs—
are used for this purpose [GHG91]. The prefetch instructions can be inserted into
the code by the programmer or the compiler. Other software-controlled schemes

145

8.3 Right-On-Time Algorithm

involve extra hardware support, where a special prefetching cache, separate from
the processor cache, is implemented [KLI1].

Most software prefetching inserts the prefetch instruction manually. The compiler
technology of tomorrow may be able to insert prefetch instructions automatically.
Most of the prefetching is done in loops, where data for the next iteration is
prefetched. The next iteration may access the next consecutive word, or a word
on a fixed offset from the previous access—the stride between accesses. The differ-
ence between accessed addresses can be any distribution function, but can still often
be determined at the cost of some extra address calculations. Very few unnecessary
prefetches are generated outside the processor node. However, in order to cover all
misses, many more prefetch instructions than what is necessary are sent from the
processor to the processor cache. This puts an extra burden on the scarce bandwidth
between the processor and the data cache.

Another interesting approach has been introduced to the WM architecture [Wul88].
Hardware streams initiated by software represent a sequence of addresses. The
stream is accessed like any register. Reading a stream returns the data value of the
current address and automatically generates the prefetching of the next value in the
sequence. The stream therefore both works as an automatic address incrementer
and as a prefetcher.

8.3 Right-On-Time Algorithm

A simple algorithm can meet the needs of second-level prefetching. Called right
on time (ROT), it monitors accesses to a cache. Prefetching activity is started
or terminated. The prefetching distance is adjusted to suit the behavior of the
application and the load of the machine at the time. ROT can be designed to make
prefetches to any cache. This study focuses on prefetching to the second-level cache,
based on design experience from the DDM project.

ROT snoops the traffic on the bus between first- and second-level caches. Its input
is:

e Operation (read or write),
e Address accessed, and,

e Information on whether the access caused a hit or a miss in the second-level
cache.

ROT outputs an operation and an address to prefetch, sent to the second-level
cache as shown in Figure 8.1. If a separate input to the second-level cache cannot

146

Prefetching—ROT

Memory System/
Network
100 cycles
Second Level gpladan ROT
Cache
10 cycles f
op(addr)
hit/miss
Cache
1 cycle
CPU

Figure 8.1: Connecting a right-on-time prefetcher (ROT) to a generic three-level memory

system.
Create New
Prefetch Stream Stride
- - -
Prefetcher Stream Stride
Detector) Detector
o Stride
Inhibit Candidates

Read/Write Snoop Address
Cache Hit/Miss

Figure 8.2: The right-on-time prefetcher consists of three parts.

be provided, ROT can perform its prefetches by issuing its prefetch operations on
the bus between the first- and second-level caches.

ROT is designed with the hardware in mind. For now, we will concentrate on the
algorithm and leave the implementation issues for later. The algorithm consists of
three parts. One part detects new access patterns and initiates prefetching. Another
part keeps the prefetching alive as long as the accesses to the pattern continue. It
also dynamically adjusts the prefetching distances to meet the requirements of the
program and the architecture. A third part detects new strides between accesses.
See Figure 8.2.

147

8.3 Right-On-Time Algorithm

8.3.1 Finding a Prefetch Stream

At this point we assume a stride list of popular strides most commonly found in
access patterns. Initially, the stride list contains only one value: +1.

The addresses of accesses missing in the second-level cache are recorded on a miss
list. The address of each new miss in the second-level cache is compared with the
members of the miss list, starting with the most recent one. If a distance equal to
any stride in the stride list is found, a stream is suspected, and a prefetch stream
is created. The corresponding address is removed from the miss list. If no stream
is detected, the address is added to the miss list. Old elements of the miss list are
purged on a FIFO basis. Only addresses missing in the second-level cache check the
miss list.

8.3.2 Keeping a Prefetch Stream Alive

When a prefetch stream is created, the next address of the stream is calculated by
adding the matching stride to the most recently accessed address, and its value is
prefetched to the cache. The prefetched address is stored as the stream head of the
stream, and the stride is recorded as the stream stride. Fach new access is compared
with the stream head. A match in the stream head, called a stream hit, indicates
that it is indeed a stream. The next item to prefetch is calculated by adding the
stride to the stream head. The prefetch is performed and the stream head updated.
The prefetch is performed by issuing an operation of the same kind as the one that
stimulated the prefetch; in other words, a snooped read access results in a read
prefetch and a write results in a write prefetch. A stream hit in combination with a
miss in the second-level cache indicates a late prefetch, causing multiple prefetches
to be performed. Thus, the stream will adjust its prefetch distance until it has
the right amount of outstanding prefetches. The stream tail will store the most
recent prefetched address. When a prefetch distance of one is used, its value will be
identical to that of the stream head. A stream hit will inhibit any stream detection.

A large number of streams may be active concurrently. Old streams are reused using

the LRU algorithm.

8.3.3 Finding New Strides

The stride +1 is by far the most popular stride, but many applications may make
heavy use of other strides as well. The task is to find new, interesting strides quickly
and add them to the stride list. We assume that accesses with a new stride will miss
in the second-level cache and fail to detect a stream. Each such access will produce a

148

Prefetching—ROT

set of stride candidates by subtracting the current address from each of the addresses
on the miss list.

The stride candidates are compared with earlier stride candidates, kept on a stride-
candidate list. A frequency counter for each entry on the list tells how many times
that entry has been a candidate. When the counter passes a threshold, the candidate
is promoted to the stride list.

The number of stride candidates can be reduced greatly by examining only those
candidates whose absolute value is lower than a threshold. If ROT operates on
physical addresses, the threshold for interesting stride candidates should be much
less than half the address size of a physical page. Strides greater than that cannot
benefit by the ROT algorithm anyway, since they pass the page border before the
stream is detected.

In order to find interesting strides which are not multiples of the item size, the word
or byte address must be monitored by the prefetcher. Consider a stride of six words
between accesses and an item size of four words. The access pattern looks as follows:

item O item 1 item 2 item 3 item 4
lo 1 2 314 5 6 718 910 11 | 12 13 14 15 | 16 17 18 19 |

-~

Monitoring the item addresses only produces the following sequence:
item 0, item 1, item 3, item 4, item 6, item 7 ...

which is not easy to detect. If the word address had been monitored instead, a stride
of six would have been found.

8.3.4 Making Use of Prefetching

Prefetching can speed up several different categories of accesses, some of which are
listed below. Expected behaviors are described for software-based prefetching (SW)
and hardware-based prefetching (ROT).

e Strict sequential accesses, like some accesses to vectors or files, are handled
well by both techniques.

e Nonsequential accesses in a loop may require extra address calculation for
SW, which otherwise performs well. ROT performs well only if a stride can
be detected in the access pattern.

149

8.4 A Simple Example

o If a dynamic scheduler is used in a multiprocessor application, the need for a
prefetcher is accentuated, since the data set will move dynamically throughout
the computation. Given the constraints above, both might perform well.

e Process migration—the operating system decides to move the execution of a
process to a new processor. ROT can perform well, if the constraints above
are fulfilled. SW may fail, since it is impossible to determine at compile time
exactly when a process migration might take place.

o Cold-start effects, appearing when a program is started, are similar to process
migration. The ratio of compulsory misses is higher when the program is
initiated. ROT has a high potential to perform well.

e Copying blocks between processors can be used to implement message-passing
algorithms on shared-memory machines or used by the operating system to
handle pages. Both techniques can perform well.

e Prefetching contiguous blocks when reused after being replaced from a (direct-
mapped) cache. ROT can perform well, while SW might be completely un-
prepared for the misses.

8.4 A Simple Example

Figure 8.3 shows an access pattern to the second-level cache applied to an architec-
ture with and without ROT. In addition to “Hit Cache2,” ROT activity is presented.
The stride list contains two elements: +1 and -1.

The following ROT activities take place during execution:

read A The access results in a miss in Cache2. Cache2 fetches A. Address A is
compared to all stream heads (at this point none) and to the miss list, resulting in
no match. A is added to the miss list.

write B A hit in Cache2. (The item was already in the cache.) Address B is
compared to all stream heads (at this point none).

read A41 The missin Cache2 makes Cache2 fetch A+1. Address A+1 is compared
to addresses in the miss list (A) in combination with the stride list (+1,-1), resulting
in a match. A stream is created with stream tail = stream head = A+2 and stream
stride = 1. A+2 is prefetched by performing a read(A+2). Address A is removed
from the miss list.

150

Prefetching—ROT

Higher Level
Memory Sys.
ref(o
Cache2 pref(op) Studied it Cache2 || Hit Cache2 | ROT activity
Traffic w/o ROT with ROT
read A add miss list: A
read B X X
—t ROT read A + 1 pref: (read, A+2)
i read A + 2 pref: (read, A+3 & A+4)
write C add miss list: C
ﬁ read A + 3 X pref: (read, A+5)
read A + 1 X X
Cache studied write C -1 pref: (write, C-2)
traffic read A + 4 X pref: (read, A+6)
write C - 2 X pref: (write, C-3)
Proc.

Figure 8.3: Study of access behavior with and without ROT.

read A-+2 The miss in Cache2 in combination with the match for
stream head = A+2 makes the prefetcher fetch two items: A+3 and A+4. The
stream head of that stream is changed to A+3 and its stream tail is changed to A+4.

write C The access results in a miss in Cache2. Cache2 fetches C. Address C is
compared to all stream heads (A+3), resulting in no match. C is compared to the
miss list (currently none), resulting in no match. C is added to the miss list.

read A+3 A hit in Cache2. Address A+3 is compared to all stream heads (A+3),
resulting in a hit, changing stream head to A+4, stream tail to A+5, and prefetching
A+5 by read(A+5).

read A+1 A hit in Cache2. Address A+1 is compared to all stream heads (A+4),

resulting in a miss.

write C-1 A miss in Cache2. Address C-1 is compared to all stream heads (A+4),
resulting in no hit. C-1 is compared to the miss list (C), resulting in a hit for step -1.
A stream is initiated with stream tail = stream head = C-2, and stream stride = -1.
Item C-2 is prefetched by performing a write(C-2). Address C is removed from the
miss list.

read A4+4 A hit in Cache2. Address A+4 is compared to all stream heads
(A+4 and C-2), resulting in a hit for A+4. Its stream head is changed to A+5,
stream tail to A+6, and A+6 prefetched by a read(A+6).

151

8.5 Uniprocessor Simulation

Applications 2nd L. MR 2nd L. MR Increased Speedup
w/o ROT (%) | with ROT (%) | traffic (%) | with ROT (%)

grep 100 6 0.4 15

diff 52 2 0.5 12

awk 8 5 2 2

ccl 27 18 1.3 8

gas 55 12 0.15 18
bcopy 100 0 0.1 550

Table 8.2: Behavior of a two-level cache system using ROT with 8 streams and 32 ad-
dresses on the miss list. The reported miss rate is for the second level cache.

write C-2 A hit in Cache2. Address C-2 is compared to all stream heads (A+5 and
C-2), resulting in a hit. The stream head of the corresponding stream is changed to
C-3 and stream tail to C-3. Item C-3 is prefetched by a write(C-3).

8.5 Uniprocessor Simulation

We will first study a model similar to Figure 8.1 to determine the behavior of ROT
on a uniprocessor running UNIX utilities. Access delays of 1 cycle to the first-
level cache, 10 cycles to the second-level cache, and 100 cycles to the higher-level
memories are modeled. Accesses to higher-level systems can be issued only every
tenth cycle. The first-level cache is 16 kbytes, four ways, while the second-level cache
is 8 Mbytes, two ways. Cache-line size is 16 bytes for both caches. Grep, awk and
diff are well-known text-processing utilities. CC1 is the first part of the GNU-CC
compiler, and gas is the GNU-assembler. Bcopy is a highly optimized version of the
copying from one memory block to another.

The study, as shown in Table 8.2, only detected strides of +1 (i.e., cache-line-sized
strides of 16 byte). The system is configured with 32 addresses on the miss list and
8 stream objects. The achieved hit-rate improvements and speedups vary greatly.
All applications but awk make good use of ROT, while all of them produce small
amounts of extra traffic.

The beopy application shows a much greater speedup than the others. By only
looking at the improvement in hit rate, an equally large speedup could have been
expected from grep. The answer to the difference lies in how often the programs
make their accesses to the second-level cache. The version of bcopy used is highly
optimized and makes its accesses to the second-level cache often, which also lies in
the nature of the application. The other applications have a low access frequency
to the second-level cache, resulting in less speed improvements.

152

Prefetching—ROT

Appl. || MR for n streams (%) Appl. || MR for n miss addr.(%)

n=0 | n=1 | n=2 | n=8 n=0 | n=2 | n=4 | n=8
grep || 100 7 6 6 grep 100 6 5 5
diff 52 17 2 2 diff 52 2 2 2
awk 8 6 5 5 awk 8 5 5 5
ccl 27 17 17 18 ccl 27 19 19 19
gas 55 18 12 12 gas 55 13 13 12
beopy || 100 | 40 0 0 beopy || 100 0 0 0

Table 8.3: ROT miss rates with a miss list of 32 addresses while varying stream objects
and when holding the number of stream objects constant at eight while vary-
ing the length of the miss list. The reported miss rate is for the second-level

cache.
Appl. 2nd L. MR 2nd L. MR 2nd L. MR with
w/o ROT (%) | with ROT, stride =1 (%) | stride detection (%)

grep 100 6 6

diff 52 2 2

awk 8 5 4

ccl 27 18 15

gas 55 12 4
bcopy 100 0 0

Table 8.4: Behavior of a system with a two-level cache using ROT with 8 streams and 32
addresses on the miss list, with and without stride detection. The reported
miss rate is for the second-level cache.

Table 8.3 shows the applications’ sensitivity to the number of available streams.
For diff and bcopy, where two separate streams of data are processed, having two
streams instead of one is clearly advantageous. Other applications gain little from
additional streams. None benefits by more than two streams. The table also shows
that a miss list of two was enough for these applications.

Until now, only stride +1 has been simulated. Table 8.4 shows the benefits of
a stride detector in the different applications. The only application showing any
major reduction in miss rate is gas. Its miss rate is decreased from 12 percent down
to 4 percent.

8.6 Prefetching in Multiprocessors

Prefetching in a multiprocessor differs in some respects from prefetching in a unipro-
Cessor:

153

8.6 Prefetching in Multiprocessors

1. Bandwidth Overhead. Unnecessary speculative prefetches in a uniproces-
sor, performed when the memory bus is idle, will not worsen performance. In
a multiprocessor, however, a processor wasting the bandwidth of the common
network might worsen the performance of some other processor. For many
multiprocessors, the bandwidth is the bottleneck of the system.

2. Cache Coherence. A prefetch scheme using data buffers in a coherent sys-
tem must make sure that stale copies are not kept in the buffers and that
coherence is not violated. Prefetches that bring data outside the scope of
cache coherence are said to be binding, while prefetching to a cache is called
nonbinding. Prefetching to registers is one example of the binding type.

3. Prefetch Distance. The prefetch distance, defined as the number of itera-
tions between issuing a prefetch and using it, must be large for many applica-
tions because of frequent accesses to the stream and a long latency for remote
accesses.

The introduction of caches into computer systems often results in behaviors that
are difficult to predict. By just looking at a code sequence, it is hard to estimate
the corresponding execution time without knowing the contents of the caches. The
contents of the caches depend not only upon past execution but upon the exact
organization of the caches.

In multiprocessors, such prediction is even more difficult, since the prior executions of
other processors and their invalidation patterns must also be taken into account. The
introduction of hierarchical caches [CGB89, Wil85] further complicates the picture,
considering the positive effect of active sharing, i.e., that the cache line may already
be prefetched by a cache miss issued by another processor in the same cluster.

For nonuniform memory architectures (NUMA) like the DASH [LLG%90], access
time to shared memory varies for different parts of the address space—yet another
complication.

Existing hardware-based prefetching techniques are not tuned to prefetching for
multiprocessors. Prefetching by stream buffers complicates the cache-coherence task
for multiprocessors, involving the contents of the buffers in the protocols. Stream
buffers also produce a large amount of unnecessary prefetches. Tagged prefetching
does not allow for prefetching early enough to fill the speed gap. Both techniques
only allow for a stride of +1 between addresses of consecutive prefetches.

Software-based prefetching can perform better, but requires complicated analyses at
compile time to determine if a cache line is already in the cache and, if not, how far
away it is, 1.e., how early the prefetching must be performed. That task is even more
difficult if processes are allowed to migrate at run time. Often, more prefetches than
necessary are generated to cover all cases, sometimes even resulting in a slowdown.

154

Prefetching—ROT

Application 2nd L. MR, 2nd L. MR, Increased Speedup
w/o ROT (%) | with ROT (%) | top traffic (%) | with ROT (%)
Cholesky 93 52 7 9
Cholesky-H 87 51 14 11
MP3D 61 60 6 -5
MP3D-DIFF-FS 54 53 1 -2
MP3D-DIFF 12 12 3 3
Water 72 63 0 1

Table 8.5: Behavior of a 2 x 8 x 1 DDM system using ROT with 10 streams and 10
addresses on the miss list.

8.6.1 DDM Simulations

ROT has been incorporated into the DDM prototype simulator [Gri92]. Details of
the DDM architecture, simulator setup, and applications can be found in Chapter 7.
ROT default parameters include a miss list of 10 addresses and 10 stream objects.
No stride detection is enabled. Only strides of +1 are checked. ROT snoops the
transactions on the M bus. It monitors the retry signal of the M bus to detect
hits or misses in the AM. ROT can issue a new prefetch every eighth cycle. It
disables prefetching when a page border is crossed. A DDM configuration of 2 x 8
is simulated here, chosen to more easily isolate contention problems related to the
DDM prototype, not the ROT algorithm.

The applications are the same three as in the performance study of Chapter 7.

8.6.2 Simulation Results

The simulation results are shown in Table 8.5. Only the two versions of Cholesky
show any major gain from ROT. Their miss rates are halved, while communication
increases seven percent. They show a speedup in the 10-percent range. Compared
to results from other prefetch studies reporting speedups in the 30- to 40-percent
range [GHGT91], 10 percent sounds like a minor improvement. Ten percent is about
halfway to the theoretical maximum of the algorithmic speedup for 16 processors,
however, which is about 20 percent above the speedup achieved in the simulation
study reported in Figure 7.6. Other prefetch studies simulate much smaller caches,
which leaves room for greater improvements.

Water also shows a minor improvement in execution speed, while the extra traffic
generated is negligible compared to total communication. MP3D has a more irreg-
ular use of data. Of the three versions of MP3D, only MP3D-DIFF shows a gain in
execution time when ROT is used. The original MP3D actually shows a slowdown
of 5 percent caused by the extra 6 percent of traffic generated on the already heavily
loaded system. MP3D is a major disappointment for the ROT algorithm. This
is where a software-based technique can perform much better than ROT. Gupta

155

8.7 Implementation

et al. reported that execution speed improved 37 percent when they applied their
software-based technique to MP3D [GHG91].

MP3D-DIFF shows a strange behavior. Its hit rate is the same with and without
ROT, and its traffic increases with ROT. Still, it shows a speedup of three per-
cent. We have no explanation of this other than possible side effects from dynamic
scheduling and that some hot spots in the time domain possibly have been avoided.

It is difficult to justify ROT for a multiprocessor based on the above results. A clear
gain in one application does not motivate extra hardware if another application
shows a clear loss, although a slowdown for some applications is not uncommon for
prefetching schemes. To remove the negative results of ROT, we propose a very
simple enabling mechanism turning on and off the prefetching of data, called ROT
enabling. The mechanism adds two counters, one counting issued prefetches, and
one counting prefetch hits. After a certain number of issued prefetches, the number
of prefetch hits should be above a certain threshold, or the prefetching activity is
turned off. The ROT prediction algorithm is still in operation, however, creating
and removing prefetching streams—only the prefetching action is disabled. This
enables the prefetch and hit counters to continually evaluate what the effect would
have been if ROT had been turned on. Counter results indicate when the prefetching
can be turned on again. A second simulation study was run with the ROT enabling
added. After twenty issued prefetches, the prefetch hit counter is checked. Eight or
less prefetch hits result in the prefetching being turned off.

The results from the run with modified ROT can be found in Table 8.6. Communi-
cation overhead for MP3D is cut to only one percent. Slowdown has also dropped
to one percent. Communication overhead for Cholesky has been cut to two percent,
while its speedup is maintained. The reason is that ROT prefetching is turned off
dynamically when access patterns poorly suited to ROT are observed and turned
on again when the pattern looks more promising. We believe that ROT enabling
effectively prevents large communication overheads and avoid negative effects on
performance.

Once more, MP3D-DIFF shows strange behavior with the ROT by decreasing its

traffic, while its hit rate is constant. The net result is a speedup of one percent.

8.7 Implementation

The ROT implementation described here is intended for prefetching physical ad-
dresses, a page size of 4 kbytes, and a cache line of 16 bytes. ROT is implemented
in three distinctive parts as described in the algorithm: prefetcher, stream detector,
and stride detector, as shown in Figure 8.2.

156

Prefetching—ROT

Appl. 2nd L. MR, 2nd L. MR, Increased Speedup
w/o ROT (%) | with ROT (%) | top traffic (%) | with ROT (%)

Cholesky 93 52 2 9
Cholesky-H 87 50 8 12
MP3D 61 61 0 -1
MP3D-DIFF-FS 46 47 1 -1
MP3D-DIFF 12 12 -1 1
Water 72 72 0 0

Table 8.6: Behavior of a 2 x 8 x 1 DDM system using ROT with 10 streams and 10
addresses in the miss list and the ROT enabling algorithm.

init step step j m prefetch add=r§
<™ -— '
| T

init addr | head

addressé stream hit =

Figure 8.4: Implementation of one stream object.

The stream detector is active only for accesses missing from the second-level cache.
In the DDM prototype, a new transaction is started on the M bus at a maximum
rate of approximately every eighth cycle. This rate can only be kept up if all accesses
hit in the AM, in which case the stream detector is completely inactive. Assuming
a hundred-cycle delay for remote accesses, the maximum frequency of misses is
every twenty-fifth cycle, assuming four processors which may miss every hundredth
cycle. The miss list need not be searched more frequently than every twenty-fifth
cycle. A miss list of 10 addresses can therefore be searched sequentially. It can be
implemented with a small memory and an ALU.

The prefetcher contains several stream objects. Each object contains a stream-head
register of 30 bits (a word address), a stream-tail register of 10 bits (the lower bits
of a word address), and a stream-stride register of 10 bits. The stream objects are
searched for a match between the current address and the contents of the stream-

157

8.7 Implementation

head register. A match (stream hit) will increment the contents of the stream head
with the contents of the stream stride.

The stream objects must be checked every hit, which might be as frequent as every
eighth cycle. Many stream objects may therefore be implemented in parallel. Their
simple structure, shown in Figure 8.4, nonetheless allows for cheap implementation.

Implementing a stride detector is quite similar to implementing the stream detector.
A stride list contains the most recently reported stride candidates, each with its own
counter. The entries in the stride list are replaced in a FIFO manner. If the counter
of an entry passes a threshold before it is replaced, a new stride is detected. This
list can also be implemented sequentially, given the time constraints.

The enable logic simply consists of two counters, one counting the prefetches and
the other counting the stream hits. When a certain number of prefetches have
been performed, the value of the stream-hit counter is checked to determine if the
prefetching should be turned on or off.

A hardware-based prefetching scheme was introduced. Its algorithm detected access
patterns and prefetched data ahead of use. The algorithm dynamically adjusted its
prefetch distance and turned itself off for sequences of poor prefetch statistics.

It performed well for most UNIX utilities and compilers studied. Bcopy showed
an tmproved performance of 550 percent. The only SPLASH applications studied
that benefit by ROT were the different versions of Cholesky, ROT removing half the
deficiencies toward the goal of a parallel efficiency of 1. Water gained marginally,
while the negative effects for MP3D were avoided by the ROT enabling strategy.

158

An Adaptive Write Update
Protocol

RITE UPDATE and write invalidate are the two most common techniques

for maintaining cache coherence in a multiprocessor. With the write-update
strateqy, the other shared copies are updated for each write. The write-invalidate
strateqy instead invalidates the other copies on a write, making the updated datum
the only cached copy in the system that entitles local writes in the future. Both
strategies suffer from drawbacks. By invalidating the other copies, write invalidate
introduces a new category of misses, invalidation misses, i.e., a read miss to a datum
that would have been in the cache if it had not been invalidated by another processor’s
writing. Write-update strategy does not have this miss category. The write-update
strateqy can, on the other hand, generate unnecessary traffic—the updated values
might never be used.

Strategies have been proposed to limit the traffic overhead of write update, by detect-
ing where the update strateqy is not a good fit, and instead switch to a write-invalidate
strateqy, e.g., competitive snooping [KMRSS8G6]. Competitive snooping relies on the
functionality of a dedicated signal on the common bus.

Here we describe an alternative adaptive protocol. The protocol is write invalidate
by default, but detects where write update is a good match and changes strategy.
It can return to the write-invalidate strateqy in a manner similar to competitive
snooping. The proposed strategqy does not rely on a single bus and has added support
for migratory objects.

Yet another source of cache misses in a multiprocessor is the share miss, i.e., in or-
der to maintain sequential consistency, a processor writing to a Shared cache line is
stalled until acknowledgement of its invalidations are received from all other caches
with a copy. We implement our write-update strategy using a weaker form of con-
sistency, and can therefore also remove this miss category.

160

An Adaptive Write Update Protocol

9.1 Introduction

With the write-invalidate cache-coherence policy, a processor writing to a Shared
copy invalidates all other copies in the system and therefore can guarantee coher-
ence. With the write-update policy, all copies are instead updated for each write.
Both strategies for maintaining coherence have their advantages. Write invalidate is
believed to produce less traffic for most applications, since communication between
different caches only takes place when needed, i.e., on a read or write miss. Traffic
is only generated the first time a processor writes to a Shared datum, after which
the writes will be local to the processor’s cache. Write invalidate suffers, however,
from invalidation misses caused by write invalidations, i.e., a read miss to a datum
which would have been in the cache if it had not been invalidated by some other
processor’s writing.

With the write-update strategy, update transactions keep remote cache contents up-
to-date on a write to shared data. Write update does not result in any invalidation
misses. The price is that traffic is generated for each write to a shared cache line,
not just for the first write. The updated values in the remote caches may never be
used, either because the values are not read by the remote processors before the next
update, or because the data is replaced before they are read—or simply because the
cache lines are no longer in active use by the remote processors.

In a COMA with large caches, many of the other causes of cache misses are reduced.
Capacity and conflict misses are small for reasonably-sized data sets. Chapter 8
described a method of removing some of the remaining misses. Weaker consistency
models have been shown to effectively to reduce share misses [GGH91]. In this
chapter we will explore the possibility of also reducing the invalidation misses by
means of write update. The multicast ability of the bus hierarchy is a good help in
that task.

This chapter first looks at the remaining misses in a COMA and a review of previous
work in the area of write-update protocols. Secondly, a first attempt at a write-
update protocol for the DDM is sketched, followed by a discussion about weaker
consistency models. A second attempt at a write-update protocol combines weaker
consistency models with some improved write-update methods. The chapter ends
with a performance study of the proposed protocols.

9.1.1 Misses in COMA Architectures

As discussed previously, the cache misses of uniprocessors are grouped into three
categories: capacity misses (the cache is not large enough), conflict misses (there is
not enough associativity), and compulsory misses (the datum is being touched for
the first time) [HS89]. We refer to the sum of these three categories as “uni misses.”

161

9.1 Introduction

Read Hit

W
)

Access
intensit W M
Y B Miss FN
1k 1
VVSﬁh;;evMiss /NMW\ v_’\/ ‘
VWV
0 Uni Migs L L Al
0 1M 8M 12M 18M

Time (Cycles)

Figure 9.1: Studying the number of accesses to an AM per 100000 cycles for MP3D
running on an 8 X 2 DDM. The accesses are divided into different categories.

When running statically scheduled parallel programs in steps, like WATER and
MP3D, compulsory misses disappear after the first step, since the whole problem
set has been touched. If the caches are large, the other two categories of uni misses
are also rare. Instead, the major sources of misses are invalidation misses and
share misses. The sum of these two categories is sometimes referred to as coherence
misses. In Figure 9.1 we present the total number of accesses for MP3D divided
into different categories. The uni misses almost disappear after the first step of the
simulation. Only the coherence misses remain.

Coherence misses can be caused by the following forms of sharing:

1. Producer-consumer sharing—where one processor writes to data while one or
many other processors read the datum.

2. Migratory sharing [GW92]—where many (or all) processors write (and read)
the datum. Using a write-invalidate protocol for migratory sharing has the
effect that the exclusiveness of an item will move among the processors.

3. False sharing—with two or more processors accessing different data from the
same cache line. At least one processor performs writes.

The different causes of misses and their traffic behavior are discussed in Section 9.4.4.

Write-update protocols have been proposed to eliminate coherence misses. However,
write broadcast may also create unnecessary traffic for many applications, throwing
a shadow over the positive effects of the improved hit rate. This is especially true

162

An Adaptive Write Update Protocol

for large caches. The performances of different cache-coherence strategies have been

studied by Eggers and Katz [EK89)].

9.1.2 Write Update

The best-known write-update protocol is probably the protocol used in the DEC
SRC Firefly [TSS88], a UMA architecture based on a single bus. The protocol uses
only three cache states, Valid Exclusive, Dirty, and Shared. A write is performed
locally to the first two states. If the cache line is in state Shared, the local value and
all remote values are updated by sending a write broadcast on the bus, updating the
remote copies. For each write broadcast, the other caches with a copy of the cache
line activate a wired-OR share line on the bus. If the share line is not activated
during a write broadcast, sharing ceases, and the cache line in the writing cache
goes into state Valid Exclusive, which enables a local write next time. The Firefly
protocol removes many cache misses but was shown by Eggers and Katz to produce
a large overhead in bus traffic.

9.1.3 Competitive Snooping

In competitive snooping [KMRS86], unnecessary updating is detected and stopped.
The updates to a cache line without any intermediate reads by the local processor
are counted. When the number of unused updates to the same cache line passes a
threshold, the copy is invalidated. The broadcasting cache detects when there are
no longer any receivers of its updates and puts the cache line in an exclusive state,
performing writes locally in the future. Eggers and Katz identified a large reduction
in communication overhead for one application when competitive snooping, instead
of the plain write update, was used. The remaining three applications in that study
showed a minor gain or loss.

9.1.4 Read Broadcast

Eggers and Katz also studied a write-invalidate protocol with a read-broadcast ex-
tension [SR84]. Read broadcast distinguishes between the implicit Invalid state
(Figure 3.2), with no address-tag match in a cache, and the explicit Invalid state,
where the address-tag matches and the state bits in the cache correspond to the
Invalid state. We refer to the explicit Invalid state as Deleted. A cache snooping
a read transaction on the bus for a cache line it has in the Deleted state will grab
a copy of the data and change to state Shared. Eggers and Katz identified this
method as being advantageous primarily in cases with a single producer and many
consumers, e.g., the pessimistic spin locks used in their study.

163

9.2 A First Attempt

9.1.5 Summary of this Study

Step by step, we show how we developed an adaptive write-update protocol for the
DDM simulator, including pitfalls and their solutions. Working toward possible
implementation proved to be very beneficial in understanding the problem and in
identifying the bottlenecks of each individual step.

We propose an aggressive strategy aimed at removing all coherence misses with a
small communication overhead. We evaluate the strategy and its effect through a
detailed implementation in the DDM prototype simulator.

Our study differs from that of Eggers and Katz [EK89] on several points:
1. Our architecture is multibus rather than single-bus; thus, the penalty for a
miss is much greater.

2. The protocol we study is a write-invalidate protocol by default and uses a
write-update strategy only for cache lines in which such behavior is detected
as being beneficial.

3. Our protocol uses a slightly modified turn-off strategy, thus supporting a wider
range of applications.

4. We introduce a special update cache cutting down the local traffic to a rea-
sonable level for especially difficult applications.

5. Our system has much larger caches: the attraction memories.
6. Our caches are second-level caches.

7. Our protocol does not rely on a single global wired-OR signal of a single bus.

9.2 A First Attempt

The goal is an adaptive algorithm for the DDM that turns on the write-update
policy for items for which it is beneficial, yet has no negative effect on other items.
For this purpose, the protocol of the DDM prototype has to be extended with a
write-update part. An item should be able to move back and forth between the two
strategies. The default strategy for an item should be write invalidate.

9.2.1 Adaptive Write-Update Strategies

Only cache lines involved in coherence misses benefit from a write-update strategy.
The first problem is to detect which items suffer from coherence misses, and to

164

An Adaptive Write Update Protocol

change their strategy to write update. An invalidation miss occurs if a datum,
which would have stayed in the cache, is invalidated between two consecutive reads
by the same processor. A share miss! occurs if a datum, not otherwise replaced, is
read by another processor between two consecutive writes by the same processor.
Both types of coherence misses can be detected in a cache-coherence protocol.

e Invalidation miss detection

Here we make use of the new state Deleted, used in a read broadcast. An item
that is invalidated by a coherence action is put in the Deleted state (D). The
item no longer contains a valid data value, and its space may be reclaimed if
needed. If the item remains in Deleted when a new read is performed by the
processor, a coherence read miss is detected. This is quite similar to the read-
broadcast strategy, where Deleted was interpreted as: “this processor read
this datum (not long ago), but it was (recently) invalidated—it might need it
again.”

e Share miss detection
This detection also requires a new state to be introduced. A cache line in
the Exclusive state (writing is allowed) that receives a read request from the
network is put in the Shared Was Exclusive state (SE) in the local cache,
having the same privileges as the Shared state. If the item is still in this
state on the next write by the processor, a write miss caused by the coherence
protocol is detected.

Either method can be used for detecting the need for a write-update strategy. A
share miss is easy to detect and simple to integrate into a protocol. It would effec-
tively detect producer-consumer relationships. However, it would not detect share
misses for migratory objects, as will be seen later. Since we are aiming at removing
misses for migratory items, we chose to detect invalidation misses. When an inval-
idation miss is detected, a subscribe request is sent to the system. All occurrences
of the item are then changed to write-update mode, if they were not in that mode
before, and the data value is returned to the requesting node, as described in more
detail in Section 9.4.3.

9.2.2 Write-Update Turn-Off Strategies

Another problem is to determine when an item in write-update mode should be
moved back again to write-invalidate mode. We use a back-off strategy similar to
the competitive snooping proposal to move back to write-invalidate mode. When an
update transaction is received by a node, the node increments a counter associated

'A miss here means an action that makes the processor stall in order to maintain sequential
consistency.

165

9.2 A First Attempt

with the item. Each time a node reads a data value locally in update mode, it resets
the counter to the corresponding item. When the counter value passes a threshold,
an unsubscribe transaction is sent to the sender, and the item is put in the Invalid
state. When only one copy of the item is left, the strategy switches back to write
invalidate, described more in detail in Section 9.4.3.

9.2.3 A First Attempt at a Write-Update Protocol

Write—update mode

. read-CPU/read-req
update/unsubscribe

update/-
update/-

update/—

CONSUMER: .
read—g'F’U/subscribe

read-CPU/-

write—CPU/update suE;scribe/update—data write—-CPU/-
PRODUCER: G@) ;(:;P

unsubscribe/-

Figure 9.2: A fraction of a first attempt toward a subscribing write-update protocol as
an extension to the DDM protocol. None of the necessary transient states
are shown in this picture.

A first attempt at designing a protocol is shown in Figure 9.2. An invalidated item
is put in the Deleted state (D). A read miss to an item in Deleted results in a
subscribe request being sent, instead of a normal read request. A node receiving a
subscribe request in the Exclusive state (E) replies with update-data, and changes to
the Owner state (O). The requesting node receiving the update-data will end up in
state Subscribe0 (S0), as can be seen in the figure. Additional writes by the “owner”
node generate update transactions to all nodes in the Subscribe state. Receiving an
update changes the subscribing node’s state from Sx to Sx+1. A local read by the
node will reset the state to S0. Receiving an update in state Sthreshold (in the figure
the threshold is three) results in an unsubscribe to the owner and a new Invalid state
(I). When the last subscriber sends an unsubscribe request, the owner returns to
the Exclusive state. Note that update-data contains the whole item, while update
contains only the word written.

166

An Adaptive Write Update Protocol

In order to achieve sequential consistency, a processor writing to a shared item is
stalled until the acknowledge is received. So, the share misses remain.

A protocol similar to the one briefly described here would remove invalidation misses
for producer-consumer sharing and false sharing, but would have problems with some
of the other kinds of sharing.

For false sharing where more than one processor writes to the shared item, “owner-
ship” must be moved between the writing processors in an efficient way; this is not
solved by this protocol. Migratory items would also be a problem. After writing to
a migratory item, the item might be written to by several other processors before it
is needed again. According to the back-off strategy, the item is invalidated before
being requested again. However, there will always be some node requesting updates.
The net effect is that a large amount of traffic is generated, yet few misses removed.

9.3 Introduction to Weaker Consistency

The protocol of the DDM prototype described in Chapter 6 provides a sequen-
tially consistent [LamT79] system to the programmer. While fulfilling the strongest
memory-access model, performance is degraded, for instance, by waiting for the
acknowledge before the write can be performed. Weaker forms of consistency can
provide higher performance.

9.3.1 Weaker Consistency Models

The weaker consistency models that have been proposed rely on special synchroniza-
tion operations recognized by hardware. The synchronization operations implement
stronger consistency for a selection of variables. Synchronization can be a fence
operation, like the one used in RP3 [P*85]. In weak ordering [DSB86], the pro-
grammer declares explicitly which variables are synchronization variables. These
variables are used to implement critical regions and to synchronize the processors.
Release consistency [GLLT90] has two synchronization primitives, one for entering
a critical region and one for leaving the region.

The weaker consistency models allow certain memory operations to bypass each
other and thus stall the processor less often, improving performance. Optimized so-
lutions require extra hardware support such as write buffers and dynamic scheduling
of instructions, and introduce a new model to the programmer.

167

9.3 Introduction to Weaker Consistency

9.3.2 Processor Consistency

Goodman introduced an intermediate consistency level called processor consis-
tency [Goo89]. He also noted that existing processors (e.g., VAX 8800) rely on
this consistency model.

A multiprocessor is said to be processor consistent if the result
of any execution is the same as if the operations of each indi-
vidual processor appear in the sequential order specified by its
program.

Thus the order in which writes from two processors occur, as observed by
themselves or a third processor, need not be identical, but writes issuing
from any processor may not be observed in any order other than that in
which they are issued.

Processor consistency provides a programming model closer to that of sequential
consistency, while providing nearly the same performance as the weaker orders of
consistency [GGHI1]. We assume a programming model including some synchro-
nization primitives. Reads can bypass writes in systems with general networks, and
in systems with a race-free network, e.g., a hierarchical network, writes may also be
pipelined [LHH91]. The definition of a race-free network can be found in Chapter 10.

We will show here how transient cache states can be used to implement processor
consistency in a multiprocessor based on a race-free network without any extra cost

in hardware. We call this the fast write scheme [HLH91].

9.3.3 Processor Consistency and Hierarchical Networks

Processor consistency requires all processors to observe two consecutive writes: first
A, then B from a processor P in program order. A processor () can violate processor
consistency by reading first the new value of B and then the old value of A. The
hierarchical network, however, guarantees that in order for () to observe the new
value of B, the erase for A must also have reached Q. This ensures that () cannot
contain any old value of A. The properties of the race-free network also ensure that
no other old copy of A can reach Q.

In hierarchical race-free networks, processors need not stall on a write to a Shared
item, yet processor consistency is maintained. The newly changed item is marked
as not yet public, while an erase is sent to the network. The item turns public upon
receipt of an acknowledge.

168

An Adaptive Write Update Protocol

Nerase/
Nread

Nack/ Nread/Ndata

NOTATION:
in—trans/out-trans

P= from processor

Pwrite/ N= to/from network

Nerase Nread/Ndata

Pwrite/
Nerase

Figure 9.3: Fast-write protocol for item-sized writes. Note that writes use the state
Write Pending without stalling the processor.

9.3.4 A Protocol for Items of one Word

The protocol for the DDM shown in Figure 5.2 can be modified slightly to support
processor consistency efficiently. A fast-write protocol for items equal in size to the
smallest writable entity, here assumed to be one word, is shown in Figure 9.3. The
protocol assumes a hierarchical network, like the non-split hierarchical buses of the
DDM, to handle write races. The new transient state Write Pending (Wp) is used
to mark an item not yet public. Upon receipt of the acknowledge, the item is made
public by its transition to Exclusive. A read request for an item in Write Pending
will not be answered until an acknowledge has been received from the network. The
probability of thus delaying remote reads is of course much lower than that of stalling
the processor for each write miss as in the sequentially consistent protocol.

Note that the processor does not stall when writing to items in state I. This is of
great importance when an item is first used (e.g. cold start) but of less importance
at steady state.

The protocol described above has been shown to provide processor consistency and
causal correciness® by Landin et al. [LHH91], where an alternative and more ag-
gressive implementation of processor consistency is also proposed. That proposal
removes the need for the Write Pending state. Instead, a processor with a Shared
copy of the item it is writing simply goes to Exclusive and sends out an erase mes-
sage in the network. This scheme also assumes item-sized writes for its functionality.
The proof presented also holds for write-update strategies.

2Guarantees no side effect if more than two nodes are involved, i.e., node X writes A’ then B’,
node Y reads B’ then writes C’; then node Z will “receive” write A’ before write C’.

169

9.4 A Second Shot at a Write-Update Protocol

Processor-consistent protocols for items larger than the smallest writable en-
tity [HLH91] have been designed, but become very complicated, and have not yet
been fully implemented. However, we need not solve this problem in order to make
use of the fast write in the update protocol. When an item is in update mode, the
write update unit is word-sized, with a few, and well-defined exceptions.

9.4 A Second Shot at a Write-Update Protocol

The weaker consistency models can be used to remove share misses in a multiproces-
sor. One of them—processor consistency—in combination with the update protocol
also removes invalidation misses. Any weaker model could have been used. We
selected processor consistency simply because it suited our architecture and did not
require modifications to the applications.

9.4.1 Allowing for Multiple Writers

A write-update protocol where each datum written updates the other copies in
the system meets the prerequisite of the smallest writable entity of the fast-write
protocol. A write race between two processors writing to the same word of an item is
solved in a similar fashion to a write race in the ordinary DDM protocol (Chapter 5),
i.e., the winning update will have full effect and the losing update is not seen by
any processor. Updates by two processors to two different parts of the item will
both have effect. Thus, caches with shared copies in update mode can write to
their data—mnot just the Owner—and yet maintain processor consistency. Thus, the
ownership state is removed. A simplified state diagram is shown in Figure 9.4. A
protocol along these lines efficiently removes share misses for producer-consumer
sharing and false sharing. Atomic operations, like atomic swap, still need to be
handled in a sequentially consistent fashion. The transaction update-mode, which
changes all copies of an item to update mode, is described in Section 9.4.3.

9.4.2 Supporting Migratory Objects

Removing misses for migratory items is more difficult but important for some appli-
cations. The protocols described so far do not do this. Let’s assume an application
where a migratory item “jumps” between n sharing processors. Each of the proces-
sors writes to the item every nth time. A node detects the coherence misses and
switches to write-update strategy. After receiving a couple of update writes from
the other processors, the node destroys its value according to the back-off strategy
described. However, the value is eventually needed again the next time the node
writes.

170

An Adaptive Write Update Protocol

read—CPU/read-req
update/unsubscribe

update/-

update/-

vq update/-

read—CPU/subscribe

-

update—-mode/—

erase/-

SO
read—CPU/-

write—CPU/update update-mode/-

(last)unsubscribe/~

Figure 9.4: A fraction of the implemented subscribing write-update protocol allowing for
multiple writers as an extension to the DDM protocol. No transient states
are included in this picture.

When a migratory item is detected, the choice is between two strategies: either
support migratory items to avoid their misses, or turn off write update completely
for these items and avoid unnecessary traffic.

We chose to support migratory items with write update. If data is broadcast to
other nodes anyway—possibly on the same bus—why not keep updated values alive
until nodes use them again? We use the new state Subscribe Writing (SW) to mark
items which the processor has written. A write to an item in state Sx results in the
new state SW and the transaction update-reset, while a write to an item already in
state SW results in an update transaction.

A subscriber in state Sx receiving an update moves to Sx+1, similar to the earlier
proposal. However, receiving an update-reset in state Sx puts the item in state SO0,
i.e., resets the back-off strategy counter. An update-reset is generated each time a
migratory item is moved, and thus keeps the remote copies “alive” by reseting the
state to 50. A fraction of the protocol implemented can be found in Figure 9.5.

Supporting migratory items is not cheap, as will be seen in the performance evalua-
tion, since a lot of communication is created. The biggest communication bottleneck
is caused by the buses of the local nodes. The top bus, suspected of being the bot-
tleneck in a hierarchical system, has moderate overhead. If the communication over-
head for supporting migratory items is unbearable for an architecture, update-reset
can be used merely to detect migratory items and to switch back to write invalidate
for those items, possibly marking them as not suitable for the update strategy and

171

9.4 A Second Shot at a Write-Update Protocol

thus preventing others from applying write update to them. This technique will not
be further evaluated here.

Supporting migratory objects in the manner described here is not scalable, in that
writes to migratory items from every processor are sent to every node. However, for
a limited number of processors it will result in an increased performance.

read—CPU/read-req
update/unsubscribe

update/-
@ q update/-

update/—

update-mode/-

write—-CPU/

erase/-
update-reset

read CPU/subscribe

/-l!:-‘

read—CPU/-

update-reset/—- Jpdate—-mode/-

update-reset/—
update/-

(last)unsubscribe/—
write—CPU/update

(last)unsubscribe/—

Figure 9.5: A fraction of the implemented subscribing write-update protocol as an exten-
sion to the DDM protocol. No transient states are included in this picture.

9.4.3 Protocol Internals

The protocol is built as an extension to the DDM protocol described earlier. The
main additional transactions of this protocol are:

subscribe — A request from a node to subscribe on updates to this item.
update-mode — A global transaction putting all copies of the item in update mode.
update-data — Returning the whole item as a response to a subscribe.

update — Updating a word of the item.

update-reset — Updating a word of the item, and resetting to state SO.

unsubscribe — A node has stopped subscribing to this item in update mode. This
transaction carries the data value of the whole item since this might be the
last copy of the item.

172

An Adaptive Write Update Protocol

The protocol developed in this study soon became large and complicated. It was
designed with the flexibility to fully evaluate many different variations rather than
implement one kind of update protocol. The details of the implementation will not

be described here.

Switching to and from update mode was the most difficult. A slow and safe tran-
sition between the two modes was chosen to protect the protocol from processor
disagreement about an item’s mode. The first subscribe request for an item goes
either to a directory in the Exclusive state or to the top. From there, the transaction
update-mode is transferred down to all processors not in state I, changing their states
to the corresponding state in update mode. The requesting processor also gets the
update-mode transaction. This will force it to resend its subscribe transaction.

A subscribe transaction finds its path to a copy of the item in the same manner as
a read request found its path to an item, as described in Chapter 5. A subscribe
transaction reaching a node in state Sx results in a subscribe-data, containing the
whole item, to be returned to the requester.

An update is first sent to the top (or a directory in state E) and from there sent
down to, and thus updating, all subscribing nodes.

Changing from write-update mode back to write-invalidate mode uses a technique
similar to item replacement in the prototype DDM protocol, for detecting when
the last listener sends its unsubscribe. Like the out transaction, the subscribe keeps
climbing up the hierarchy, changing the directory state to Invalid, as long as no
subsystem on the bus has a copy of the item. If it reaches the top (or a directory in
state E) and still no subsystem has the data, it is converted to an inject transaction.
An update on its way up through the hierarchy can detect if there are no “listen-
ers” to its update, and can change state to Exclusive (like the Firefly), forcing the
exclusiveness further down in the system. The only copy left in update mode will
eventually detect its situation and change its state to E.

9.4.4 Traffic Generated in the DDM

We compare traffic generated by write-invalidate and write-update policies in the
DDM architecture for three cases of sharing: one producer and one consumer shar-
ing, false sharing, and migratory sharing. The topmost example in Figure 9.6 com-
pares producer-consumer sharing with the two strategies. The full cycle of consumer
reading followed by producer writing is described. The write-invalidate policy re-
quires four DDM transactions, while the write-update policy can perform the same
task with a single transaction. However, only one writable entity is transferred for
each update transaction, in this case a word. If all four words of an item in the DDM
are written by the producer, four update transactions are needed.

173

9.4 A Second Shot at a Write-Update Protocol

Write—Invalidate Strategy Write—Update Strategy
4. ack 3. erase
ata

=Y
e

Producer Consumer | Producer Consumer
4. ack :

=Y
e

FS writer FS reader FS writer FS reader

3. erase 4. ack

I
2

MI last MI next ! Ml last MI MI MI next

Figure 9.6: Traffic generated by write-invalidate and write-update policies for producer-
consumer sharing, false sharing, and migratory sharing in the DDM archi-
tecture.

The second example in Figure 9.6 shows a false-sharing situation in which one of
the sharing processors is writing (and perhaps reading) while the other processor is
reading. The write-invalidate policy needs four transactions for the full cycle of a
write by one processor and a read by the other processor. Here again, the write-
update policy needs only one transaction to solve this problem. More transactions
may be needed if more than one word of the shared item is written. If both processors
sharing the item write, twice the amount of transactions are needed in the write-
invalidate case. Write update does it in two update transactions.

The last example in Figure 9.6 exemplifies migratory sharing among four processors.
Write-invalidate policy gives only the last writer (MI last) an exclusive copy of the
item. The next owner (MI next) must first retrieve a copy, later made exclusive,
in four transactions. With the write-update policy, all four processors involved in

174

An Adaptive Write Update Protocol

Action #1, read to state I

Local M bus read line a read from a cache to the AM-retry
DDM bus read request the protocol generates a read request
Remote M bus read line the remote services the request
DDM bus data data reply to the requesting node
Local M bus write line data to the attraction memory
Local M bus read line the read now succeeds

Action #2, write to state S, the Dcache already had a shared copy

Local M bus write word retry

DDM bus erase erase request generated by the protocol
Remote M bus write word erasing all copies in the remote nodes
DDM bus acknowledge changing state to E

Local M bus write word updating the memory

Action #3, write to state Sx, the Dcache already had a shared copy
Local M bus write word OK
Local M bus read word the protocol puts the Dcache back in state Valid
and reads the value to broadcast
DDM bus update update containing a word to all remote nodes
Remote M bus write word all nodes in state Sx update their copies

Table 9.1: Three frequent actions in the DDM prototype with only one DDM bus.

migratory sharing have copies, marked MI. All are updated with a single update
transaction. As above, up to four updates may be needed if all words of the item
are updated.

In these examples, it looks like the write-update policy does not produce more traffic
than write invalidate. In the 2 x 8 x 1 topology, this is not necessarily so. After
discussing locality in Chapter 7, we concluded that a request in such a topology
had a 0.47 probability of being local to the lowest-level DDM bus, assuming random
distribution. The actual ratio of locality was measured to be higher than that.
For migratory items, all four transactions of the write-invalidate policy have a 0.47
probability of being local to the lowest-level DDM bus, while the update transaction
is always broadcast over the top bus if at least one of the MI items exists in another
subsystem: it always passes the top and is carried on at least two of the lowest-level

DDM buses.

9.4.5 Actions in the DDM Prototype

The adaptive write-update protocol has three frequent actions described for a single-

level DDM in Table 9.1.

Action #1 describes the actions caused by a read to an item in the Invalid state
in the attraction memory, e.g., an invalidation miss in a write-invalidate protocol.
The read attempt on the M bus is retried by the DDM protocol, which puts a read

175

9.4 A Second Shot at a Write-Update Protocol

request on the DDM bus. A remote node services the request by a read line on its
local M bus. The data transaction is sent on the DDM bus to the requesting node,
which writes the data to its attraction memory by a write line on its M bus. Finally,
the requesting processor may read the item by a read line on its M bus. Action
#1 corresponds to “l.read” and “2.data” in the producer-consumer study for the
write-invalidate strategy in Figure 9.6. Action #2, a write to a shared item, e.g., a
share miss, corresponds to the “‘3.erase” and ““4.ack” in Figure 9.6, and action #3
corresponds to the necessary actions caused by the update of a single word. The
read word of action #3 is needed to put the processor cache back in the Valid state
again after its write has been approved, otherwise the next write to the cache line
will not show up on the M bus. Alternative implementations of the processor cache
could avoid this extra transaction.

In a producer-consumer situation, the consumer performs action #1, while the pro-
ducer performs action #2 for each item transferred between the two of them, in-
volving a total of seven M bus transactions and four DDM bus transactions. Both
the producer and the consumer experience misses in the attraction memories.

If instead the item is in write-update mode, action #3 will be performed for each
word written. If only one word of the item is updated, three M bus transactions and
one DDM bus transaction will be needed. Updating all four words of an item results
in a total of twelve M bus transactions and four DDM bus transactions. Neither the
producer nor the consumer experience misses in the attraction memories, but the
producer will detect a miss in its Dcache.

A modified Dcache, which automatically puts itself in a Valid state in an update
situation, would take away the read word transaction in action #3, thus reducing
the number of M bus transactions to two per updated word.

Such calculations can be made for other kinds of sharing as well. If the same node
writes to all words of the same item in a batch, write invalidate has a minor advan-
tage in terms of communication cost; however, if less words are written before the
item is read by another node, write update can be superior in terms of communica-
tion.

Note that writes to items in update mode create more traffic on the local bus of the
writer, since writes are not performed locally in their Dcaches. The caches used in
this study implement the write-once protocol, as described earlier, and experience an
update write as a write miss in the Dcache and a write hit in the attraction memory.
Together, these observations normally result in a lower hit rate in the Dcache (less
local writes), a higher hit rate in the AM, and a slight increase in communication
on the M bus. The net effect is a lower node miss rate.

176

An Adaptive Write Update Protocol

9.4.6 Reducing Traffic with an Update Cache

For migratory items a combination of actions #1 and #2 is replaced by action #3,
like for the producer-consumer case. Supporting migratory items results in not just
one, but many—even all—other nodes being updated for each write performed. This
does not increase the communication cost of the DDM bus in a single-bus system.
In a multibus DDM, a slight increase in communication on the DDM buses may be
observed if all four words of the migratory items are updated. Some of the #2/#1
combinations previously local to the lowest-level DDM bus will now broadcast to
many (all) buses, including the top bus.

Migratory items put a heavy burden on all the M buses, since each write to every
migratory item performed by any processor is multicast to all other M buses.

B L e R P T T TP TP TR LT EEEPEPEEEEEE I . DDM bus
DNC DNC i
: AM data AM data
| M bus | M bus
I I] . | I 1
AM uc Dc | | bc AM uc pc | | bc
state : state |
: A | | T A | |
______ P P P P

Figure 9.7: Connecting an update cache (UC) to a DDM node (DC= Data Cache,
P=Processor, DNC=DDM Node Controller).

Increased communication on the DDM buses can be accepted as the price of avoiding
many misses in the attraction memories. However, frequent write words on the
M buses will congest all meaningful activity in the nodes. If all updates instead are
sent to a specially assigned Dcache on the M bus, called the update cache (Ucache),
much of the traffic on that bus can be avoided. The Dcache chip, MC88200 of 16
kbytes, is simulated here to function as a Ucache. The Ucache is part of the regular
coherence protocol of the M bus. The first update to a cache line puts the line in
the “Dirty” state and erases all other copies in other Dcaches with a write word on
the M bus. All following updates to the same cache line will be performed locally
in the Ucache. The AM gets the updated values when the line is replaced. If a
Dcache tries to read the cache line while in the Dirty state in the Ucache, M bus

177

9.5 Performance Study

coherence actions will 1) retry the Dcache, 2) have the Ucache update the AM,
and 3) let the Dcache arbitrate for the bus again. This method could be improved
by building a specialized Ucache. A better scheme might be the Berkeley protocol
for SPUR [Kat85]. Such a protocol would allow the Ucache to update the Dcache
directly, instead of first retrying the Dcache, followed by a write-back to the AM so
the Dcache can successfully complete the read line in yet another M bus transaction,
i.e., the access time to a cache line that is Dirty in the Ucache hit would be reduced
by roughly two thirds.

This use of Ucache resembles the possible combination effects of delayed consis-
tency [Dub91]. In delayed consistency, sending the update from the writing node
can be delayed. If a new update for the same item is detected before the update
is sent off, the two (or more) updates can be combined in a single update message.
This saves bandwidth not only on the remote M bus but also in the global network.

9.5 Performance Study

The SPLASH programs studied in Chapter 7 match this study well. They have been
characterized by Gupta and Weber [GW92]. MP3D has a fair amount of migratory
sharing caused by all processors updating the states of all space cells, i.e., space-cell
data becomes migratory shared data. The few misses remaining in WATER are of
migratory nature as well. MP3D-DIFF-FS has removed the migratory nature of
the space-cell data, but instead suffers from massive false sharing between particle
data. MP3D-DIFF removes false sharing of particle data. Can the update improve
its performance?

The simulated topology is 2 x 8 x 1, and none of the suggested improvements for
the Dcache and Ucache were included in the default setup. The statistics cover
the whole run, including cold-start effects, except for the three MP3Ds, where the
statistics are for the last time-step only.

Simulation results for each application are reported in tables. The tables present
hit rates (HR) for the data cache (Dcache), attraction memory (AM), and update
cache (Ucache). A hit in the Ucache is defined as an update to a node that does
not generate any transactions on the M bus.

The tables also report the node miss rate, i.e., the ratio of data transactions missing

in both the Dcache and the AM.

The total numbers of read misses (action #1), write misses (action #2), and updates
(action #3) are also reported for each run. The weighted sum for the network is
calculated by adding the number of DDM transactions that each action requires
(2% #1+2% #24+ #3). All four categories of transactions on the M bus are also
counted. The weighted sum for the M bus is calculated by multiplying the write

178

An Adaptive Write Update Protocol

line and read line numbers by two and adding them to the read word and write
word. The ratio between how many cycles a word and line transaction occupy on
the M bus is approximately 1:2.

The busy rates for all three categories of buses are also reported. Note that the
busy rate of the M bus includes the repeated retry polling of processors waiting for
a remote access to be completed. The busy rate for the M bus might therefore look
unproportionally high. Bus busy rates are highlighted if they are believed to be
saturated. Note that a bus may be saturated for long periods, despite its busy rate
for the whole run still being much lower than 100 percent (compare with Figure 7.5.)

Each application is run with a number of different configurations, specified at the
top of each column.

Abbreviation Description

Old The old protocol described in Chapter 6

w/o Without update reset

Mod Using the modified caches, removing the need for some extra
read lines

NW weighted sum The weighted sum of transactions sent to the network

M bus weighted sum The weighted sum of used transactions on the M bus
(excluding retry polling)
2xBW Using a network with twice the transaction frequency

Table 9.2: Abbreviations for performance tables.

MP3D resulted in the statistics shown in Table 9.3. The first column shows the
results from the old protocol. The node miss rate of 11 percent limits the achievable
speedup of this application. The poor locality produces a lot of communication,
which almost saturates the DDM bus (84 percent).

A write-update protocol without update reset cuts the number of node misses to 6.3
percent, i.e., a cut of 4.7 percentage points. This cut mainly comes from false-sharing
gains. Interestingly, the node miss rate for MP3D-DIFF-FS is exactly 4.7 percent
with the old protocol (see Table 9.4). The remaining misses in MP3D are caused
by accesses to migratory objects. Although miss rates decrease, execution times
increase. The limiting factor is the DDM bus, which is saturated at 93 percent.
Just removing false sharing does not increase the load on the network; in fact,
it produces less traffic. The extra traffic comes from trying to remove migratory
sharing. This version of the protocol is without the update reset. Migratory data
are updated in the network, but the updated value is usually destroyed before it is
used by the processor again.

The third column is with update reset. When update reset is used, the node miss
rate is cut to a mere 0.6 percent, but execution time is still very long. The reason for

179

9.5 Performance Study

I MP3D, 40000 particles, 2x8x1 |

Old w/o | With Update Reset Old New
No Ucache | With Ucache | Mod || 2xBW | 2xBW
4S states | 8S 8S
HR Dcache (%) 82 73 73 71 73 73 83 73
HR AM (%) 40 77 98 98 99 98 39 98
HR Ucache (%) - - - 88 88 88 - 89
Node miss (%) 11 6.3 0.6 0.7 0.3 0.5 11 0.5
Node read miss 125k || 112k | 13k 12k 5k 10k 127k 9k
Node write miss 121k || 25k 2k 2k 1k 2k 122k 2k
Updates 0 273k | 377k | 370k | 376k | 376k || O 376k
NW weighted sum 492k || 546k | 406 398k | 388k | 400k || 495k 398k
Read line 354k || 329k | 237k | 232k | 229k | 232k || 348k 232k
Read word 16k 400k | 393k | 463k | 399k | 23k 17k 23k
Write line 291k || 187k | 131k | 717k | 678k | 543k | 295k 547k
Write word 317k || 788k | 5658k | 1049k | 1081k | 658k || 319k 661k
M bus weighted sum || 1.6M || 2.2M | 6.8M | 3.4M | 3.3M | 2.2M || 1.6M 2.2M
Busy rate M bus 74 80 92 82 78 71 64 71
Busy rate DDM 84 93 65 93 90 87 46 62
Busy rate Top 64 65 63 88 88 84 35 87
Exec. time (rel) 1.00 1.30 | 1.30 1.05 1.01 1.01 1.00 0.91

Table 9.3: Statistics from the subscribe protocol running MP3D.

this is simply the high number of updates on the M buses, i.e., the number of write
words (5.7 M). The fourth column shows how the introduction of Ucache effectively
cuts this to about 18 percent of the original number (1.0 M). Execution time now
drops compared to the earlier column, but is still longer than when the old protocol
is used. The bottleneck has once more moved to the DDM bus.

The fifth column shows behavior when using eight Sx states instead of four. This
decreases the node miss rate by 0.4 percentage points down to 0.3 percent. The
migratory items move randomly among the 16 processors. An item is used twice in a
row by the same processor with a probability of 1/16. For such a case, update reset is
not generated as frequently as usual, and remote items are destroyed. With eight Sx
states, the probability of destroying a migratory item is much lower. It is interesting
to note that dividing the node miss rate of the second column (6.3 percent), which
is migratory misses, by 16 equals 0.4 percentage points—i.e., identical to the node
miss rate gained by introducing eight S states.

In the sixth column, the effect of modifying the Dcaches is tested. The communica-
tion on the M bus drops. The number of read lines is cut from 399k down to 23k,
and the weighted sum is brought down to 2.2M. That did not help the execution
speed, however, since the bottleneck was the DDM bus. The execution time is now
almost identical to the original one. Comparing this column with the results from
the old protocol, the weighted sum for the network shows a decrease of almost 20

180

An Adaptive Write Update Protocol

percent in the number of generated transactions. Still, the busy rate on the top
bus is increased from 64 percent to 84 percent. The actual increase on the top bus
caused by the lack of locality is thus 33 percent (= 84 — (64 +0.8)). The locality loss
can be calculated as 33/84=39 percent, i.e., close to the expected 47 percent.

So, for MP3D we managed to cut the miss rate from 11 percent down to 0.3 percent,
but started off with an almost congested system which turned the small communi-
cation increase into the limiting factor and no improvement in speed was observed.

For this application we also ran additional simulations where the bandwidth of the
DDM buses was doubled by increasing the transaction frequency. The results can
be seen in the last two columns. For the new protocol, the setup is identical to
that with the modified caches. Now a speedup of around 10 percent can indeed
be observed—still discouraging. A much larger speedup was expected from cutting
the node miss rate from 11 percent down to 0.5 percent, and this time we cannot
blame the contention of the buses. Part of the answer can be seen in the Dcache hit
rate, which is decreased from 83 percent to 73 percent. Neither the weaker access
order nor the update protocol have been implemented in the Dcache. The processor
is stalled on every write to broadcast data for 10-12 cycles until the attraction
memory is updated. A much larger speed improvement would be expected if the
update protocol were incorporated in the Dcache and write buffers added to the
cache. This would result in an increased hit rate® in the Dcache, since the processor
would only rarely be stalled for writes.

MP3D-DIFF-FS in Table 9.4 shows great improvement already in the second
column. The original node miss rate of 4.7 percent is cut to only 0.6 percent. Since
this application suffers mostly from false sharing, migratory item support is not
needed and actually slows things down slightly compared to the second column.
Note that traffic decreases on all buses in this application. When we apply the
modified caches to this application, the burden on the M bus is greatly reduced.
This time a gain of 17 percent in execution time can be observed.

The adaptive protocol thus proves to handle false sharing well and actually reduce
both communication needs and execution time.

MP3D-DIFF differs from MP3D-DIFF-FS in that most false sharing in the pro-
gram is removed. The improvements measured for MP3D-DIFF are reported in
Table 9.5. We believed MP3D-DIFF was already heavily optimized for the DDM
and did not expect much gain with this protocol. Using write update results in a
slight gain on 16 processors. We have measured greater improvements for MP3D-
DIFF on larger topologies. MP3D-DIFF on the 4 x 8 x 2 topology runs about 20
percent faster using the described protocol with update reset and update cache than
with the old protocol.

3Remember that we define a miss as an access that makes the processor stall.

181

9.5 Performance Study

182

I MP3D-DIFF-FS, 40000 particles, 2x8x1

Old Without | With Update Reset
No UCache | With Ucache || Mod. Caches
4S states 8S

HR Dcache (%) 90 85 83 84 84 86
HR AM (%) 54 96 98 97 98 97
HR UCache (%) - - - 60 65 65
Node miss (%) 4.7 0.6 0.4 0.4 0.4 0.4
Node read miss 78k 10k 8k 9k Tk 8k
Node write miss 62k 5k 3k 4k 3k 3k
Updates - 183k 256k | 245k | 222k 182k
NW weighted sum 260k || 213k 278k | 270k | 241k | 204k
Read line 232k || 178k 178k | 180k | 173k 176k
Read word 86k 280k 344k | 344k | 317k | 91k
Write line 149k || 52k 55k 111k | 370k | 84k
Write word 193k || 378k 542k | 393k | 109k 142k
M bus weighted sum || 1.0M || 0.96M 1.4M | 1.3M | 1.5M | 0.756M
Busy rate M bus 47 38 46 41 42 35
Busy rate DDM 61 60 67 65 64 58
Busy rate Top 44 30 29 30 30 31
Exec. time (rel) 1.00 0.84 0.88 | 0.87 | 0.86 0.83

Table 9.4: Statistics from the subscribe protocol running MP3D-DIFF-FS.

I MP3D-DIFF, 40000 particles, 2x8x1 [4x8x2 ||
Old Without | With Update Reset Old With
No UCache | With Ucache With
4S states | 8S 48
HR Dcache (%) 92 91 89 89 89 93 92
HR AM (%) 88 93 96 96 96 74 96
HR UCache (%) - - - 7 81 - 67
Node miss (%) 1.0 0.6 0.4 0.4 0.4 1.7 0.3
Node read miss 18k 11k 8k Tk Tk 50k 10k
Node write miss 13k Tk 4k 4k 4k 12k 5k
Updates - 35k 76k 67k | 64k - 104k
NW weighted sum 62k 60k 99k 89k | 86k 123k | 134k
Read line 169k 164k 155k 153k | 154k 284k | 210k
Read word 88k 134k 163k 165k | 159k 87k 207k
Write line 111k 101k 100k 111k | 111k 168k | 116k
Write word 118k 158k 273k 178k | 177k 187k | 245k
M bus weighted sum || 0.77M || 0.82M 0.95M | 0.87 | 0.87 M || 1.2M | 1.1M
Busy rate M bus 31 29 36 33 32 43 41
Busy rate DDM 13 18 26 25 24 21 40
Busy rate Top 8 8 8 8 9 21 30
Exec. time (rel) 1.00 0.97 1.00 0.97 | 0.97 1.00 | 0.82

Table 9.5: Statistics from the subscribe protocol running MP3D-DIFF.

An Adaptive Write Update Protocol

|| Cholesky, besstk14, 2x8x1 ||

Old Without | With Update Reset || Without | With
No Ucache | With Ucache
4S states | 85 | ROT

HR Dcache (%) 96 94 92 93 92 95 95
HR AM (%) 7 42 64 62 64 73 77
HR UCache (%) - - - 89 91 66 89
Node miss (%) 4.1 3.4 2.8 2.8 2.8 1.3 1.2
Node read miss 510k 510k 440k 440k | 430k | 125k 120k
Node write miss 550k 340k 250k 250k | 250k 185k 160k
Updates - 516k 1070k | 1010k | 1060k | 170k 330k
NW weighted sum 1924k || 2206k 2510k | 2400k | 2420k | (790k) (890k)
Read line 1150k || 1160k 2160k | 1060k | 1070k | 1240k 1180k
Read word 18k 955k 36k 1450k | 1420k | 690k 860k
Write line 1010k || 905k 885k 1320k | 1260k | 1120k 1180k
Write word 911k 1450k 6470k | 1760k | 1820k | 690k 890k
M bus weighted sum || 5.2M 6.5M 126M | 79M | 79M | 6.1M 6.5M
Busy rate M bus 40 42 52 44 45 38 38
Busy rate DDM 60 76 77 77 79 80 82
Busy rate Top 53 55 57 57 63 54 59
Exec. time (rel) 1.00 1.08 1.11 1.09 1.09 0.94 0.92

Table 9.6: Statistics from the subscribe protocol and ROT prefetching running Cholesky,
besstk14.

Cholesky with its dynamic scheduling of work does not suit write update at all.
Dynamically moving the data is detected as migratory, keeping items in update mode
throughout the computation. Update values have very small chances of ever being
used again. However, by combining the update protocol with the ROT prefetcher,
these negative effects can be avoided (and the positive effects of ROT explored), as
can be seen in Table 9.6. ROT is given a higher priority in that data prefetched by
ROT are never put into update mode; i.e., data that successfully can be retrieved
by ROT do not need the update strategy.

Water already shows good speedup with the old protocol—an improvement of only
1 percent in execution time for the most successful combination of update strategies.
Its node hit rate was cut from 0.5 percent to only 0.08 percent as can be seen in
Table 9.7. In this application we see a larger increase in the communication of the
top bus—11 percent compared to the original 6 percent. The increase of 5 percent
relates almost exactly to the 47 percent expected by losing the locality.

The scheduling of work differs for the three versions of the same program, MP3D,
MP3D-DIFF, and MP3D-DIFF-FS, all result in roughly the same node miss rate
using the new protocol (0.3 percent-0.4 percent) as can be seen in Figure 9.8. The
three versions all implement the same algorithm and differ only in the way they
distribute their work. The adaptive write update compensates for poor distribution,

183

9.5 Performance Study

H Water 192 Molecules 2x8x1 H

Old || Without ‘ With Update Reset
No Ucache ‘ With Ucache
4S states ‘ 85
HR Dcache (%) 99.3 | 99.0 98.5 |98.6 | 98.6
HR AM (%) 27 64 94 93 94
HR UCache (%) - - - 93 94
Node miss (%) 0.5 0.3 0.09 10.09 |0.08
Node read miss 240k || 220k 75k 75k 70k
Node write miss 180k || 70k 13k 13k 13k
Updates - 316k 770k | 700k | 720k
NW weighted sum 840k || 896 946k | 876k | 846k
Read line 630k || 610k 460k | 462k | 460k
Read word 2k 500k 460k | 790k | 810k
Write line 380k || 300k 170k | 410k | 390k
Write word 410k || 840k 4556k | 990k | 1000k
M bus weighted sum || 2.4M || 3.2M 6.3M | 3.5M | 3.50M
Busy rate M bus 7 7 12 7 7
Busy rate DDM 10 15 15 14 14
Busy rate Top 6 8 11 11 11
Exec. time (rel) 1.00 | 0.995 0.995 | 0.990 | 0.990

Table 9.7: Statistics from the subscribe protocol running Water 192 Molecules.

unavoidably paid for in terms of communication. The Dcache hit rates differ between
the versions, though, producing different performance results.

184

An Adaptive Write Update Protocol

= RV
S’:/] e AM with update
s 90__ ———= AM only
T C—— First-level cache
85
80

MP3D MP3D-DIFF-FS MP3D-DIFF

Figure 9.8: Comparing the effects of the first-level cache, the second-level attraction
memories, and the update protocol for the three versions of MP3D. Despite
their different distribution algorithms, the sum of these effects is constant.

R

An adaptive write-update protocol was introduced to remove all coherence misses.
The described protocol removed misses from very difficult applications, while pro-
ducing an unexpectedly low communication overhead. Most effects of false sharing
and migratory objects were tamed by the protocol. Lacking examples, we could not
demonstrate its suitability for producer-consumer applications. MP3D-DIFF gained
an tmproved execution speed of 18 percent. Sometimes, improvements in the exe-
cution speed could not be observed, even though the misses were gone. One reason
was the communication bottleneck of our relatively slow buses. Another source is
efficiency reduction in the processor caches, which are unmodified and blocking and
thus not able to utilize the pipelining of writes possible in this protocol.

The described protocol would benefit by a higher transaction frequency in the network,
but higher bandwidth by an increased item size would not help much. It would also
benefit by processor caches with a write buffer for pipelining writes, and with the
ability for reads to bypass writes.

185

10

High-Performance Hierarchical
Networks

HREE important properties of a multiprocessor network are remote-access

latency, available communication bandwidth, and transaction frequency.
Another—seldom discussed—property is the ability to preserve the order among
transactions, helpful in protocol design. The properties of an order-preserving net-
work can reduce latency, but also communication, since cache coherence can be im-
plemented in a more straightforward manner.

The top bus, or top node, of a hierarchy would become a bottleneck unless significant
locality in communication were explored by the application. Locality in communi-
cation has been explored in some applications, of course, as a result of hierarchical
abstraction; however, demanding such behavior of an application would degrade the
generality of the architecture. Thus, a hierarchical topology should be supplied with
a higher bandwidth closer to its root.

COMA’’s ability to migrate data to where they are used increases the importance of
communication locality. The extensive replication and migration in ¢« COMA also
lowers the demand for bandwidth somewhat.

188

High-Performance Hierarchical Networks

10.1 Properties of a Hierarchical Network

A positive property of a hierarchical network is its ability to explore communica-
tion locality in an application. Two processors in a subsystem of the hierarchy may
interact with each other without generating any traffic outside their common sub-
system. In Chapter 7 we showed that some of the applications studied had some
communication locality even if they were originally written for a uniform-memory
architecture with one common bus. We also evaluated two modified versions of the
applications, where as much as 80 percent of all traffic on the lowest bus was local

to that bus (Table 7.1).

Another positive property is the ability of a hierarchical network to preserve the
ordering of transactions. This simplifies cache-coherence protocol design, but could
also have performance benefits for write delay in a sequentially-consistent protocol.

For a COMA cache-coherence protocol, a hierarchical search algorithm can be im-
plemented in the network, by which the item can be located on a read miss.

As discussed previously, one of the major disadvantages of a hierarchical network
is the bottleneck at its root. In a mesh network, the bisectional bandwidth, i.e.,
the bandwidth available for communication between the two halves of the system,
increases by the square root of the number of processors [Len91]. This is not true
for a hierarchical network. Its topmost component in the hierarchy could easily
become the system’s bottleneck since its available bandwidth does not increase with
the number of processors in a natural way. Here, we will look at several methods
for improving the bandwidth at the root of a hierarchy, while preserving some of its
positive properties.

10.1.1 Sequential Consistency in a Multiprocessor

Caching allows multiple copies of data in a multiprocessor, and therefore several
accesses can be performed in parallel to the shared memory. But what ordering of
parallel accesses can be assumed by the programmer? Several memory-access order
models of different consistency levels exist. A consistency level can be viewed as a
specification of a memory’s behavior. Hardware designs fulfilling this specification
can correctly execute programs assuming that behavior. As we shall see, it can cost
performance to maintain a high consistency level in multiprocessors.

Sequential consistency is the strongest consistency level and the one most often used
by programmers. The term was first defined by Lamport [Lam79]:

189

10.1 Properties of a Hierarchical Network

Definition 1 (Sequential consistency) [A system is sequentially consistent if]
the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by the program.

Uniprocessor systems with a single memory fulfill this requirement in a natural
way. Multiprocessors, especially those with arbitrary networks, often have to forfeit
performance in order to maintain a stronger consistency level. Normally, sequential
consistency is maintained in a system if all processors issue their accesses in program
order, and no access is performed by a processor until its previous access has been
globally performed [SD87]." This is an often used but not necessary condition.

Sequential consistency is often maintained in an architecture built with a general
network upon a write to a shared datum, a write request is sent to the home node
which in turn sends out invalidation messages to all caches with shared copies. The
caches respond with acknowledge messages. All acknowledges must be received
before the write can be performed in order to maintain sequential consistency. The
latency of a write is thus:

Lwrite — Lto.home.node + maw([/inv.to.share.node + Lack.to.req.node)-

10.1.2 Sequential Consistency in Hierarchical Networks

A hierarchical network is a race-free network as defined by Landin et al. [LHH91]:

Definition 1 (Race-free Network) A race-free network is a network with the
topology of any acyclic, undirected, network graph. Transactions propagate on the
arcs in the network without the possibility of overtaking each other. Transactions
may be buffered in the network nodes, but buffers must maintain a strict FIFO or-
dering of transactions.

In a race-free network, sequential consistency can be maintained more easily than in
a general network. First of all, the ordering of transactions from a node is observed
by all other nodes. Secondly, causal correctness [Sch89] is maintained, i.e., any
transaction that has reached a node X in a race-free network before X issues a new
transaction B will also have reached any other node Y before it receives B. Lastly,
sequential consistency is maintained if 1) a reading processor is stalled until the data
reply is received, and 2) a writing processor is stalled until the write is performed on
the root node; i.e., the node in a hierarchy that currently is the top of the subsystem
in which all copies of the datum reside.

IThis also assumes a level of coherence called general coherence [Sch89)].

190

High-Performance Hierarchical Networks

This property of a race-free network implies that a write acknowledge can be sent
directly by the directory on top of the subsystem that contains all the copies of the
datum-—the root node. The latency of a write is thus:

Lwrite — Lto.root.node + Lfrom.root.node

Worst-case latency for the two terms above is proportional to the number of levels
in the hierarchy, i.e., log;n where b is the branching factor and n is the number of
processors in the system.

10.2 Increasing the Bandwidth

A hierarchical network has two apparent bottlenecks:

o Directory size grows the higher one climbs in the hierarchy. The largest direc-
tories are close to the top. Practical size limit on these directories therefore
limits the size of the system.

o Although some memory accesses can be localized in such a network, the higher
level may nevertheless demand a higher bandwidth than what can be provided
by the single root, creating a bottleneck. Snooping in the large directories
makes the top bus slower rather than faster.

A way of taking the load off the higher buses is to have a smaller branch factor at the
top of the hierarchy [VJS88]. This solution, however, makes the higher directories
larger rather than smaller. It also increases the number of levels in the system,
which has a negative impact on latency.

The bandwidth of a network is the product of the possible transaction frequency and
the size of the data block communicated. Often, transaction frequency is the limiting
factor on communication means in a multiprocessor. This is the case for the DDM
bus of the prototype. Bandwidth can be increased simply by increasing the size of
the communicated data block and widening the bus. A higher bandwidth per se is
not beneficial for all applications and protocols. An equally important property is
transaction frequency. Applications with fine-grained sharing of read/write data do
not benefit at all by the high bandwidth of a large communication block. Transaction
frequency is also important in a write-update protocol. Large items may create
positive prefetching effects and negative false-sharing effects. If a ROT prefetcher is
used, prefetching effects can be explored and false-sharing effects avoided with small
items.

191

10.2 Increasing the Bandwidth

Even

Odd

DirgE DirO DirE DirO

3§ E

¥ (]

Figure 10.1: Hierarchy built of a fat tree with two top buses.

10.2.1 Fat Tree

Splitting the higher buses into a fat tree [Lei85] solves both the directory growth
and root-bandwidth problems. Each directory is split into two directories of half the
size. The directories deal with different halves of the address space (even and odd).
The number of buses above is doubled, and each bus deals with its own address
space, as shown in Figure 10.1. Repeated splits will make a bus as wide as needed,
and directories as small as needed. Splitting is possible at any level. Regardless of
the number of splits, the architecture is still hierarchical to each specific address. A
fat tree increases not only the bandwidth, but also transaction frequency. It also
supports communication locality.

The drawback of a fat tree compared to a plain hierarchy is that transactions from
the same subsystem, but carried on different top buses, may overtake each other.
The race-free property is violated. The protocol described so far would not fulfill
sequential consistency on a fat tree. A protocol similar to that of a general network
with acknowledges from the leaves must be used. There is no practical limit to
how many times the split can be performed for a fat tree. Thus, a fat tree can be
regarded as a scalable network.

One example with a fat tree used for the network is the new architecture by Thinking
Machines Inc., the CM5 [Mac91]; another is the Wisconsin Multicube [GW88]. The
Multicube architecture has y/n buses running horizontally and \/n buses running
vertically. The n nodes are located at the interconnection points. The node has
the combined functionality of a processor node and a directory. The network can
therefore be labeled a fat tree with /n top buses.

192

High-Performance Hierarchical Networks

Even

Odd

DirgE DirO DirE DirO

3§ E

¥ (]

Figure 10.2: Increasing the bandwidth of a bus by splitting buses while maintaining
transaction order.

10.2.2 Race-free Split

Transactions on different split buses can be prevented from overtaking each other
by restrictions in the buffers, as shown in Figure 10.2. Each subsystem has a joint
buffer for the two top buses. The subsystem arbitrates for the top bus in accordance
with the first transaction in its buffer, which is sent before the second transaction is
handled. To fully utilize available bandwidth, the different subsystems must supply
transactions bound for different split buses.

Restricted splitting relies on split buses running synchronously and transactions
initiated first being finished first. A need for synchronous implementation limits the
physical distances between split buses, which might cause problems in a multiway
split. Splitting at several layers also becomes complicated, introducing the need for
extra sequencing logic [LHH91].

10.2.3 Logical Splitting

Splits can also be performed logically on a single bus. The limiting factor on a
snooping bus is not the available bandwidth of the bus, but the transaction rate.
The transaction rate is limited by snoop-lookup time rather than bus-transfer time.
Split-state memory could help here as well. If each node has a split directory and
the transactions on the bus are interleaved (even/odd), transaction frequency on
the bus will be almost doubled. A balanced bus design using today’s memory and
bus technology would probably employ a four-way split on a single bus, almost

193

10.2 Increasing the Bandwidth

QOdd/Even

HIT+—

DirgE DirO DirgE DirO

! !

3 7 E

[] []

Figure 10.3: Increasing the transaction frequency of a single bus with a logical split.

quadrupling transaction frequency. This leaves us with a demand to transter four
times the amount of data.

Transferring a data burst on a bus, where you know the receiver is ready to receive,
could be very fast—like the FIFO-to-FIFO transfers of the DDM bus. Letting the
sender generate the data clock at the rate at which the receiver is guaranteed to
receive removes most of the clock skew and allows for high clock frequencies for
transferring the data.

10.2.4 Heterogeneous Hierarchical Networks

If unable to preserve ordering of transactions, a protocol cannot rely on the technique
described for the race-free networks. Instead, a protocol similar to the general-
network protocol, with acknowledges from the leaves, can be used [LHH91].

A network may consist of several nonsplit hierarchies connected by a general
network—a heterogeneous network. The leaf-acknowledge protocol need only in-
corporate the tops of the hierarchies. When the top of the hierarchy performing the
write has received acknowledges from all the other tops, the acknowledge can be
sent to its lower levels, as in the nonsplit hierarchical case.

Write latency in the general part of the network is identical to those of cache-
coherence on a general network:

Lwrite — Lto.dir.node + max([/inv.to.share.subs + Lack.to.req.sub)-
However, this latency is accounted for solely in the general part of the network.

194

High-Performance Hierarchical Networks

x % Sk oK x

A hierarchy can explore the communication locality found in an application. A plain
hierarchy has advantages for protocol design in that the ordering of transactions is
preserved, but suffers from contention at its root. The fat tree is a scalable solution
to the bandwidth problem, but does not preserve the ordering of transactions.

We proposed several schemes for improving the bandwidth of a hierarchy by splitting
its root, while preserving the ordering of transactions. The methods can improve the
transaction frequency by a large factor, but none of them can be said to be scalable
and are only practical up to a limited number of processors. The heterogeneous net-
work combined part of the advantage from the hierarchy with the bandwidth available
from a general network.

195

SUMMING UP

197

11

Related Work

he potential and promises of parallel processing have attracted researchers since

the days of ENIAC. The proposed solutions have changed as technology has
shifted. Proposed architectures also differ according to what programming paradigm
is supported. Single-instruction multiple-data (SIMD) machines offer a data-parallel
view to the programmer wherein all processors perform identical instructions on dif-
ferent parts of the data simultaneously, e.g., the Connection Machine. In multiple-
instructions multiple-data architectures (MIMD), the processor may perform differ-
ent operations on different sets of data simultaneously. MIMD architectures can be
divided into two subgroups, those with a private address space for each processor,
message-passing architectures, and those with one common address space shared
by all processors, shared-memory architectures. In message-passing architectures,
communication takes place through explicit messages between the processors, while
communication in shared-memory architectures is implicit and often handled by the
cache-coherence protocol integrated into the processor caches. Vector processing and
heavily pipelined computers can also be regarded as parallel processing.

This chapter will try to cover two areas related to the work presented here: hierar-
chical architectures and COMA-related architectures.

200

Related Work

11.1 Hierarchical Architectures

It was natural to pursue the hierarchical route when the bandwidth of a single bus
became the limiting factor.

11.1.1 Encore Architectures

Wilson proposed a hierarchical architecture in his thesis in 1985 [Wil85]. That
work later became the Gigamax proposal at Encore Computer Corporation. The
Gigamax is an architecture with a hierarchy of buses with snooping caches between
the two levels of buses in the hierarchy. There is full inclusion between the layers
in the hierarchy. At the lowest level, 16 processors are tied together by a bus
to form a cluster. The large cluster caches are second-level caches common to
all processors in the cluster and the interface to the top bus. The state memory
in the cluster cache is duplicated and snoop transactions on the top bus. Thus,
invalidations and interceptions needed by the hierarchical cache-coherence protocol
can be implemented.

The Gigamax was never brought to market. Instead, elements were used in the 593
architecture [Cor91]. S93 is also a hierarchical architecture but with a somewhat dif-
ferent structure. At the lowest level are clusters, similar to a DDM cluster,! hosting
four MC88100 processors and their caches. The processor caches are tied together
by a proprietary bus (Ibus), rather than the Motorola M bus, and subsequently have
interfaces between each processor-memory pair and the bus. The cluster hosts a sec-
ondary cache of 1 Mbytes, which is interfaced to the top bus, called the Nanobus,
with a throughput of 100 Mbyte per second. The cluster caches snoop the traffic
on the Nanobus. The Nanobus also hosts a common shared memory, sized from
32 Mbytes up to 640 Mbytes. Up to eight cluster can be tied together hosting a
total of 32 MC88100 processors.

DDM relates to this work in its use of snooping caches and the manner in which
the cache-coherence protocol of the MC88204 is integrated with the higher-level
cache-coherence protocol.

11.1.2 TREEB

The TREEB architecture [VJS88] is a hierarchical cache architecture, extendible
to any depth, with the shared memory at its top. The caches at the leaves are
said to be large given “the density of modern-day dynamic RAMs.” All caches (at
the leaves and between layers) have two separate two-bit state memories per block

!Described in Chapter 6.

201

11.1 Hierarchical Architectures

(item), one for above and one for below. Both status memories are updated in an
atomic action. A bus request is either serviced by another processor cache or by
the directory above. The directory might either service the request itself or send
the request above. Other directories on the same level service the request, or it
continues on up the hierarchy.

Reads are allowed if the cache above is in the Clean or Dirty state. If not, the
request is issued on the next higher bus. Read requests on a bus are serviced by
the owner (there is only one owner per bus); otherwise, they are issued to the next

higher bus.

Writes are only allowed for the Dirty state. Otherwise, an invalidate signal is issued
on the bus above. The invalidate will propagate upwards until it reaches a directory
in Exclusive, or the shared memory. The directory will reply with an invalidate
acknowledge. The invalidate will also propagate downwards to all caches underneath
the directory.

The DDM is related to TREEB by its being a hierarchy. However, TREEB has a
shared memory at the top and its interlevel directories store both state information
and data. There are no transient states for reads and writes in the system. The
caches, directories, and buses are suspended and wait for replies. One interesting
aspect of the architecture is its one owner per bus, removing the need for selection on
a read request. This cuts down the bus cycle and makes the consistency somewhat
simpler.

Instead of simulating a TREEB with thousands of processors, an analytical model
is used, combined with a synthetic work load.

11.1.3 Paradigm

Paradigm [CGBY91] is a continuation of an earlier hierarchical architecture named
VMP-MP [CGB89] under development by the Distributed Systems Group at Stan-
ford. Paradigm also consists of a hierarchy of buses with full-inclusion caches be-
tween each level. It differs from the DDM and the Wilson architectures by utilizing a
directory-based cache-coherence protocol, rather than a snooping protocol. A direc-
tory entry in the hierarchy has one presence bit for each subsystem of the lower level
(toward the leaves of the hierarchy). The directory entry also has two additional
code bits and a lock bit. The code bits can be in private, shared, request_notification,
or undefined states.

Paradigm also has an additional switching network tying the leaves of the hierarchy
together. This entitles each leaf to have access to the I/O system. A leaf consists of
four processors, each with its own on-chip virtual cache, hosted on a board together
with a shared on-board virtual cache of 512 kbytes and some local memory. Up to
eight board caches are tied together by the group bus to the interbus cache module.

202

Related Work

The interbus cache module, hosting a large cache, interfaces to the top bus, the
memory bus, connected to the shared memory. The Paradigm protocol integrates
synchronization primitives into all levels of caches.

The DDM is related to the Paradigm in its being a hierarchy. The delay of the
Paradigm network is similar to the one reported for our DDM prototype in Chap-
ter 6.

11.1.4 Memory Hierarchy Network

Data moving closer to the processor accessing it can be found in the memory hier-
archy network architecture of Mizrahi [MBLZ89]. The network of this architecture
is a binary tree with storage capabilities in each network node. The main idea is to
move the datum one step closer to the processor accessing it. Different thresholds
for when, and how far, to move the datum have been evaluated. The main idea is
to move read-write shared data to the top of the subsystem including all processors
sharing the datum.

The memory overhead of that architecture is much bigger than in the DDM, because
of a low branch factor and full inclusion. The architecture is equipped with a shared
memory at its top.

11.2 COMA-related Architectures

11.2.1 Distributed Virtual Shared-Memory Systems

Distributed virtual shared-memory (DVSM) systems implement one form of COMA
in software on standard workstations connected by a local-area network (LAN).
[tem size in DVSM is equal to page size in the MMU. Traps from the MMU are
the hooks into the cache-coherence protocol. A shared item (page) resident in the
local memory is tagged with read permission, and an exclusive item is tagged with
read and write permission. A software-based implementation of this type has been
proposed by Li and Hudak [LLH89]. A page in Shared state in a node has a page
descriptor pointing to the physical location in the local memory of the node and its
page privileges set to read only. Reads to the page are performed by a normal read
operation, including an indirection by the MMU to the physical location in the local
memory where the datum is kept. A write to the page will cause an MMU fault,
waking up the coherence mechanism. Other processors storing copies of a page are
sent invalidation messages. Upon the reception of acknowledges from all other nodes
with a shared copy, the processor may perform its write.

203

11.2 COMA-related Architectures

In the case of a read miss to a page, i.e., the page is not in the local memory of
the node, the current location must be searched for, similar to a COMA read miss.
One proposed scheme is to allocate a specific home node for each page, storing
information about where the page currently resides. A read request first goes to the
home node of the page, to find out in which node a valid copy exists. One extra hop
to that node is often needed before the data value can be returned to the requesting
node by a third hop. In DVSM terms this is called the fized distributed manager
algorithm [LLH89].

Yet another solution has been proposed, where the home has the ability to move
and where sometimes the third hop can be avoided. Instead of having a fixed
home location for the page, the global page information can be stored in any node.
In order to avoid searching all the nodes sequentially on a read miss, a dynamic
per-page pointer scheme is maintained in the nodes, pointing to the node that is
believed to currently have a copy of a page. This is called the dynamic distributed
manager [LLH89].

The DDM is related to the DVSM work in its relaxation of mapping to physical
memory.

11.2.2 J-machine

The J-machine is a message-passing architecture developed at M.L.T. [DW89]. It
supports a low overhead context switch and has communication integrated into
its instruction set, enabling it to efficiently emulate caches and cache coherence in
software. A hierarchical cache-coherence protocol has been developed [Wal90]. The
network of the J-machine is a 3-D mesh; the hierarchy only exists logically. Different
address domains have different logical hierarchies, removing some of the hot-spot
phenomena of a single top in a hierarchy.

The protocol has a hierarchical directory representation similar to Paradigm’s.
There is, however, no shared memory at the top introducing the COMA problems
of finding a datum upon a read miss or not losing the last copy of a datum upon re-
placement. It finds a copy of an item by a hierarchical scheme similar to the DDM’s,
but the data reply is returned on the available shortcuts in the physical topology
rather than back along the logical search path. The last datum is kept track of by
always having one responsible node, the owner, for shared data. The owner replaces
its copy of the datum with care, while others can simply destroy their copies on
replacement.

The DDM is related to this work by being a hierarchical COMA.

204

Related Work

11.2.3 Link-Based DDM

An alternative link-based DDM scheme has been developed at the University of
Bristol [RW91]. Compared to the bus-based DDM, its protocol has a different
representation, which is suited to a link-based architecture structured like a tree,
rather than a bus-based one. It has certain similarities with the Paradigm and the
J-machine protocols.

An emulator of the DDM has been developed at the University of Bristol [RW91].
The emulator runs on the Meiko Transputer platform. The modeled architecture
has a tree-shaped link-based structure with Transputers as directories. Its four links
allow for a branch factor of three at each level in the model. The Transputers at
the leaves execute the application. All references to global data are intercepted and
handled in a DDM manner by software. The emulator can evaluate large data sets
running on many Transputers. Even though the overhead of emulating the protocol
on a Transputer is high, some actual speedups have been reported. A newly started
ESPRIT project, EMI/Horn, will define a hardware-based architecture based on this

idea.

The bus-based and link-based DDMs are related through their common ori-
gin [WHS88] and common protocol [HHW90].

11.2.4 KSR1

As mentioned earlier, a commercial COMA architecture has recently been announced
by Kendall Square Research [BFKR92]. The KSRI architecture is similar to the
DDM in many ways. It differs as well. It uses large items of 128 bytes and suffers
from a much larger remote-access delay. Its processors run at 20 MHz. The network
consists of a ring-based hierarchical structure with a branching factor of 32 at each
level. Its processor data caches, sized 256k bytes, are accessed in two cycles. An
access to its AM takes 18 cycles. A remote access satisfied by the lowest ring yields
a delay of 126 cycles at 20 MHz, while an access climbing yet another level in the
hierarchy takes 600 cycles [Dun92]. We have been unable to obtain any detailed
information from KSR.

The KSR1 offers an attractive bandwidth of 1 Gbytes per second on its rings, but
suffers greatly from its long remote-access delay. It is built of proprietary proces-
sors rather than commercially available ones. We believe in adapting to existing
microprocessors to stay on the processor technology curve, which has recently taken
a few giant steps. We do not fully understand the causes of the long delays on the
rings. The proposed ring bus by Barossa and Dubois [BD91] would drastically cut
that delay.

205

The DDM is related to this work by being a physically hierarchical COMA. How-
ever, it has much shorter remote latency, smaller item size, and uses commercially
available processors. Further details of the KSR1 implementation is to be found in
Appendix C.

11.3 Cache-Coherent NUMAs

The work presented here also has a lot in common with cache-coherent NUMAs in
general in that the same cache-coherence problems are solved. A survey of cache-
coherence protocols can be found in Chapter 3, and a brief description of one of
them, Dash, is found in Chapter 4.

206

12

Summary

We have identified and described a new class of architectures—cache-only mem-
ory architectures (COMA)—with its memory system comprised solely of caches.
We isolated four COMA properties enabling it to suit different types of applica-
tions. COMA showed a performance superior to non-uniform memory architectures
(NUMA) for a selection of programs in a quantitative analytical study. Our study
also showed that COMA architectures are less sensitive to network delays and also
less dependent on large second-level caches.

One instance of COMA | the Data Diffusion Machine, was described down to the level
of an implementation proposal. The proposal included a cache-coherence protocol as
well as solutions to the COMA-specific problems of finding data and replacing with
care. The DDM’s performance was evaluated in a detailed simulation study. The
DDM performs well for programs written with a completely different architecture
in mind. The COMA benefits increase with the problem size. It was also shown
how even better performance can be achieved for some applications by only slight
modification of the programs.

The misses remaining in an architecture with large caches were attacked by supply-
ing a dynamic hardware-prefetching scheme and an adaptive write-update cache-
coherence protocol. The prefetching removed half of the remote misses for one ap-
plication, while the adaptive write-update strategy reduced the misses for another
application by more than ten times. However, both methods need a network with
higher transaction frequency than what can be offered by the relatively slow busses
of the current DDM design in order to have full effect. We have also presented
several methods for achieving higher transaction frequency.

A prototype implementation of the DDM is near its completion at SICS. Although
we presented detailed simulation studies in this work, the real performance can only
be studied when running real-sized problems on a real machine.

208

13

Conclusion

The three negative attributes of multiprocessors—they are hard to program, they
do not achieve the expected performance, and they take a long time to develop—can

be reduced by a COMA.

COMA can be regarded as more general than NUMA in that it supports a larger
variety of program behaviors. It provides the shared memory paradigm to the
programmer and does not require advanced optimizations to run well.

COMA performance is superior to NUMA for the studied applications. It is less
sensitive to network latency—important for large machines and future technology.

It some of the suggested optimization techniques are applied, its sensitivity for net-
work latency is further reduced, but demands higher transaction frequency. None
of the optimizations put any extra demand on the programmer.

A COMA implementation can be made simple in that it integrates the three func-
tionalities found in a NUMA—local memory, directory, and remote access cache—
into one unit: the attraction memory. The development complexity of a COMA is
therefore low.

We believe that a COMA of the future focuses on simplicity, to allow for a short de-
velopment time, and transaction frequency, to improve performance, while providing
an efficient shared-memory abstraction to the programmer.

Epilogue

“Fascinating,” responds the computer freak. We are the only ones left at the party.
The host is asleep. “What do you work with?” I ask to be polite. “I work with
computers,” he replies while watching my face ...

[AI83]

[Amd67]

[And91]

[BD91]

[BFKR92]

[BGWS9)

[Bit90]

[BS92]

[BSF+91]

[BW8S]

[CCS8T]

References

Arvind and R.A. lannucci. Two Fundamental Issues in Multiprocessing:

the Dataflow Solution. MIT/LCS/TM 241, MIT, 1983.

G. M. Amdahl. Validity of the Single-Processor Approach to Achieving
Large Scale Computing Capabilities. In AIFPS Conference Proceedings,
pages 483-485, 1967.

P. Andersson. Performance Evaluation of Different Topologies for the
Data Diffusion Machine. Final work for Undergraduate Studies, KTH,
November 1991.

L. Barroso and M. Dubois. Cache Coherence on a Slotted Ring. In
Proceedings of the International Conference on Parallel Processing, pages

230-237, 1991.

H. Burkhardt, S. Frank, B. Knobe, and J. Rothnie. Overview of the
KSR1 Computer System. Technical Report KSR-TR-9202001, Kendall
Square Research, Boston, 1992.

D. L. Black, A. Gupta, and W-D. Weber. Compatitive management of
distributed shared memory. In Proceedings of Compcon, 1989.

P. Bitar. A Critique of Trace-Driven Simulation for Shared-Memory Mul-
tiprocessors. In Cache and Interconnect Architectures in Multiprocessors,

pages 37-52. Kluwer Academic Publisher, Norwell, Mass, 1990.

M. Brorsson and P. Stenstrom. Visualising Sharing Behavior in relation
to Shared Memory Management. In ICPADS ’92, International Confer-
ence On Parallel And Distributed Systems, 1992.

W.J. Bolosky, M.L. Scott, R.P. Fitzgerald, R.J. Fowler, and A.L. Cox.
NUMA Policies and Their Relation to Memory Architecture. In Proceed-
ings of the jth Annual Architectural Support for Programming Languages
and Operating Systems, pages 212-221, 1991.

J-L. Baer and W-H. Wang. On the Inclusion Properties for Multi-Level
Cache Hierarchies. In Proceedings of the 15th Annual International Sym-
posium on Computer Architecture, pages 73-80, 1988.

J.H. Chang, H. Chao, and K. So. Cache Design of A Sub-Micron CMOS
System/370. In Proceedings of the 14th Annual International Symposium
on Computer Architecture, pages 208-213, 1987.

[CF7S]

[CFKA90]

[CGB8Y]

[(CGBI1]

[CGMYO]

[CKA91]

[Cor91]

[DGHO0]

[DSBS6]

[Dub91]

[Dun92]

[DW8Y]

214

L.M. Censier and P. Feautrier. A New Solution to Coherence Problems
in Multicache Systems. IEEE Transactions on Computers, 27(12):1112—
1118, December 1978.

D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal. Directory-Based
Cache Coherence in Large-Scale Multiprocessors. [EFEE Computer,
23(6):49-58, June 1990.

D.R. Cheriton, H.A. Goosen, and P.D. Boyle. Multi-Level Shared
Caching Techniques for Scalability in VMP-MC. In Proceedings of the

16th Annual International Symposium on Computer Architecture, pages

16-24, 1989.

D.R. Cheriton, H.A. Goosen, and P.D. Boyle. Paradigm: A Highly
Scalable Shared-Memory Multicomputer Computer. [FEE Computer,
24(2):33-46, February 1991.

D.R. Cheriton, H.A. Goosen, and P. Machanick. Restructuring Paral-
lel Simulation to Improve Cache Behavior in Shared-Memory Multipro-
cessor: A First Experience. Computer Science Department, Stanford,
Internal paper, 1990.

D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS Directories: A
Scalable Cache Coherence Scheme. In Proceedings of the 4th Annual Ar-
chitectural Support for Programming Languages and Operating Systems,
1991.

Encore Computer Corporation. Encore 93 Series Technical Summary.

1991.

H. Davis, S. Goldschmidt, and J. Hennessy. Tango: A Multiprocessor
Simulation and Tracing System. Tech. Report No CSL-TR-90-439, Stan-
ford University, 1990.

M. Dubois, C. Scheurich, and F.A. Briggs. Memory Access Buffering in
Multiprocessors. In Proceedings of the 13th Annual International Sym-
posium on Computer Architecture, pages 434—442, 1986.

M. Dubois. A New Solution to Coherence Problems in Multicache Sys-
tems. In Supercomputing ‘91, pages 197-206, 1991.

T. H. Dunigan. Kendall Square Multiprocessor: Early Experiences and
Performance. Technical Report ORNL/TM-12065, Oak Ridge National
Laboratory, 1992.

W. J. Dally and D. S. Wills. Universal Mechanism for Concurrency. In
Proceedings of Parallel Architecture and Languages Furope, pages 19-33.
Springer-Verlag, 1989.

[EKS9]

[FWT8]

[GGHO1]

[GGTH92]

[GHG*91]

[GJS92]

[GLL*90]

[Goo83]

[Goo89]

[Gri92]

[GVWS9]

S.J. Eggers and R.H. Katz. Evaluating the Performance of Four Snooping
Cache Coherency Protocols. In Proceedings of the 16th Annual Interna-
tional Symposium on Computer Architecture, pages 2-15, 1989.

S. Fortune and J. Wyllie. Relations Between Concurrent-Write Models
of Parallel Computation. In Proceedings of the Tenth ACM Symposium
on Theory of Computing, pages 114-118, 1978.

K. Gharachorloo, A. Gupta, and J. Hennessy. Performance Evaluation
of Memory Consistency Models for Shared-Memory Multiprocessors. In
Proceedings of the jth Annual Architectural Support for Programming
Languages and Operating Systems, 1991.

K. Gharachorloo, A. Gupta, and J. Hennessy. Hiding Memory Latency
using Dynamic Scheduling in Shared-Memory Multiprocessors. In Pro-
ceedings of the 19th Annual International Symposium on Computer Ar-
chitecture, pages 22-33, 1992.

A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W-D. We-
ber. Comparative Evaluation of Latency Reducing and Tolerating Tech-
niques. In Proceedings of the 18th Annual International Symposium on
Computer Architecture, 1991.

A. Gupta, T. Joe, and P. Stenstrom. Comparative Performance Fvalu-

ation of Cache-Coherent NUMA and COMA Architectures. TR #CSL-
TR-92-524 Stanford University, 1992.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy. Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors. In Proceedings of the 17th Annual In-
ternational Symposium on Computer Architecture, pages 15-26, 1990.

J. R. Goodman. Using Cache Memory to Reduce Processor-Memory
Traffic. In Proceedings of the 10th Annual International Symposium on
Computer Architecture, pages 124-131, 1983.

J. R. Goodman. Cache Consistency and Sequential Consistency. Tech-
nical Report 61, SCI Committee, 1989.

M. Grindal. Evaluation of Latency-Hiding Techniques for the Data Dit-
fusion Machine. Final work for Undergraduate Studies, KTH, February
1992.

J. R. Goodman, M. K. Vernon, and P.J. Woest. Efficient Synchronization
Primitives for Large-scale Cache-Coherent Multiprocessors. In Proceed-
ings of the 3rd Architecture Symposium for Programming Languages and
Operating Systems, pages 64-75, 1989.

215

[GWSS]

[GW92]

[Hag92]

[HHWO0]

[Hi190]

[HLY1]

[HLHO1]

[HLH92]

[HomBC]

[HS89]

[JLGS90]

[Jou90]

216

J.R. Goodman and P.J. Woest. The Wisconsin Multicube: A New Large-
Scale Cache-Coherent Multiprocessor. In Proceedings of the 15th Annual
International Symposium on Computer Architecture, Honolulu, Hawaii,

pages 422-431, 1988.

A. Gupta and W-D. Weber. Cache Invalidation Patterns in Shared-
Memory Multiprocessors. IEEE Transactions on Computers, 41, 1992.

E. Hagersten. Toward Scalable Cache Only Memory Architectures. PhD
thesis, Royal Institute of Technology, Stockholm/ Swedish Institute of
Computer Science, 1992.

E. Hagersten, S. Haridi, and D.H.D. Warren. The Cache-Coherence
Protocol of the Data Diffusion Machine. In M. Dubois and S. Thakkar,
editors, Cache and Interconnect Architectures in Multiprocessors. Kluwer
Academic Publisher, Norwell, Mass, 1990.

Also in the Proceedings of Paralle Architectures and Languages Furope

(PARLE) 1989.

M. D. Hill. What is Scalability? Computer Architecture News, 18(4):18-
21, December 1990.

E. Hagersten and A. Landin. An Initial Attempt to a General Network
COMA. DDM-memo, Swedish Institute of Computer Science, August
1991.

E. Hagersten, A. Landin, and S. Haridi. Multiprocessor Consistency and
Synchronization Through Transient Cache States. In M. Dubois and
S. Thakkar, editors, Secalable Shared-Memory Multiprocessors. Kluwer
Academic Publisher, Norwell, Mass, June 1991.

E. Hagersten, A. Landin, and S. Haridi. DDM — A Cache-Only Memory
Architecture. IEEE Computer, 25(9):44-54, Sept. 1992.

Homer. Odyssey. 800 BC.

M. Hill and A.J. Smith. Evaluating Associativity in CPU Caches. IEEFE
Transactions on Computers, 38(12):1612-1630, December 1989.

D. James, A.T. Laundrie, S. Gjessing, and G.S. Sohi. Scalable Coherence
Interface. IEEE Computer, 23(6):74-77, June 1990.

N. Jouppi. Improving Direct-Mapped Cache Performance by Addition
of a Small Fully-Associative Cache and Prefetch Buffer. In Proceedings
of the 17th Annual International Symposium on Computer Architecture,
pages 364-373, 1990.

[Kat85]

[KLO1]

[KMRSS6]

[Lam79]

[Lan92]

[Lar90]

[Lei85)]

[Len9l]

[LH89]

[LH91]

[LHHO1]

[LLG*90]

[L6£90]

R.H. Katz. Implementing a Cache Consistency Protocol. In Proceedings
of the 13th Annual International Symposium on Computer Architecture,
pages 276-283, 1985.

A.C. Klaiber and H.M. Levy. An Architecture for Software-Controlled
Data Prefetching. In Proceedings of the 18th Annual International Sym-
posium on Computer Architecture, pages 43-53, 1991.

A.R. Karlin, M.S. Manasse, I.. Rudolph, and D.D. Sleator. Competi-
tive Snoopy Caching. In Proceedings of the 27th Annual International
Symposium on Foundation of Computer Science, 1986.

L. Lamport. How to Make a Multiprocessor Computer that Correctly
Executes Multiprocess Programs. [EFEE Transactions on Computers,

28(9):690-691, September 1979.

A. Landin. Personal Communication. Swedish Institute of Computer

Science, 1989-1992.

J. Larus. Abstract Execution: A Technique for Efficient Tracing Pro-
grams. Tech Report, Computer Science Department, University of Wis-
consin at Madison, 1990.

C.E. Leiserson. Fat Trees: Universal Networks for Hardware-Efficient
Supercomputing. IFEFE Transactions on Computers, pages 892-901, Oct.
1985.

D. Lenoski. The Design and Analysis of DASH: A Scalable Directory-
Based Multiprocessor. PhD thesis, Stanford University, 1991.

K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Sys-
tems. ACM Transactions on Computer Systems, 7(4):321-359, Novem-
ber 1989.

A. Landin and E. Hagersten. The DDM Node Controller User Manual.
DDM-memo, Swedish Institute of Computer Science, Feb 1991.

A. Landin, E. Hagersten, and S. Haridi. Race-free Interconnection Net-
works and Multiprocessor Consistency. In Proceedings of the 158th Annual
International Symposium on Computer Architecture, 1991.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy.
The Directory-Based Cache Coherence Protocol for the DASH Multi-
processor. In Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages 148-159, 1990.

M. Lofgren. A Simulator Written in C++ for a Parallel Architecture.
Final work for Undergraduate Studies, KTH, November 1990.

217

[LRWOL1]

[Mac91]

[Mag93]

[MBLZ89]

IMCS91]

[Mot89a]

[Mot89b]

[NAO1]

[NPAY2]

[P+85]

[RWO1]

[Sch89]

[SDST]

218

M.S. Lam, E.E. Rothberg, and M.E. Wolf. The Cache Performance
and Optimizations of Blocked Algorithms. In Proceedings of the jth

Annual Architectural Support for Programming Languages and Operating
Systems, pages 63—74, 1991.

Thinking Machines. The Connection Machine CM-5 Technical Summary.
October 1991.

P. Magnusson. A Design for Efficient Simulation of a Multi-Processor.
In Proceedings of the International Workshop on Modeling, Analysis and
Stmulation of Computer and Telecommunication Systems, 1993.

H. E. Mizrahi, J-L. Baer, D.E. Lazowska, and J. Zahorjan. Introduc-
ing Memory into the Switch Elements of Multiprocessor Interconnection
Networks. In Proceedings of the 16th Annual International Symposium
on Computer Architecture, pages 158176, 1989.

J.M. Mellor-Crummey and M.L. Scott. Synchronization Without Con-
tention. In Proceedings of the Jth Annual Architectural Support for Pro-
gramming Languages and Operating Systems, pages 269-278, 1991.

Motorola. MC88100-RISC Microprocessor, User’s Manual. Prentice
Hall, New Jersey, 1989.

Motorola. MC88200-Cache/Memory Management Unit, User’s Manual.
Prentice Hall, New Jersey, 1989.

D. Nussbaum and A. Agarwal. Scalability of Parallel Machines. Com-
munication of the ACM, 34(3):57-61, March 1991.

R. S. Nikhil, G. M. Papadopoulos, and Arvind. *T: A Multithreaded
Massively Parallel Architecture. In Proceedings of the 19th Annual In-
ternational Symposium on Computer Architecture, pages 156167, 1992.

G.F. Pfister et al. The IBM Research Parallel Processor Prototype
(RP3). In Proceedings of the 1985 International Conference on Parallel
Processing, Chicago, 1985.

S. Raina and D.H.D Warren. Traffic Patterns in a Scalable Multiproces-
sor through Transputer Emulation. In International Hawaii Conference
on System Science, 1991.

C. Scheurich. Access Ordering and Coherence in Shared Memory Multi-
processors. PhD thesis, University of Southern California, 1989.

C. Scheurich and M. Dubois. Correct Memory Operation of Cache-
based Multiprocessors. In Proceedings of the 14th Annual International
Symposium on Computer Architecture, pages 234-243, 1987.

[SJG92a]

[STG92b]

[SLSS]

[SmiT78]

[SRS4]

[Ste90]

[SWGO1]

[TD90]

[TSS88)]

[VIS8S]

[Wal90]

[WBL89]

P. Stenstrom, T. Joe, and A. Gupta. Comparative Performance Evalua-
tion of Cache-Coherent NUMA and COMA Architectures. In Proceedings
of the 19th Annual International Symposium on Computer Architecture,
pages 80-91, 1992.

P. Stenstrom, T. Joe, and A. Gupta. Comparative Performance Fval-
uation of Cache-Coherent NUMA and COMA Architectures. In Forth
Swedish Workshop on Computer System Architecture, January 1992.

R.T. Short and H.M. Levy. A Simulation Study of Two-Level Caches. In
Proceedings of the 15th Annual International Symposium on Computer
Architecture, pages 81-88, 1988.

B.J. Smith. A Pipelined, Shared Resource MIMD Computer. In Pro-

ceedings of International Conference on Parallel Processing, 1978.

7. Segall and L. Rudolph. Dynamic Decentralized Cache Schemes for an
MIMD Parallel Processor. In Proceedings of the 11th Annual Interna-
tional Symposium on Computer Architecture, pages 340-347, 1984.

P. Stenstrom. A Survey of Cache Coherence for Multiprocessors. [FEFE
Computer, 23(6), June 1990.

J.S. Singh, W-D. Weber, and A. Gupta. SPLASH: Stanford Parallel
Applications for Shared Memory. Stanford University, Report, April
1991.

M. Thapar and B. Delagi. Stanford Distributed-Directory Protocol.
IEEE Computer, 23(6):78-80, June 1990.

C.P. Thacker, L..C. Stewart, and E.H. Satterthwaite. Firefly: A Multipro-
cessor Workstation. [EEE Transactions on Computers, 37(8):909-920,
August 1988.

M.K. Vernon, R. Jog, and G.S. Sohi. Performance Analysis of Hierar-
chical Cache-Consistent Multiprocessors. In Conference Proceedings of
International Seminar on Performance of Distributed and Parallel Sys-
tems, pages 111 — 126, 1988.

D. Wallach. A Scalable Hierarchical Cache Coherence Protocol. SB
Thesis. MIT AT lab, May 1990.

W-H. Wang, J-L. Baer, and H. M. Levy. Organization and Performance
of a Two-Level Virtual-Real Cache Hierarchy. In Proceedings of the 16th
Annual International Symposium on Computer Architecture, pages 140—

148, 1989.

219

[WHSS]

[Wil85)]

[Wulss]

[ZB92]

220

D.H.D. Warren and S. Haridi. Data Diffusion Machine-a scalable shared
virtual memory multiprocessor. In International Conference on Fifth

Generation Computer Systems 1988. ICOT, 1988.

AW. Wilson. Organization and Statistical Simulation of Hierarchical
Multiprocessors. PhD thesis, CMU, 1985.

W.A. Wulf. The WM Computer Architecture Definition and Rationale
Computer Science. Department of Computer Science, University of Vir-

ginia, TR-88-19, July 1988,

R.N. Zucker and J-L. Baer. A Pereformance Study of Memory Consis-
tency Models. In Proceedings of the 19th Annual International Sympo-
stum on Computer Architecture, pages 2-12, 1992.

A

Tables from the Analythical
Model

Architecture Applications and Data Set Size Per Node
Lcap/ MP3D Pthor | Locus | Water | Chol LU B-H | Ocean Avg | Avg
Leon DS:34k | 199k | 77k 13k 62k | 40k | 25k | 151k all 4
| 33 MHz technology, cache size 4 kbytes, bmax = 16 |
n = 16 processors
N mesh2 47/ 64 11 12 7 8 14 11 21 27 14 10
U mesh3 47/ 63 10 12 7 7 13 11 20 27 14 10
M h-link 44/ 59 10 11 7 7 13 11 19 25 13 9
A h-bus 35/ 44 8 9 6 6 10 9 15 20 10 7
C mesh2 16/ 74 9 9 4 5 7 5 8 11 7 5
O mesh3 16/ 73 9 9 4 5 7 5 8 11 7 5
M h-link 16/ 74 9 9 4 5 7 5 8 11 7 5
A h-bus 16/ 60 8 8 4 4 7 5 8 11 7 5
Dir: h-link 16/ 58 8 8 4 4 7 5 8 11 7 5
Dir: h-bus 16/ 51 7 7 4 4 6 5 8 10 6 5
n = 64 processors
N mesh2 62/ 84 14 16 9 10 18 15 27 35 18 13
U mesh3 55/ 75 12 14 8 9 16 13 24 31 16 12
M h-link 53/ 71 12 14 8 8 15 13 23 30 15 11
A h-bus 48/ 63 10 12 7 8 14 11 21 27 14 10
C mesh2 16/ 94 11 11 5 5 8 5 8 12 8 6
O mesh3 16/ 85 10 10 4 5 8 5 8 11 8 5
M h-link 16/ 86 11 10 4 5 8 5 8 11 8 6
A h-bus 16/ 78 10 10 4 5 7 5 8 11 7 5
Dir: h-link 16/ 84 10 10 4 5 8 5 8 11 8 5
Dir: h-bus 16/ 82 10 10 4 5 8 5 8 11 8 5
n = 256 processors
N mesh2 89/125 20 23 13 14 25 21 38 50 25 18
U mesh3 68/ 92 15 17 10 10 19 16 29 38 19 14
M h-link 55/ 74 12 14 8 9 16 13 24 31 16 11
A h-bus 51/ 67 11 13 8 8 15 12 22 29 15 11
C mesh2 16/135 15 15 5 7 10 5 8 13 10 7
O mesh3 16/102 12 12 5 6 8 5 8 12 8 6
M h-link 16/ 89 11 11 4 5 8 5 8 11 8 6
A h-bus 16/ 82 10 10 4 5 8 5 8 11 8 5
Dir: h-link 16/ 91 11 11 4 5 8 5 8 11 8 6
Dir: h-bus 16/ 89 11 11 4 5 8 5 8 11 8 6
n = 1024 processors
N mesh2 143/205 31 36 21 21 40 33 61 81 41 29
U mesh3 86/121 19 22 13 13 25 20 37 49 25 18
M h-link 63/ 86 14 16 10 10 18 15 27 36 18 13
A h-bus 67/ 92 15 17 10 10 19 16 29 38 19 14
C mesh2 16/215 23 22 7 9 13 6 9 15 13 9
O mesh3 16/131 15 14 5 6 9 5 8 13 10 7
M h-link 16/101 12 12 5 6 8 5 8 12 8 6
A h-bus 16/107 13 12 5 6 9 5 8 12 9 6
Dir: h-link 16/119 14 13 5 6 9 5 8 12 9 6
Dir: h-bus 16/121 14 14 5 6 9 5 8 12 9 6

Table A.1: Studying the variation in the average number of processor cycles per global
data access.

222

Architecture Applications and Data Set Size Per Node

Lcap/ MP3D Pthor | Locus | Water | Chol | LU B-H | Ocean Avg | Avg

Leon DS:34k | 199k | 77k 13k 62k | 40k | 25k | 151k all 4

| 33 MHz technology, cache size 16 kbytes, bmax = 16 |
n = 16 processors
N mesh2 47/ 64 10 10 5 6 6 5 11 16 9 5
U mesh3 47/ 63 10 10 5 6 6 5 11 16 8 5
M h-link 44/ 59 9 9 5 5 5 5 10 15 8 5
A h-bus 35/ 44 7 7 4 4 4 4 8 12 6 4
C mesh2 16/ 74 9 9 3 4 5 3 5 7 6 4
O mesh3 16/ 73 9 8 3 4 5 3 5 7 6 4
M h-link 16/ 74 9 9 3 4 5 3 5 7 6 4
A h-bus 16/ 60 8 7 3 4 4 3 5 7 5 3
Dir: h-link 16/ 58 8 7 3 4 4 3 5 7 5 3
Dir: h-bus 16/ 51 7 7 3 3 4 3 4 7 5 3
n = 64 processors
N mesh2 62/ 84 13 13 6 7 7 7 14 21 11 7
U mesh3 55/ 75 12 11 6 6 7 6 13 18 10 6
M h-link 53/ 71 11 11 6 6 6 6 12 18 9 6
A h-bus 48/ 63 10 10 5 6 6 5 11 16 9 5
C mesh2 16/ 94 11 10 4 5 5 3 5 8 6 4
O mesh3 16/ 85 10 10 4 4 5 3 5 8 6 4
M h-link 16/ 86 10 10 4 4 5 3 5 8 6 4
A h-bus 16/ 78 10 9 3 4 5 3 5 8 6 4
Dir: h-link 16/ 84 10 10 4 4 5 3 5 8 6 4
Dir: h-bus 16/ 82 10 9 4 4 5 3 5 8 6 4
n = 256 processors
N mesh2 89/125 19 18 9 10 10 9 20 29 16 10
U mesh3 68/ 92 14 14 7 8 8 7 15 22 12 7
M h-link 55/ 74 12 11 6 6 7 6 13 18 10 6
A h-bus 51/ 67 11 10 5 6 6 6 12 17 9 6
C mesh2 16/135 15 14 5 6 7 4 5 9 8 5
O mesh3 16/102 12 11 4 5 6 3 5 8 7 4
M h-link 16/ 89 11 10 4 5 5 3 5 8 6 4
A h-bus 16/ 82 10 9 4 4 5 3 5 8 6 4
Dir: h-link 16/ 91 11 10 4 5 5 3 5 8 6 4
Dir: h-bus 16/ 89 11 10 4 5 5 3 5 8 6 4
n = 1024 processors

N mesh2 143/205 30 29 14 16 16 14 31 47 25 15
U mesh3 86/121 18 18 9 10 10 9 19 28 15 9
M h-link 63/ 86 13 13 6 7 8 7 14 21 11 7
A h-bus 67/ 92 14 14 7 8 8 7 15 22 12 7
C mesh2 16/215 23 21 6 8 10 4 6 12 11 7
O mesh3 16/131 15 14 4 6 7 3 5 9 8 5
M h-link 16/101 12 11 4 5 6 3 5 8 7 4
A h-bus 16/107 13 12 4 5 6 3 5 8 7 5
Dir: h-link 16/119 14 13 4 5 6 3 5 9 7 5
Dir: h-bus 16/121 14 13 4 6 7 3 5 9 8 5

Table A.2: Studying the variation in the average number of processor cycles per global
data access.

223

Architecture Applications and Data Set Size Per Node
Lcap/ MP3D Pthor | Locus | Water | Chol LU B-H | Ocean Avg | Avg
Leon DS:34k | 199k | 77k 13k 62k | 40k | 25k | 151k all 4
33 MHz technology, cache size 64 kbytes, bmax = 16 [
n = 16 processors
N mesh2 47/ 64 9 8 4 4 4 3 4 10 6 4
U mesh3 47/ 63 9 8 4 4 4 3 4 10 6 4
M h-link 44/ 59 8 8 3 4 4 3 4 9 5 4
A h-bus 35/ 44 6 6 3 3 3 2 3 7 4 3
C mesh2 16/ 74 9 8 3 4 4 2 2 5 5 3
O mesh3 16/ 73 9 8 3 4 4 2 2 5 5 3
M h-link 16/ 74 9 8 3 4 4 2 2 5 5 3
A h-bus 16/ 60 7 7 3 3 4 2 2 5 4 3
Dir: h-link 16/ 58 7 7 3 3 4 2 2 5 4 3
Dir: h-bus 16/ 51 6 6 2 3 3 2 2 5 4 3
n = 64 processors
N mesh2 62/ 84 11 11 4 5 6 4 5 13 7 5
U mesh3 55/ 75 10 10 4 5 5 3 4 11 7 4
M h-link 53/ 71 10 9 4 5 5 3 4 11 6 4
A h-bus 48/ 63 9 8 4 4 4 3 4 10 6 4
C mesh2 16/ 94 11 10 3 4 5 2 3 6 6 4
O mesh3 16/ 85 10 9 3 4 5 2 3 6 5 4
M h-link 16/ 86 10 9 3 4 5 2 3 6 5 4
A h-bus 16/ 78 9 9 3 4 4 2 3 6 5 3
Dir: h-link 16/ 84 10 9 3 4 5 2 3 6 5 3
Dir: h-bus 16/ 82 10 9 3 4 5 2 3 6 5 3
n = 256 processors
N mesh2 89/125 16 16 6 7 8 5 7 18 10 7
U mesh3 68/ 92 12 12 5 6 6 4 5 14 8 5
M h-link 55/ 74 10 10 4 5 5 3 4 11 7 4
A h-bus 51/ 67 9 9 4 4 5 3 4 10 6 4
C mesh2 16/135 15 14 4 5 7 3 3 7 7 5
O mesh3 16/102 12 11 3 4 5 2 3 6 6 4
M h-link 16/ 89 10 10 3 4 5 2 3 6 5 4
A h-bus 16/ 82 10 9 3 4 5 2 3 6 5 3
Dir: h-link 16/ 91 10 10 3 4 5 2 3 6 5 4
Dir: h-bus 16/ 89 10 9 3 4 5 2 3 6 5 4
n = 1024 processors
N mesh2 143/205 26 25 9 11 12 7 10 28 16 10
U mesh3 86/121 16 15 6 7 7 5 6 17 10 6
M h-link 63/ 86 11 11 5 5 6 4 5 13 7 5
A h-bus 67/ 92 12 12 5 6 6 4 5 14 8 5
C mesh2 16/215 23 21 6 8 10 4 4 10 11 7
O mesh3 16/131 14 13 4 5 6 3 3 7 7 5
M h-link 16/101 11 11 3 4 5 2 3 6 6 4
A h-bus 16/107 12 11 4 5 6 3 3 6 6 4
Dir: h-link 16/119 13 12 4 5 6 3 3 7 7 4
Dir: h-bus 16/121 13 12 4 5 6 3 3 7 7 4

Table A.3: Studying the variation in the average number of processor cycles per global
data access.

224

Architecture Applications and Data Set Size Per Node

Lcap/ MP3D Pthor | Locus | Water | Chol | LU B-H | Ocean Avg | Avg

Leon DS:34k | 199k | 77k 13k 62k | 40k | 25k | 151k all 4

| 100 MHz technology, cache size 4 kbytes, bmax = 16 |
n = 16 processors
N mesh2 52/ 71 12 13 8 8 15 12 23 30 15 11
U mesh3 52/ 70 11 13 8 8 15 12 22 29 15 11
M h-link 55/ 74 12 14 8 9 16 13 24 31 16 11
A h-bus 44/ 57 10 11 7 7 13 10 19 25 13 9
C mesh2 21/ 86 11 11 5 6 9 6 10 14 9 6
O mesh3 21/ 85 11 11 5 6 9 6 10 14 9 6
M h-link 21/ 98 12 12 5 6 9 6 10 14 9 7
A h-bus 21/ 80 10 11 5 5 9 6 10 14 9 6
Dir: h-link 21/ 75 10 10 5 5 8 6 10 14 8 6
Dir: h-bus 21/ 67 9 9 5 5 8 6 10 13 8 6
n = 64 processors
N mesh2 67/ 91 15 17 10 10 19 16 29 38 19 14
U mesh3 60/ 82 13 15 9 9 17 14 26 34 17 13
M h-link 67/ 91 15 17 10 10 19 16 29 38 19 14
A h-bus 62/ 85 14 16 9 10 18 15 27 35 18 13
C mesh2 21/106 13 13 5 6 10 6 10 15 10 7
O mesh3 21/ a7 12 12 5 6 9 6 10 14 9 7
M h-link 21/114 14 14 5 6 10 6 10 15 10 7
A h-bus 21/108 13 13 5 6 10 6 10 15 10 7
Dir: h-link 21/112 14 13 5 6 10 6 10 15 10 7
Dir: h-bus 21/114 14 14 5 6 10 6 10 15 10 7
n = 256 processors
N mesh2 94/132 21 24 14 14 27 22 40 53 27 19
U mesh3 73/ 99 16 18 11 11 21 17 31 41 21 15
M h-link 70/ 96 15 18 10 11 20 16 30 40 20 14
A h-bus 67/ 92 15 17 10 10 19 16 29 38 19 14
C mesh2 21/147 17 17 6 7 11 7 11 16 11 8
O mesh3 21/114 14 14 5 6 10 6 10 15 10 7
M h-link 21/119 14 14 6 7 10 6 10 15 10 7
A h-bus 21/115 14 14 5 6 10 6 10 15 10 7
Dir: h-link 21/122 14 14 6 7 10 6 10 15 10 7
Dir: h-bus 21/124 15 14 6 7 10 6 10 15 10 7
n = 1024 processors

N mesh2 148/212 32 38 21 22 42 34 63 84 42 30
U mesh3 91/128 20 23 13 14 26 21 39 52 26 19
M h-link 81/113 18 21 12 12 23 19 35 46 23 17
A h-bus 91/128 20 23 13 14 26 21 39 52 26 19
C mesh2 21/227 25 24 8 10 14 7 11 18 15 10
O mesh3 21/143 17 16 6 7 11 7 11 16 11 8
M h-link 21/136 16 16 6 7 11 7 11 15 11 8
A h-bus 21/151 17 17 6 7 11 7 11 16 12 8
Dir: h-link 21/162 19 18 6 8 12 7 11 16 12 8
Dir: h-bus 21/170 19 19 7 8 12 7 11 16 12 8

Table A.4: Studying the variation in the average number of processor cycles per global
data access.

225

Architecture Applications and Data Set Size Per Node

Lcap/ MP3D Pthor | Locus | Water | Chol LU B-H | Ocean Avg | Avg

Leon DS:34k | 199k | 77k 13k 62k | 40k | 25k | 151k all 4

| 100 MHz technology, cache size 16 kbytes, bmax = 16 |
n = 16 processors
N mesh2 52/ 71 11 11 5 6 6 6 12 17 9 6
U mesh3 52/ 70 11 11 5 6 6 6 12 17 9 6
M h-link 55/ 74 12 11 6 6 7 6 12 18 10 6
A h-bus 44/ 57 9 9 5 5 5 5 10 15 8 5
C mesh2 21/ 86 11 10 4 5 5 3 6 9 7 4
O mesh3 21/ 85 11 10 4 5 5 3 6 9 7 4
M h-link 21/ 98 12 11 4 5 6 4 6 9 7 5
A h-bus 21/ 80 10 10 4 5 5 3 6 9 6 4
Dir: h-link 21/ 75 10 9 4 4 5 3 6 9 6 4
Dir: h-bus 21/ 67 9 8 4 4 5 3 6 9 6 4
n = 64 processors
N mesh2 67/ 91 14 14 7 8 8 7 15 22 12 7
U mesh3 60/ 82 13 12 6 7 7 7 14 20 11 7
M h-link 67/ 91 14 14 7 8 8 7 15 22 12 7
A h-bus 62/ 85 13 13 6 7 7 7 14 21 11 7
C mesh2 21/106 13 12 4 5 6 4 6 10 8 5
O mesh3 21/ a7 12 11 4 5 6 4 6 9 7 5
M h-link 21/114 14 13 4 6 7 4 6 10 8 5
A h-bus 21/108 13 12 4 5 6 4 6 10 8 5
Dir: h-link 21/112 13 12 4 6 6 4 6 10 8 5
Dir: h-bus 21/114 13 13 4 6 6 4 6 10 8 5
n = 256 processors
N mesh2 94/132 20 19 9 11 11 10 21 31 16 10
U mesh3 73/ 99 15 15 7 8 9 8 16 24 13 8
M h-link 70/ 96 15 14 7 8 8 7 16 23 12 8
A h-bus 67/ 92 14 14 7 8 8 7 15 22 12 7
C mesh2 21/147 17 16 5 7 8 4 6 11 9 6
O mesh3 21/114 14 13 4 6 7 4 6 10 8 5
M h-link 21/119 14 13 5 6 7 4 6 10 8 5
A h-bus 21/115 14 13 4 6 7 4 6 10 8 5
Dir: h-link 21/122 14 13 5 6 7 4 6 10 8 5
Dir: h-bus 21/124 14 13 5 6 7 4 6 10 8 5
n = 1024 processors

N mesh2 148/212 31 30 14 16 17 15 32 48 25 15
U mesh3 91/128 19 19 9 10 11 9 20 30 16 10
M h-link 81/113 17 17 8 9 9 9 18 27 14 9
A h-bus 91/128 19 19 9 10 11 10 20 30 16 10
C mesh2 21/227 25 23 7 9 11 5 7 13 12 8
O mesh3 21/143 16 15 5 6 8 4 6 11 9 6
M h-link 21/136 16 15 5 6 7 4 6 11 9 6
A h-bus 21/151 17 16 5 7 8 4 6 11 9 6
Dir: h-link 21/162 18 17 5 7 8 4 7 11 10 6
Dir: h-bus 21/170 19 18 6 7 9 4 7 12 10 6

Table A.5: Studying the variation in the average number of processor cycles per global
data access.

226

Architecture Applications and Data Set Size Per Node

Lcap/ MP3D Pthor | Locus | Water | Chol | LU B-H | Ocean Avg | Avg

Leon DS:34k | 199k | 77k 13k 62k | 40k | 25k | 151k all 4

| 100 MHz technology, cache size 64 kbytes, bmax = 16 |
n = 16 processors
N mesh2 52/ 71 10 9 4 5 5 3 4 11 6 4
U mesh3 52/ 70 9 9 4 5 5 3 4 11 6 4
M h-link 55/ 74 10 10 4 5 5 3 4 11 7 4
A h-bus 44/ 57 8 8 3 4 4 3 4 9 5 4
C mesh2 21/ 86 10 9 3 4 5 2 3 7 5 4
O mesh3 21/ 85 10 9 3 4 5 2 3 7 5 4
M h-link 21/ 98 11 10 4 4 5 3 3 7 6 4
A h-bus 21/ 80 10 9 3 4 5 2 3 6 5 4
Dir: h-link 21/ 75 9 8 3 4 4 2 3 6 5 3
Dir: h-bus 21/ 67 8 8 3 4 4 2 3 6 5 3
n = 64 processors
N mesh2 67/ 91 12 12 5 6 6 4 5 14 8 5
U mesh3 60/ 82 11 11 4 5 5 4 5 12 7 5
M h-link 67/ 91 12 12 5 6 6 4 5 14 8 5
A h-bus 62/ 85 11 11 5 5 6 4 5 13 7 5
C mesh2 21/106 12 11 4 5 6 3 3 7 6 4
O mesh3 21/ a7 11 10 4 4 5 3 3 7 6 4
M h-link 21/114 13 12 4 5 6 3 3 7 7 4
A h-bus 21/108 12 11 4 5 6 3 3 7 6 4
Dir: h-link 21/112 13 12 4 5 6 3 3 7 7 4
Dir: h-bus 21/114 13 12 4 5 6 3 3 7 7 4
n = 256 processors
N mesh2 94/132 17 16 6 8 8 5 7 19 11 7
U mesh3 73/ 99 13 13 5 6 6 4 6 15 8 5
M h-link 70/ 96 13 12 5 6 6 4 5 14 8 5
A h-bus 67/ 92 12 12 5 6 6 4 5 14 8 5
C mesh2 21/147 16 15 5 6 7 3 3 8 8 5
O mesh3 21/114 13 12 4 5 6 3 3 7 7 4
M h-link 21/119 13 12 4 5 6 3 3 8 7 4
A h-bus 21/115 13 12 4 5 6 3 3 7 7 4
Dir: h-link 21/122 14 13 4 5 6 3 3 8 7 5
Dir: h-bus 21/124 14 13 4 5 6 3 3 8 7 5
n = 1024 processors

N mesh2 148/212 26 26 10 12 12 8 10 29 17 10
U mesh3 91/128 16 16 6 8 8 5 7 18 11 7
M h-link 81/113 15 14 6 7 7 5 6 16 9 6
A h-bus 91/128 16 16 6 8 8 5 7 18 11 7
C mesh2 21/227 24 22 6 8 10 4 4 11 11 7
O mesh3 21/143 16 15 4 6 7 3 3 8 8 5
M h-link 21/136 15 14 4 6 7 3 3 8 8 5
A h-bus 21/151 17 15 5 6 7 3 3 8 8 5
Dir: h-link 21/162 18 16 5 6 8 3 4 9 9 6
Dir: h-bus 21/170 19 17 5 7 8 3 4 9 9 6

Table A.6: Studying the variation in the average number of processor cycles per global
data access.

227

The Protocol of the Prototype

B

THE PROTOCOL OF THE DDM PROTOTYPE

7:y A XB Change state to 7, send y above and x below.
Retry Retry the CMMU.
! The M bus transaction has the Intend to Modify bit set.
wwlp Writeword is used as an erase on the M bus.
sX—Action If selected after trying to be selected (with priority = X) — Do Action.
—sX—Action If not selected after trying to be selected (with priority = X) - Do Action.
L Release the CPU.
0 The combination is impossible.
—-IM Transaction without the intent to modify, e.g. ordinary read.
M Transaction with intet to modify, e.g. a write.
IM-P Transaction with intet to modify by the prefetcher.
= hd No subsystem contained data with same address as the transaction.
hd At least one subsystem contained data with same address as the transaction.
|| MEMORY BELOW 1 ||
Trans. States
I E S R W RW
- IM R:r 4Retry R:Retry W:Retry RW:Retry
M RW:r 4 Retry W:e 4 Retry R:Retry W:Retry RW:Retry
replace Ligrllp Loa,rllp R:Retry W:Retry RW:Retry
IM-P RWP:r 4Retry WP:e sRetry R:Retry W:Retry RW:Retry
|| OA - KILLING CONTROL ||
Trans Trans trying to kill
[MEMORY BELOW 2 [rleld|x]oli
Trans States
EA EW RWP WP T - K| -] -] K-
- IM R:Retry WP:Retry e - | K - - - [
M S:da,rlp E: RW:Retry W:Retry d - | K - -|K|®
replace EA:Retry EW:Retry RWP:Retry WP:Retry X [[o0 [[
IM-P EA:Retry EW:Retry RWP:Retry WP:Retry o - | K - - - [
i -l f-1-10]0

MEMORY ABOVE 1

Tr. States
I E S R w RW
r s1—S:da,rlg | s1—S:da,rlp §2—
—51—0 —sl— —52—
e [] Lww!p s1—Riry s1—RW:r 4, ww!p s1—RW:r 4
—sl— —-s1—RW:ww!p —sl—
d [} S:wllp L s1—W:wllg,e s
—s5l—
X [[s1—Riry EW: L s1—RW:r 4
—sl— —sl—
o [} s1—S:wllg L s2—W:wllg,e
—sl—S:wllp L 52—
i sz—S:wli 5T [} [} s2—S:wllp L [} s3—W:wllpg,e s
—sl— —52—S:wllip L 55—
1 The home node priority scheme.
|| MEMORY ABOVE 2 ||
Trans States
EA EW RWP wPp
r s1— si—EA: §2—
—51—0 —51—0 —52—
e [[s1—RWP:r 4 s1—RWP:r 4, ww!p
—sl— —-sI1—RWP:ww!p
d [} [} s1—WP:wllg,e 4
—s5l—
X [} [} s1—RWP:r 4 E:L
—s5l—
o [} [} s2—WP:wllg,e,
—52—
i [} [} s3—WP:wllg,e, [}
—53—
|| DIRECTORY BELOW - sub NOT selected || DIRECTORY BELOW - sub selected ||
Trans States States
I E S R | W A I E S R | W A
r - hd Rir g [[[[
hd 0 0
e - hd E:xp | Wiey | LI [] Wiy Exp | Weya | Ik [] W:e 4
hd E:xp | Wiey | LI 0 Wiy Exp | Weya | Ik] W:e 4
d - hd [S:da S:da
hd 0 S:da S:da
X - kd [} [} [} o010 [} [[[0| 0 [
hd 0 0 0 o]0 0 0 0 0 0| 0 0
o - hd E:ip L:ox [} [} L:ox [} [} S:dy
hd 0 S:da 0 0 S:d 4
i - hd [} Ly [} [} [} Ly [} [} [} [} S:da
hd 0 0 0 o]0 0 0 0 0 0| 0 0

230

DIRECTORY ABOVE

Trans States
E S R w A
r sl—Arpg | sI—Axrp §2— §2—
—51—0 —sl— —52— —52—
e [] Liep s1—Riry Lep Liep
—s5l—
d [S:dp S:
X [] [] sI—Riry E:xp [}
—s5l—
o [s1—S:dp S:
—s1—S:dp
i [] [] s1—S:dp [] []
—s1—S:dp
I IBF - dir is master [I IBF - sub is master [(TOP BELOW [
Sub sel 7 Sub sel 7 Sub sel 7
Transaction NO | YES Transaction NO | YES Transaction NO | YES
T = hd [] [] T ERY r [] T = hd [
hd - - hd - - hd
e - hd - - e = hd e e e - hd XB XB
hd - - hd e e hd XB XB
d ERY - - d = hd d d d = hd
hd 0 0 hd d d hd
X - hd - - X - hd [] [} X - hd
hd - - hd 0 0 hd
o - hd [[o - hd o o o - hd ip
hd] 0 hd o o hd
i - hd i - i = hd i i i - hd []
hd] hd hd 0 0

231

C

Simple COMA

By Erik Hagersten, Ashley Saulsbury and Anders Landin
Swedish Institute of Computer Science
Box 1263
164 28 KISTA
SWEDEN

July 1993

Abstract

Shared memory architectures often have caches local to the processors to remove
some of the potential penalty for slow remote accesses and also to reduce the traffic in
the network. The positive effect of caches increases with their size. The largest possi-
ble caches exist in architectures called Cache-Only Memory Architectures (COMAs),
where all the memory resources are spent implementing large caches, also forming
the "shared memory” illusion. However, these large caches also have their price. Due
to its lack of physically shared memory, COMA might suffer from a longer remote
access latency than alternatives. The large COMA caches might also introduce an
extra latency for local accesses, unless the node architecture is designed with care.

The goal of this work is to find the right trade-off between software/hardware so-
lutions in order to find the minimal COMA node architecture, i.e., a simple archi-
tecture with hardware support only for the functionality frequently used. Such a
system will achieve outstanding performance (and price/performance) by its simplic-
ity which enables a low development cost, a short time to market and the possibility
of using more exclusive technology. These properties are comparable to those of
early RISC microprocessors of the eighties.

The solution presented here not only achieves the simplicity property, but also en-
ables existing technologies to be used, i.e., commercial microprocessors, program-
ming models, operating systems, and compiler technology and proposed latency-
hiding techniques.

Memory Network Network
[

Network || -
Mem Mem AM AM
Cache| . Cache Cache| ... Cache Cache| ... Cache|
Proc Proc Proc Proc Proc Proc

Shared Memory (UMA) Shared Memory (NUMA) Cache Only Memory (COMA)

Figure C.1: Comparing COMA to more conventional architectures.

C.1 Introduction

Multiprocessors with cache-coherent shared memory can be built in many ways.
Systems based on a single bus suffer from bus saturation and therefore typically have
only some tens of processors, each with a local cache. The contents of the caches
are kept coherent by a cache-coherence protocol, in which each cache snoops the
traffic on the common bus and prevents any inconsistencies from occurring [Ste90].
This architecture provides a uniform access time to the whole shared memory, and
is therefore called uniform memory architecture (UMA).

In architectures with distributed shared memory, known as Non-Uniform Memory
Architectures (NUMASs), each processor node contains a portion of the shared mem-
ory; consequently, access times to different parts of the shared address space can
vary. NUMASs often have networks other than a single bus, and the network delay
to different nodes might vary. Early NUMAs did not have coherent caches and left
the problem of coherence to the programmer. Research activities today are striv-
ing toward coherent NUMAs with directory-based cache-coherence protocols, e.g.
Dash [LLG*90] and Alewife [CKA91]. Programs can be optimized for NUMAs by
statically partitioning the work and data. Given a partitioning where the proces-
sors make the most of their accesses to their part of the shared memory, a better
scalability than for UMAs can be achieved.

In cache-only memory architectures (COMAs), the memory organization is similar
to that of NUMA in that each processor holds a portion of the shared memory
space. However, the partitioning of data between the memories is not static, since all
distributed memories are organized as large (second-level) caches. The task of such
a memory is twofold. Besides being a large (second-level) cache for the processor,
the memory may also contain some data from the shared address space that the
processor never has accessed, i.e., it is a cache and a virtual part of the shared
memory at the same time. We call this intermediate form of memory Attraction
Memory (AM). A coherence protocol will attract the data used by a processor to

234

its attraction memory. The unit of coherence, called an item, is comparable to a
cache line, and is moved around by the protocol. On a memory reference, a virtual
address is translated into an item identifier. The item identifier space is logically
the same as the physical address space of conventional machines, but there is no
permanent mapping between an item identifier and a physical memory location.
Instead, an item identifier corresponds to a location in an attraction memory, whose
address tag matches the item identifier. There are cases where multiple attraction
memories could have matching items, i.e., the item is replicated. Examples of such

architectures are the DDM [HLH92] and the KSR1 [Res92].

COMA provides a programming model identical to that of shared-memory archi-
tectures, but does not require static distribution of execution and memory usage
in order to run efficiently. Running an optimized NUMA program on a COMA
architecture would result in a NUMA-like behavior, since the work spaces of the
different processors would migrate to their local attraction memories. However,
a non-optimized version of the same program would give a similar behavior on a
COMA, since the data are attracted to the processor and used regardless of the
address. A COMA will also adapt to and perform well for programs with a more
dynamic, or semi-dynamic scheduling. The work space migrates according to its
usage throughout the computation.

The new requirements of building efficient large caches have led to the design of a
proprietary processor cache in the KSR1, as will be described in more detail later.
Other proprietary parts of the KSR1 are the processor and the network. This propri-
etary choice results in a processor three to four times slower than today’s commercial
offerings, and remote latencies three to four times longer than necessary. In spite
of this, the KSR1 has proven a performance comparable to the Dash architecture
for the SPLASH [SWGY1] applications [JSGH93]. A comparative analytical study
of general implementations of NUMA and COMA, covering a large design space,
also reports a performance advantage for COMA architectures for the same set of
programs [Hag92].

The objectives of this work are to find a stmple COMA implementation which is com-
patible with existing computer technology and knowledge, such as cache-coherence
protocols, microprocessor implementations, programming paradigms, and operating
systems.

In the remainder of this paper, we first discuss some general issues for COMA
architectures; the next section reviews some existing COMA node implementation
proposals, followed by a description of our simple COMA proposal. The paper is
concluded by a complexity and performance study followed by a summary of related
work and our conclusions.

235

C.2 COMA Properties

This paper does not take a position on network topology and/or choice of coherence
protocol. However, a short discussion about these two important topics might be
appropriate.

Recent years have seen extensive study of the problem of maintaining coherence
among read-write data shared by different caches—for example directory-based and
snooping-based techniques [Ste90].

Even though both COMAs being built today, KSR1 and DDM, rely on a hierarchical
network topology, COMAs can be built upon general networks [HL91, GJS92]. The
cache-coherence protocol for a COMA can adopt the techniques of other cache-
coherence protocols [LLGT90, CFKA90, TD90, JLGS90] and add functionality for
finding an item on a cache-read miss and for handling replacement [HL.LH92]. The
search for the item compensates for the lack of a home for data in a COMA. The
problem of finding an item on a read miss has already been addressed in the NUMA
protocols for situations where a dirty copy of the requested item resides in a node
other than the home node. Most accesses missing in COMA’s attraction memory
at steady state execution are likely to be coherence misses [HS89], caused by true
or false data sharing between one or more processors. For those misses, chances are
high that dirty data will reside in a remote node in a NUMA architecture, i.e., about
the same amount of overhead can be expected for both architectures. Therefore, the
overhead for locating the data on a read miss in a COMA architecture is not expected
to be significant.

A COMA protocol also must have a replacement strategy which makes sure that
the last copy of an item is not lost when replacement occurs. One solution to
this has been suggested by Hagersten et al. [HHW90] where all shared copies are
replaced with care. In order to guarantee some space for all items in a COMA,
the address space in use cannot be larger than the sum of the attraction memories
and the distribution of addresses evenly distributed over the sets in the attraction
memories. Another solution has been proposed by Wallach and Dally [Wal90], where
each shared item has one tagged owner who replaces with care. Gupta et al. propose
a strategy where each item has a defined home which is the synchronization point
for the replacement action [GJS92].

One important, and unique, property of COMA is its ability to dynamically adjust
its ratio between replication and memory size according to the needs of the current
applications [Hag92]. Some applications have no need for massive sharing (replica-
tion), but need a large shared (physical) memory to avoid frequent disk accesses.
Other applications, e.g., some database applications, benefit by large portions of
their data being replicated among all the processors. In a NUMA architecture, the
replication is limited by the size of its (second-level) caches, and its shared mem-
ory size is also fixed. The two application behaviors described above would need

236

Physical
address
size ‘

Memtot

NUMA mem =]

1 S
T =

NUMA cache Replication
Figure C.2: A NUMA has a statically fixed relationship between the size of the caches

(replication) and the physical memory, while a COMA dynamically can
change its working point to suit the application.

two different parametrizations of NUMA in order to run well. In a COMA, both
behaviors could run well on the same architecture, thanks to its dynamic property.

A COMA will increase its replication until space runs out in the attraction memories.
At this point, the amount of replication is determined by the size of the item space
presently mapped by the operating system. A large, mapped item space results in a
lower amount of replication, and vice versa, as shown in Figure C.2. The operating
system of the COMA can decrease the item space by reclaiming more pages, and
increase the space again by mapping more pages.

A mapping from virtual addresses to physical addresses is needed to map the accesses
to the limited physical shared memory of conventional architectures. Most cache-
coherent architectures keep the coherence among physical addresses to overcome
a problem known as the “aliasing problem”, where the same physical data might
be referred to by different virtual addresses. In a COMA the need to map virtual
addresses to a limited set of physical addresses does not exist, since the caches might
host any address, and only the aliasing problem needs to be overcome. In the KSR1,
software conventions are used to get around aliasing problems and virtual addresses
are used as the cache-coherent shared addresses. In the DDM, the translation of
virtual addresses to physical addresses still exists. This provides a more common
software view of the system, and simplifies adaption of existing operating systems,
compilers and applications. It also enables control over the usage of the cache-
coherent memory size at run time, which is used for the adjustment of replication

237

and also plays an important part in the replacement mechanism, described earlier.
Further, the cost for the translation is limited, since that functionality often comes
with the commercial processors.

C.3 Proposed COMA Node Implementations

So far, we have explained why dynamic memories in the shape of attraction memories
are to be preferred over statically bound memories of NUMA architectures. However,
if the dynamical property has to be payed for by a significantly longer access time
for local accesses, the advantage of a COMA architecture over a NUMA is not at
all obvious. In this section we will review a few existing proposals for how the
associativity of the attraction memories can be achieved. We will describe the
implementations based on a baseline architecture similar to the DDM prototype
implementation [HI.H92] based on the processor MC88100 and its cache circuit
M(C88200 by Motorola.

C.3.1 Baseline Architecture

The baseline system consists of several processors, each one with its own snooping
copy-back physical cache/MMU (CMMU), connected by a common bus, (M bus)
to a common attraction memory. The MMUs translate from virtual addresses to
“shared physical addresses”! The attraction memory implementation is divided into
two parts: the data memory (DM) and the protocol handler (PH), which implements
the protocol and interfaces to the rest of the system.

One important functionality used in the designs presented here is the retry signal
of the M bus, used in the coherence protocol among the Dcaches. The retry signal
is here used by the protocols to force split transactions, i.e., allowing the M bus
to be released between a request causing a slow remote access and its reply. The
retry signal functionality has been transferred to the new MC88110 processor and its
bus. The same solutions have also influenced the PowerPC and MC68060 designs,
which is why the techniques described here apply to a large number of commercially
available processors. Other processors implementing true split transactions, like the
HP-PA, can also adapt to the techniques described here.

The Protocol Handler contains the below protocol (BP) and a state memory (SM),
containing some address tag information and state, as shown in Figure C.3. There
are several ways the associativity of the attraction memory can be implemented.
We will leave that for later and assume for the moment that enough functionality

In a COMA, they are neither very physical nor are they addresses, but rather called item
wdentifiers.

238

...

Mbus

—IDcachel—+

—icache | b ’

—|DLche|—
—Jicache Data Memory

(DM)
—IDcache—
—icache

Figure C.3: DDM implementation based on the 83000 family.

PH
(Protocol Handler)

Proc.

Proc.

Proc.

Proc.

exists in the state memory and the below protocoltor determining if a requested item
exists in the data memory, and if so, where it exists and in what state.

The below protocol performs a lookup in the state memoryfor each transaction on the
bus and checks for validity. In the case of an invalid access, e.g., a read of an Invalid
item, the below protocol asserts the retry signal. The retry signal makes the current
bus master stop and release the bus, while the below protocol initiates necessary
actions. While the requested item is being retrieved, the requesting Dcache will not
be granted the bus. After the retrieved data have been written to the data memory
by the protocol handler, the Dcache can be granted the bus and redo its transaction.

The protocol handler also hosts the above protocol (AP) and the output above FIFO
(OA) for transactions bound for the network. The output above FIFO contains the
transaction code and the item identifier of the transaction, but no data. The above
protocol can access the data memory by putting an M bus transaction in the output
below FIFO (OB). The output below FIFO only contains address and transaction
code. Transactions on the M bus from the output below FIFO have the data FIFOs
data in (DI) and data out (DO) as an implicit source or destination. Data are
retrieved from the node’s data memory and put in the data out FIFO by a read
line in the output below FIFO. Data are written from data in FIFO to the node’s
memory by putting a write line in the output below FIFO.

239

C.3.2 Implementing the DDM Protocol

A read request on the M bus is snooped by the below protocol. The below protocol
checks to see if the requested item is present in the attraction memory. If so, the
state stored in the state memory is checked; for example, a read request to an item
which is present and in the Shared state is approved. If the transaction is approved,
the below protocol does not interfere with the transaction. If the transaction was not
approved, for example, a read request to state Invalid, the below protocol:

1. asserts the retry signal, forcing the Dcache to release the M bus,

2. sets the address tag bits in the state memory to the higher order bits of the item
identifier,

3. changes the item’s state to Reading, and,

4. puts a read request in the output above buffer.

When the data reply eventually comes back, the above protocol:

1. puts the data part of the transaction in the data in FIFO,

2. puts a write line transaction in the output below FIFO containing the item iden-
tifier, and,

3. changes the item’s state to Shared.

A write transaction on the M bus to an item in an inappropriate state is intercepted
in a similar way by the memory below protocol, and necessary actions are taken
before the Dcache is released to arbitrate for the bus again.

C.3.3 A Direct-Mapped AM

In order for the protocol handler to find out if an item is stored in the attraction
memory, each item is associated with an address tag in the state memory, which
is compared to the most significant bits (MSB) of the requested address. A direct-
mapped AM has a specific item always mapped to the very same location, so there
is no need to compare tags before we know in which set an item should reside if it is
there. The location is determined by the least significant bits (LSB) of the address.
We can assume that a read transaction will succeed and start the read line before
the approval from the below protocolis received. A processor cache that has already
read a few words may be forced to restart before reading the last word of a cache
line. The below protocol can therefore wait until the very last cycle before deciding
whether to force a retry or not. This allows for state lookup and data transfer to
overlap. Only one access to the state memory is needed while several accesses to the
data memory might be needed to transfer the whole cache line. Thus, state memory
may use the same memory technology as used in data memory,® and the delay of

?In today’s, technology probably DRAMs

240

TData

A time
Retrv/OK DM Retry/OK
Retry/OK Data Y s LAM Way Data
L Hit/Miss
Hit/Miss BP BP Which Way? BP Which Way’.
Tag DM n*Tags th n*Tags DM
*
State n*States| Walyc? n*States
SM SM SM | ol
MSB LSB LSB LSB MSB LSB LSB MSB EA'E LSB
Shareq Physical Address ~ Shared Physical Address Shared Physical Address
Cache Cache Cache
MMU MMU MMU
Virtual[Address Virtual[Address Virtual{Address
Processor Processor Processor
Direct Mapped Set—Associative Set-Associative LAM

Figure C.4: Data dependency graphs for different ways of implementing associativ-
ity (BP=below protocol, SM=state memory, DM=data memory, and
LAM=last accessed memory).

accessing the state memory will still be completely hidden, adding no extra latency
caused by the functionality of the AM.

It seems that the latency for accessing the state memory cannot be hidden on a
write, since overwriting parts of another item would be fatal. There is, however, full
inclusion between a processor’s (data) cache and its AM; in other words, there can
be no copy of an item in the processor’s cache unless there is also a copy of the item
in the AM. This, together with the fact that a write to the attraction memory is
never performed by the Dcache unless it already contains a copy of the item [Mot89],
can hide the state memory access—even from write accesses.

As can be seen in Figure C.4, the implementation of a direct-mapped attraction
memory is straightforward. The access time to data stored in data memory is equal
to the data memory access time.

241

C.3.4 Set-Associative Attraction Memory

A direct-mapped cache is advantageous over a multi-way associative implementation
for shortening access time to the AM, but it also increases conflict misses [HS89].
More associativity is expected to increase the hit rate in the AM. One can imag-
ine situations for which a directly mapped attraction memory could be fatal for
performance.

Another drawback of a directly mapped attraction memory is its limitation for
replication of popular items. In order for one item to get replicated in all attraction
memories, no other items for the same set of the attraction memory can be present
in the machine; i.e., the item space cannot be larger than the size of one attraction
memory. For two-way attraction memories, the item space can be half the sum of
the AMs, and for four-way attraction memories, the item space can be three quarters

of the sum of the AMs.

It the AM organization is multi-way set-associative, finding the location for the re-
quested item is harder, since several possible locations exist for each item.® The
address tag of all possible locations must be compared to the requested item’s be-
fore the location in data memory can be determined. Small caches, implemented on
a single chip, often access all possible data locations in parallel with the tag com-
parison, and select the right data at a late stage of the access. This results in only a
minor overhead compared to a direct-mapped implementation. Still, direct-mapped
cache implementations have been justified for large cache sizes [HS89].

Accessing all possible data locations in parallel is complicated and impractical for
the implementation of a large attraction memory with several ways, which is why the
whole address tag lookup and comparison must be performed before the data access
is started. This means putting the state memory lookup and the comparison on the
critical path, as shown in Figure C.4. As a result of its size, the state memory might
be implemented with slow memory devices, resulting in a substantial overhead.

C.3.5 Last-Access Memory Read-Access Optimization

It is possible to implement a set-associative memory with almost no extra access
latency for read accesses. The algorithm used is the MRU algorithm—guessing that
the way last used in the set will be the one asked for next time as well. There is
no fixed location in the set for the MRU entry; instead, a fast last-accessed memory
(LAM) is added [Hag92]. It contains one pointer of log,(ways) bits per set, pointing
to the way of the last accessed entry in the set. The contents of the LAM are used
as part of the address to start the read access immediately.

3Equal to the number of ways.

242

It the data memory is built of DRAMs, access to the LAM can be hidden. Half the
DRAM address? is not needed during the first access cycle. By putting the LAM
pointer address in that part of the address, no extra delay is introduced, assuming
that the small LAM has a short access time. The comparisons of the address tags
in the state memory are started in parallel with the read access. The comparison
tells which set—if any—contains the item and if the item is in the correct state. If
the LAM guess turns out to be the right one, and its associated state acceptable, no
further action is taken. If another entry contains the right address tag, a retry signal
is asserted forcing the access to be restarted while the LAM is updated. The same
transaction will then be restarted, but with the correct LAM pointer. A read access
according to this scheme is described in Figure C.4. The LAM optimization only
works for read accesses. A write access is performed similarly to the set-associative
implementation described earlier, since a write cannot be performed until the right
way has been determined.

The positive effects of returning the MRU data first in large multi-way caches have
been studied by Chang et al. [CCS87]. The LAM technique divides the AM into two
parts, one with access time comparable to the data memory and one with a longer
access time, similar to introducing yet another layer in the cache hierarchy. As such,
the LAM strategy can potentially cut the access time for many applications, but is
not expected to be successful for all applications. For a program that sequentially
accesses a data set larger than the LAM part of the AM, the LAM guess consistently
will turn out to be the wrong one.

C.3.6 KSRI1

It is hard to get full information about the KSR1 design and the facts presented
here are partly based on assumptions and guesses. KSR1 has introduced proprietary
solutions to many parts of its design [WBH'93, Res92, Res91]. This is also true
for its caching system. Its first-level cache® appears to be large, 256 kbytes, but is
organized in a somewhat unorthodox way. The cache is divided into associativity
units of 2 kbytes. As a whole, the cache contains 128 such units, organized in a
two-way set-associative manner, i.e., 2 x 64 x 2 kbytes. Each unit contains (among
other things) one address tag, one “AM-way” pointer, and has space for 32 coherence
units of 64 bytes of data and a few bits of state each. The replacement strategy is
random.

The second-level cache (AM) is 32 Mbytes with associativity units of 16 kbytes,
called a page, organized in 16 ways, i.e. 16 x 128 x 16 kbytes. Each page contains
one address tag, some random information about the page’s usage, and 128 coherence
units of 128 bytes data plus some state bits, as can be studied in Figure C.5.

“The column-access (CAS) part.
>Called “subcache” by KSR.

243

16 kbytes: _.--~|A-TaglPageinfo

AM Set0 I

Set 1
16 MbyteS el
23 cyc access ..
Set127
Way 0 Way 1 Wy 15
2 kbyteS: .-~ A-Tag] AM-way
S ——
Set 1
Dcache St
256 kbytes
Set62
Set63

Way 0 Way 1
Figure C.5: The organization of the caches in the KSR1 architecture.

On an access to a new associativity unit in the first-level cache, new space in the
cache must be allocated (randomly). Secondly, the 16 possible locations in the AM
are checked for a matching address tag. These 16 comparisons are (probably) per-
formed partly sequentially in a scheme similar to the set-associative implementation
just described. So, the overhead for bringing the first 64 bytes of an associative unit
to the first-level cache from the AM is significant. The identity of the way in the
AM for which the address tag matched is stored in the first-level cache (AM-way),
so that the next access to the same 2kbytes can be performed without address com-
parison. The data dependency of a KSR1 AM access when the AM-way information
is available in the Dcache, can be found in Figure C.6.

Allocating large associative units in the caches can avoid the extra associative over-
head for many accesses, as shown. It also cuts down on the memory required to store
the address tags. The drawback of this scheme is a potentially low utilization of the
data space in the caches. Fven if only a single word is requested by the processor,
2 kbytes of the processor cache and 16 kbytes of the AM must be allocated, i.e.,
only 128 sparsely used words may reside in the data cache at the same time.

There is no ordinary MMU functionality found in the KSR1. Virtual addresses are
used as the global addresses in the system. This creates problems with aliasing and
prevents efficient implementation of copy-on-write. The lack of page fault excep-
tions forces the search of a requested page in the whole machine before it can be
determined whether or not a disk access is necessary. This should be compared to
the early page-fault exception generated by an MMU. Further more, and probably
most importantly, it is not compatible with existing OS, compilers, and some ap-

244

plications, so a potentially large design effort is needed to rewrite portions of the
software.

C.3.7 Distributed Virtual Shared Memory

The title Distributed Virtual Shared Memory (DVSM) covers a range of multipro-
cessor shared-memory implementations where the coherence and migration of data
between processors is maintained purely by software. Traditional DVSM systems,
(exemplified by [LH89, CBZ91, SSW92]), make use of processor memory manage-
ment units to initiate coherence protocol actions which are implemented in software.
Just as hardware distributed shared memory systems, coherence traffic between
nodes is implemented as messages on a network (e.g., packets on an Ethernet).

As we shall see, most DVSM system implementations have COMA properties—the
main memory of each processor is treated as a cache, with data items (pages) being
allocated and invalidated, and data being moved and replicated from node to node

without the notion of a fixed home which CC-NUMAs have.

C.3.7.1 Virtual Memory Operation

When a processor makes a “first-time” reference to a virtual memory address, the
Memory Management Unit (MMU) has the responsibility to convert that virtual
address into a physical memory address. In this case, the MMU will not have a
translation in its Translation Lookaside Buffer (TLB), nor will an entry (physical-
page pointer) be found in the current page table.® After failing to translate the
virtual address, exception is taken, and the flow of the process is interrupted—a

pagefault.

In the event of a page fault, it is the responsibility of the operating system to allocate
an unused physical page for the virtual page referenced. Furthermore, the operating
system must fill the allocated physical page with data corresponding to the virtual
memory page accessed—either zero-filling, or retrieving a block from local disk.
Further accesses by the application to the same virtual page “hit” in the TLB and
are therefore completed without penalty.

C.3.7.2 Distributed Virtual Shared Memory

We can begin to see how a shared memory system can be implemented in software.

By either a software or hardware table lookup—depending whether the CPU’s TLB is software
or hardware loaded.

245

Consider a “first time” access to data in a Distributed Virtual Shared Memory
region. The MMU cannot perform a virtual access to physical address translation,
so a pagefault exception is generated. The operating system (or DVSM system)
then allocates a new physical page. Data for the page is retrieved from another
processor node which already has a copy of the data corresponding to the virtual
page being accessed. This is done by sending a request message to the other node,
and then receiving the reply, which includes a copy of the data—much the same as
one cache requesting a copy of data from another in a COMA. 7

We have seen how data can be replicated when read in DVSM, but not how it is
kept coherent when written. Any coherency protocol of choice is implementable for

DVSM, indeed Munin [CBZ91] offered quite a selection.

Aside from detecting the validity of an item (page), to maintain coherency we need
to detect write accesses to an item (page) — for example when the item is shared
across several nodes. To to do this the page write-protect functionality of the pro-
cessor MMU 1is used. By write-protecting a virtual page, read accesses proceed as
normal, but write accesses cause the MMU to generate a write-protect pagefault®—
even though there is a valid virtual to physical mapping for the page.

C.3.7.3 Pros and Cons of DVSM

Software (DVSM) COMA implementations have a number of advantages over hard-
ware COMAs.

The MMU functionality of the processor enables a virtual memory page to be
mapped to any physical memory page on the local node. This enables a DVSM
COMA to be built with a fully associative attraction memory, while hardware
COMASs are restricted to either a direct mapping or limited associativity. Further-
more, as such hardware COMAs use processors with some MMU functionality, their
attraction memory access cost still includes the cost of the MMU address trans-
lation. Therefore, software COMAs utilize the full associativity properties of the
MMU for free, and may even provide faster access to data than hardware COMAs
which have attraction memories with limited associativity.

Being implemented in software means that DVSM systems can have more complex
replacement and prefetching algorithms than would be reasonable to implement in
hardware. The simplicity of a DVSM memory access can be studied in Figure C.6.

"As with hardware COMA implementation, finding the node which has a copy of the data of
interest is a problem orthogonal to that of maintaining coherency. A number of schemes to find a
node with the correct data are presented by Li and Hudak in [LH89].

8This is normally used in Unix systems (for example) to efficiently implement fork(2v) seman-
tics, 1.e. copy-on-write.

246

‘tlme

Retry/OKT TData TData Retry/OKT TData
BP BP
bM DM Page Ildentifier DM
State 4_‘ State
SM SM

I

Local Physical Address

Virtual AM Local| Physical Address .
Address/ \Wway Loca| Physical Address
(LSB) Allocation exc.
Cachel Cachel Coherence exc. Cache Allocation exc.
VirtualTAddress VirtualTAddress & VirtualTAddress &
Processor Processor Processor
KSR DVSM Simple COMA

Figure C.6: The data access route for different attraction memory implementations.

DVSM systems do, however, generally suffer from three problems. The first is the
large item size—typically page sizes for today’s microprocessors are 4 kbytes and
growing. This large item size results in a potentially large amount of false sharing.

The second problem is the long latency associated with a cache miss. This perhaps
surprisingly is not due to the cost of taking a page fault—processors with software
loaded TLBs [MIP92] illustrate that page faults can be dispatched and dealt with
in only a few tens of cycles. The costs are associated with the creation and dispatch
of messages on more traditional networks such as Ethernet.

Finally, and most importantly, the processor must deal also with the coherency
traffic from other nodes, as well as its own. Hardware COMAs such as the DDM
and KSR1 can deal with coherency traffic from other nodes on the network without
disturbing the local processor.

247

C.4 The Simple COMA

We firmly believe that COMAs will be seen to be the right architecture for general
multiprocessors. However, looking at the only two COMAs being built in the world
today (the DDM and the KSR1), one might be forgiven for believing that COMAs

are more complex than more traditional NUMA distributed shared memory systems.

We have seen in earlier sections how a COMA can be built on an arbitrary com-
munication network, and how the coherence protocol of a COMA 1is very similar to
CC-NUMA coherency protocols. So where is the complexity in a COMA 7

Taking the DDM and the KSR1 as COMA examples, it would appear to be the
attraction memory implementation that is overly complex. This would not be an
accurate conclusion, as both the DDM and KSR1 are early implementations of

COMAs.

We believe the right implementation solution for a COMA results from combining
the best features of the complex all-hardware COMA approach, and the simple-but-
poor-performance software DVSM approach.

C.4.1 A Better COMA Implementation

Here we describe a solution to the problem of attraction-memory implementation,
which we believe is optimal compared to the previously described solutions.

Our proposed implementation has a fully associative attraction memory with a short
access time. It is far simpler than the KSR1 implementation, and still reduces some
of the disadvantages found in the KSR1 solution.

COMAs differ from DVSMs mainly by their smaller coherence units (items), and
by the coherency protocol being implemented in hardware, rather than by software.
We propose to retain some of the DVSM software functionality, while additional
hardware support, similar to the DDM implementation, is added to decrease the
size of the coherence units and also make the coherency protocol implementation
more efficient.

Our proposal is a combination of fully associative mapping using the MMU, as seen
in DVSM, in combination with a coherence protocol implementation similar to the
protocol handler of the baseline architecture.

C.4.2 The Proposed COMA Node

Ignoring issues of network and protocol as orthogonal, we propose a COMA node
designed as follows.

248

Just as with DVSM implementations, the allocation and replacement of items within
the attraction memory is handled by software—performed necessarily at page-size
granularity. This enables our COMA system to have a fully associative attraction
memory as mentioned earlier. Unlike DVSM, coherence actions will not cause MMU
exceptions, the addition of state memory and a simple protocol handler (PH) enables
coherence checks to be performed on a per-item granularity - typically a first- or
second-level cache line size.

Therefore the state memory holds protocol state bits per attraction memory item.
Unlike the DDM implementation, however, there is no address tag stored with each
item. We do not need to validate access to an item with an address tag, since we
performed the item identification validation effectively with the MMU.

An additional state memory (or part of the state memory) holds a page identifier
for each page (of items) in the attraction memory. This page identifier (PI) is
assigned by the software which allocates the virtual-to-physical attraction memory
page mapping. This page identifier is used by the protocol handler to identify a
shared page when communicating with another node. In order to uniquely identity
a page 20 bits of page identifier is enough for a machine with up to 4 Gbytes held
in 4 kbytes pages.

Note that the number of bits for the page identifier in no way affects the virtual
addressing capabilities of the machine’s processors, just the total number of phys-
ical memory pages in the machine. Figure C.7 compares the state memory in the
proposed solution to that in the DDM.

Figure C.6 illustrates the memory access paths of the proposed simple COMA along-
side those of a basic DVSM system, and the KSR1 architecture. Access to the at-
traction memory may be started simultaneously with the state memory lookup. This
is because the MMU performs the associative cache lookup for the item position.
When the physical memory address appears, for both the state memory and data
memory lookup, there is a direct mapping for an item within the selected page.
This functionality enables the state memory to be implemented in the same speed
devices as the attraction memory - for example conventional DRAM. The MMU
has already tested the validity of the mapping (item identification) in the attraction
memory, and so we can start either a read or a write knowing that the item either
exists or will exist at that location. A miss caused by an unfavorable item state can
simply abort the operation as part of the coherence actions taken.

C.4.3 Implementing Remote Associativity

So far we have described the mechanism by which local processor memory accesses
are directed to the correct data item, and access is validated by the state mem-

249

State
(items) 12 state
\ | | \]
\ | | \]
\ | \ 1
\ | | \]
i o Prysicd
o i i Memory
¥ ! 1 Page
\ | | \]
\ | | \]
‘ || | : Page I dentifier
\ | [| \ | |
Attraction Memory State Memory State Memory
(Baseline COMA) (Simple COMA)
The baseline architecture treats each The simple COMA maintains coherence
AM item as an independent cache line. at theitem level, but allocates AM space
Thisrequires storing state bitsand a with page granularity. Thisrequires the
large cache tag per item same state memory as the baseline architecture,

but only asingle Page |dentifier

Figure C.7: Comparison of the DDM and Simple-COMA state memories

ory. We have not discussed how the coherency protocol handler on one node can
communicate with its counterpart on another processor node.

When a local memory access fails, for example because of a read to an invalid data
item in the attraction memory, the page identifier is produced by the smaller state
memory, or possibly even from a table in main memory. This Pl is used in a message
to another node to retrieve a copy or exclusive ownership of the missing item.

When the protocol message arrives at the destination node, that node must, from
the page identifier, be able to lookup its local physical page mapping in order to
find its copy of the item and state. There are several methods of performing this
reverse PI to physical page translation.

C.4.3.1 Page Identifier CAM

The PI CAM is a Content Addressable Memory - when an incoming PI is applied,
the PI CAM can return the physical page number corresponding to that page on the
local node. When a physical page is allocated on a node, the entry in that node’s PI
CAM allocated for the physical page chosen is filled with the PI given to the page.

250

For a processor node with say 64 Mbytes of RAM organized in 4 kbytes pages, a
PI CAM with 16384 entries is required, something which is practicable with today’s
technology.

C.4.3.2 Page Identifier MMU

A simpler solution to the fully associative memory as described above, a kind-of
MMU functionality, can be implemented. A small associative cache (like a TLB)
holds the most recent PI conversions, and a PI table is walked when an entry is not

found in the PI-TLB.

It is not clear how effective this will be in practice compared to the PI CAM, since
the PI MMU must field coherency traffic from potentially all other nodes in the
system. Such traffic will not have as much locality as the memory accesses from the
single local processor (the latter fact exploited by the processor’s own TLB). The
PI-TLB may have to be several times larger than one might allocate for the CPU.

A similar functionality to this is already implemented for the “DMA Engine” (Elan
chips) in the Meiko CS-2 network communication interface. This is used under direct
processor control to transfer messages from one processor’s memory to another’s.

C.4.3.3 Physical Pointers

This scheme effectively moves the hardware complexity of a PI-MMU or PI-CAM
into software. In addition it reduces the latency of a remote access to data, at some
extra cost to page replacement and the protocol implementation.

The idea of this scheme is that the page identifier should be the physical page
number of the corresponding page on another node (and possibly also some form of
node identifier). For example if node A shares a page copy with the owner of the
page—node O, then node A will have the physical page number of the page on node
O as its page identifier.

When node A wishes to perform some protocol action (such as item invalidation), it
sends a message to node O. As the physical page number is given with the message
access to the correct state memory slot can be started immediately. There is no

need for the delay associated with the PI-CAM or PI-MMU.

To complete a protocol implementation, there must be some way of identifying the
physical pages allocated on the sharing nodes (node A in the example above). This
is achieved by storing their respective physical page numbers with the item copy set
information.

251

As with other hardware COMAs or NUMASs, the copy set (and reverse page identi-
fiers) may be held in any form: as linked lists such as SCI [JLGS90] or SDD [TD90],

or even in hierarchical directories as in the DDM.

Note, we introduced the notion of an “owner” node merely as a focal point for
identifying the copy list. Since pointers are allocated and reclaimed by software,
ownership of a page may be easily made to move.

While providing faster access when a coherence message arrives at a node, this
scheme requires extremely careful pointer allocation and reclaimation. A physical
page may not be reallocated until all other nodes which hold pointers (node and
physical page number) to it have this mapping invalidated. This may require ex-
pensive interprocessor interrupts and synchronizations. All said and done, the one
or two cycle extra cost of the PI-CAM or PI-MMU may be of no significance in the
face of a typical 100 cycle network latency.

Experiments will indicate which of the above three schemes is likely to be the most
effective. An attractive solution might, once more, be to not choose either the simple
(MMU) solution or the efficient (physical pointer) solution, but rather a combination
of all three solutions and thus combining simplicity and efficiency.

C.4.4 Potential Drawbacks

Using the MMU to perform the attraction memory item lookup has one potential
drawback. It is possible for an application to behave so as to access only one item
on each memory page. This commits the other unused items on the same page to
particular virtual memory addresses; the physical memory cannot be used for other

virtual items.?.

In the worst case, an example machine with 64 Mbytes of memory could only share
4096 items (if using a 4 kbytes page size). With an item size of, say, 128 bits
(16 bytes), this enables a maximum shared data space of 64 kbytes before thrashing
starts taking place—such thrashing involves full page faults.

We do not believe that this is a problem for a couple of reasons. Firstly the KSR
1 allocates 16 thousand blocks with similar restrictions in its second-level cache,
comparatively we have one quarter of the granularity with a 4 kbytes page size.
Secondly, most programs tend to exhibit locality with adjacent items in order to get
good performance with conventional caches.

9This is not quite true. With care, two virtual pages can be mapped onto the same physical
page, provided it can be guaranteed that the accessed items in each of the respective virtual pages
do not overlap in the physical page. This requires some knowledge of the application by the OS.

252

C.5 Performance and Complexity

When comparing different implementation proposals it is important to deal with
both the performance and the implementation complexity. Here we will qualitatively
discuss the performance and complexity of the direct mapped, the set associative,

the KSR1 and the simple approaches to building a COMA.

C.5.1 Performance

The performance of a COMA implementation is characterized by the hit rate in the
attraction memory and first-level caches, and by the latency for the different types
of accesses. This study focuses on the node implementation techniques and does not
cover in detail the differences in latency for remote accesses.

Typical applications (for example those from the SPLASH suite [SWGI1]) generally
have good hit rate figures for attraction memory accesses [HGL193]. To achieve
good performance in a COMA machine it is essential to minimize the latency for
these hits. In the case of an attraction memory miss, the latency differences due to
these node implementation considerations are not so significant since they are part
of a much larger latency associated with the remote access. Other implementations
such as network structure and COMA directory policies are, of course, also highly
important but lie outside the scope of this study.

The Table in Figure C.8 summarizes the main characteristic differences for the
implementation alternatives considered in this study.

Note that direct mapped has a lower hit rate for the same size of attraction memory
since it might suffer from an increased number of conflict misses. It also has limi-
tations on the degree of replication that can be utilized. We also assume that there
is full inclusion between the primary cache and the attraction memory.

The KSRI1 can be expected to have a lower hit rate in its Pcache since it has very
large allocation blocks and will suffer if the accesses are sparse and spread in the
address space. On the other hand it is fair to assume that the caches can be made
larger using KSR1’s technique since the associative part is comparably small.

The fast access times for the KSR1 applies for blocks that have already been allo-
cated in the primary cache. For the first access after a block has been replaced from
the Pcache, the longer access time applies.

The Simple and the KSR1 alternatives might suffer from reduced AM hit rate since
they both have large allocation units. If accesses are sparse the effective size of the
AM can be significantly smaller than it nominally appears to be.

253

Implementation Access time Comment
Pcache hit | AM hit
Direct mapped fast fast Lower AM hit rate.
(1 cycle) (DM access) Limited replication.
Set assoc. fast slow
(1 cycle) (SM 4 DM access)
KSR1 fast fast Proprietary
(1 cycle) (DM access) Pcache
or with lower
very slow hit rate.
(SM search + DM access)
Simple fast fast Fully
(1 cycle) (DM access) associative
or AM.
very slow
(TLB fill + DM access)

Figure C.8: Main performance characteristics for the different implementation strate-
gies.

C.5.2 Complexity

All the hardware-based implementation proposals differ from the DVSM approach
in that hardware complexity is added to improve the performance of the system.
The central problem is of course to achieve the highest performance with the least
hardware. While this is normally hard to do, it is desirable to find solutions that
with a limited hardware complexity give a high performance.

To make sense of the complexity of these strategies, we have studied the hardware
needed to implement an each scheme. We assume a machine of 500 nodes each with
an attraction memory of 64 Mbytes. We assume a word size of 64 bits. The size of
a page is 4 kbytes and the coherence unit is 4 words (32 bytes).

Note that we do neither cover the hardware needed for the interconnection network
nor the directory information needed to find remote copies in the machine. These
are properties that are orthogonal to the node implementation which is the focus of
this paper.

C.5.2.1 Direct Mapped

The direct mapped approach is probably the most straightforward method to im-
plement a COMA. Each node needs a state memory that contains state and tag
information for all 4 word items in the node. 64 Mbytes of data makes 2 Mitems.

254

The total memory space in the machine is 64 Mbytes+500 = 32 Gbytes. To address
this the item identifiers need to be 35 bits. The lower 26 bits are needed to address
within the attraction memory. This leaves 9 bits for tags associated with each item

entry. If we reserve 4 bits for state information the net result is 13 bits per item
(32 % 8 bits = 256 bits). This leaves us with an overhead of 13/256 = 5 percent.

C.5.2.2 Set Associative

It we assume an associativity of 16 ways for the set associative proposal we get the
following overhead calculations:

The 64 Mbytes attraction memory contains 2 Mitems/16 = 128 ksets. These are
addressed with 17 4+ 5 = 22 bits , leaving 13 bits for tag. The memory overhead
evaluates to: (13 4 4)/256 = 6.6 percent.

In addition to the memory overhead we also need hardware for the associative com-
parison. In this case sixteen 13-bit comparators are needed for the attraction mem-
ory. The state memory also requires to be able to support all the 16«13 = 208 bits
simultaneously. The alternative is to make the comparison in serial. This requires
less hardware but further increases the access latency.

C.5.2.3 KSRI1

Unlike the other proposals, the KSR1 approach requires special hardware at the
primary cache level. This rules out the use of off-the-shelf processors with on-chip
caches. Although the actual overhead is very small (0.2 percent) the inconvenience
of a proprietary design might be substantial.

The overhead of the attraction memory state and tag is reduced in the KSR1 ap-
proach since the AM is divided into 16 kbytes pages. Tag information is only stored
with each page while state still must be supplied with every item. Similarly to
the set-associative case, the tag associated with a page is 13 bits. This is however
negligible compared to the 16 Kbytes data of that page. The state overhead is
4/256 = 1.5 percent.

C.5.2.4 Simple

The Simple approach uses the standard MMU for associativity. State information
still has to be supplied with each item as in the KSR1 case. The overhead is also
1.5 percent.

255

C.5.2.5 Complexity Summary

The complexity properties for the proposals are summarized in the following table:

Implementation QOverhead Standard components
AM Tag | AM State | Other usable ?
Direct mapped 3.5% 1.5% YES
Set assoc. 5.1% 1.5% Wide memory, YES
comparators
KSR1 0% 1.5% NO
Simple 0% 1.5% YES

Figure C.9: Complexity summary.

As can be seen, both the KSR1 and the simple proposals have very small overhead,
while the simple proposal can be implemented with standard hardware and also
gives a fully associative attraction memory.

C.6 Related Work

C.6.1 Wind tunnel

In an attempt to create an efficient parallel simulator on the CM-5 for simulation
of shared memory architectures, a research group at the University of Wisconsin
came up with a solution similar to the one described here [RHL*93]. That solution
combines the DVSM coherence mechanism with support for coherence units smaller
than a page. Both allocation exceptions and coherence exceptions are handled by
software, similarly to the DVSM, but validation checks of access right can be made
with a finer granularity than a page.

A bogus ECC code is simply set for the memory of all “invalidated” cache lines of a
page. Only accesses to these cache lines will generate exceptions. A problem arises
if cache-lines with different access priority co-exist on a page, sine the ECC code
cannot differentiate between read and write accesses. Instead, the whole page will
be write-protected, causing some valid writes to cache lines to create exceptions, a
potential drawback of this scheme. The advantage is that it makes use of an existing
architecture and its ECC implementation.

256

C.6.2 The Sun S3.MP Project

The S3 MP project [NMP*93] aims to build a distributed shared memory architec-
ture by adding a relatively small amount of electronics to an exisiting workstation’s
memory bus (typically a SPARC-10).

The S3 operates by partitioning the main memory of the local processor into a
local main memory partition, to be used as usual, and a cache partition for remote
memory accesses. This cache size is programmable—a distinct advantange over
conventional NUMAs which have their cache size fixed by hardware; however, it
does not allow a dynamic trade between replication and problem size as COMAs
do, since the cache size is determined when the machine is booted.

The 53 MP includes hardware to convert local memory addresses into a “global 64 bit
address.” Similarly, hardware converts such global addresses from the network into
local memory addresses.

The design philosophy has much in common with the simple COMA we propose: use
exisiting workstation technology, simple coherence, and communication hardware as
an extension to the main memory operating as the cache. However the result of the

S3 MP is still a cache-coherent NUMA; there is still the fixed cache size; and fixed

home.

C.7 Conclusion

A COMA node has been believed to be slower and more complex to implement than
alternatives. In this paper we propose a simple and efficient COMA implementa-
tion based on existing commercially available components. Alternative architectures
(NUMA) can be expected to replace some of the functionality achieved here by a
large (second-level) cache and hardware support for page migration. By taking the
extra implementation cost of such into account, the simple COMA solution might
actually come out ahead in a simplicity comparison. COMA also offers unique dy-
namical properties that further increase its attraction.

In spite of its new structure and behaviour, the implementation presented conforms
to existing assumptions about shared memory architectures made by operating sys-
tems, compilers, and applications, and actually adapts to their behaviour.

C.8 Acknowledgements

SICS is sponsored by Asea Brown Boveri AB, Ericsson AB, IBM Svenska AB, Telev-
erket (Swedish Telecom), Forsvarets Materielverk FMV (Defense Material Adminis-

257

tration), and the Swedish National Board for Industrial and Technical Development

(Nutek).

References for Appendix C

[CBZ91]

[CCSST]

[CFKA90]

[CKA91]

[GIS92]

[Hag92]

[HGL*93]

[HHW90]

[HLY1]

[HLH92]

[HS89]

[JLGS90]

258

J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementation and Perfor-
mance of Munin. In Thirteenth Symposium on Operating System Priciples,
October 1991.

J.H. Chang, H. Chao, and K. So. Cache Design of A Sub-Micron CMOS
System/370. In Proceedings of the 1/th Annual International Symposium on
Computer Architecture, pages 208-213, 1987.

D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal. Directory-Based Cache
Coherence in Large-Scale Multiprocessors. [KEE Computer, 23(6):49-58, June
1990.

D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS Directories: A Scal-
able Cache Coherence Scheme. In Proceedings of the 4th Annual Architectural
Support for Programming Languages and Operating Systems, 1991.

A. Gupta, T. Joe, and P. Stenstrém. Comparative Performance FEvaluation

of Cache-Coherent NUMA and COMA Architectures. TR #CSL-TR-92-524
Stanford University, 1992.

E. Hagersten. Toward Scalable Cache Only Memory Architectures. PhD the-
sis, Royal Institute of Technology, Stockholm/ Swedish Institute of Computer
Science, 1992.

E. Hagersten, M. Grindal, A. Landin, A. Saulsbury, B. Werner, and S. Haridi.
Simulating the Data Diffusion Machine. In Proceedings of Parallel Architecture
and Languages Furope. Springer-Verlag, 1993.

E. Hagersten, S. Haridi, and D.H.D. Warren. The Cache-Coherence Protocol
of the Data Diffusion Machine. In M. Dubois and S. Thakkar, editors, Cache
and Interconnect Architectures in Multiprocessors. Kluwer Academic Publisher,
Norwell, Mass, 1990.

E. Hagersten and A. Landin. An Initial Attempt to a General Network COMA.
DDM-memo, Swedish Institute of Computer Science, August 1991.

E. Hagersten, A. Landin, and S. Haridi. DDM — A Cache-Only Memory Ar-
chitecture. IEFE Computer, 25(9):44-54, Sept. 1992.

M. Hill and A.J. Smith. FEvaluating Associativity in CPU Caches. [FFEFE
Transactions on Computers, 38(12):1612-1630, December 1989.

D. James, A.T. Laundrie, S. Gjessing, and G.S. Sohi. Scalable Coherence
Interface. IEEE Computer, 23(6):74-77, June 1990.

[JSGH93]

[LHR9]

[LLG+90]

[MIP92]
[Mot89]

[NMP+93]

[Res91]

[Res92]

[RHL*93]

[SSW92]

[Ste90]

[SWG1]

[TDY0]

[Wal90]

T. Joe, J. P. Singh, A. Gupta, and J Hennessy. An Empirical Comparison of
the Kendall Square Research KSR1 and the Stanford DASH Multiprocessor.
Presented at the Third Workshop on Scalable Shared Memory Multiprocessors
(in connection with ISCA), May 1993.

K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems.
ACM Transactions on Computer Systems, 7(4):321-359, November 1989.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
Directory-Based Cache Coherence Protocol for the DASH Multiprocessor. In
Proceedings of the 17th Annual International Symposium on Computer Archi-
tecture, pages 148-159, 1990.

MIPS. R4000 Users Reference Manual, 1992.

Motorola. MC88200-Cache/Memory Management Unit, User’s Manual.
Prentice Hall, New Jersey, 1989.

A. Nowatzyk, M. Monger, M. Parkin, E. Kelly, M. Browne, G. Aybay, and
D. Lee. S3.mp: A multiprocessor in a matchbox. Technical Report par-
cftp.xerox.com:/pub/dlee/PASA proc.ps, Sun Microsystems Computer Corpo-
ration, 1993.

Kendall Square Research. U.S. patent 5,005,999 Multiprocessor Digital Data
Processing System. October 1991.

Kendall Square Research. Technical Summary. 1992.

S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis, and
D. A. Wood. The Wisconsin Wind Tunnel: Virtual Prototyping of Parallel
Computers. In Proceedings of ACM SIGMETRICS Conference, May 1993.

T. Stiemerling, A. Saulsbury, and T. Wilkinson. A DVSM server for Meshix.
In Symposium on Experiences with Distributed and Multiprocessor Systems 111,
March 1992.

P. Stenstrom. A Survey of Cache Coherence for Multiprocessors. IFFE Com-
puter, 23(6), June 1990.

J.S. Singh, W-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applica-
tions for Shared Memory. Stanford University, Report, April 1991.

M. Thapar and B. Delagi. Stanford Distributed-Directory Protocol. [FEFE
Computer, 23(6):78-80, June 1990.

D. Wallach. A Scalable Hierarchical Cache Coherence Protocol. SB Thesis.
MIT AT lab, May 1990.

[WBH'93] D. Windheiser, E. L. Boyd, E. Hao, S. C. Abraham, and E. S. Davison. Anal-

ysis of Latency Hiding Techniqueus in a Sparse Solver. In Proceedings of IPPS,
1993.

259

261

Swedish Institute of Computer Science

SICS Dissertation Series

01. Bogumit Hausman, Pruning and Speculative Work in OR-parallel PROLOG

02. Mats Carlsson, Design and Implementation of an OR-parallel Prolog Fngine

03. Nabiel A. Elshiewy, Robust Coordinated Reactive Computing in SANDRA

04. Dan Sahlin, An Automatic Partial Fvaluator for Full Prolog

05. Hans A. Hansson, Time and Probability in Formal Design of Distributed Systems
06. Peter Sjodin, From LOTOS Specifications to Distributed Implementations

07. Roland Karlsson, A High Performance OR-parallel Prolog System

08. Erik Hagersten, Toward Scalable Cache Only Memory Architectures

09. Lars-Henrik Eriksson, Finitary Partial Inductive Definitions and General Logic

Printed in Malmo, Sweden by Graphics Systems using a camera-ready copy typeset in Computer
Modern by the author, using a LaserJet III Si, the INTpX document preparation system, the emacs
editor, and a SPARCstation 1 workstation.

262

