Simple COMA Node Implementations

Erik Hagersten™
Sun Microsystems Computer Corp.
2550 Garcia Av.
Mountain View, CA 94043-1100

Abstract

Shared memory architectures often have caches to
reduce the number of slow remote memory accesses.
The largest possible caches exist in shared memory ar-
chitectures called Cache-Only Memory Architectures
(COMAs). In a COMA all the memory resources are
used to implement large caches. Unfortunately, these
large caches also have their price. Due to its lack of
physically shared memory, COMA may suffer from a
longer remote access latency than alternatives. Large
COMA caches muight also introduce an extra latency
for local memory accesses, unless the node architecture
1s designed with care.

We examine the implementation of COMAs, and
consider how to move much of the complex function-
ality into software. We introduce the idea of a simple
COMA architecture - a hybrid with hardware support
only for the functionality frequently used. Such a sys-
tem is expected to have good performance, and because
of its simplicity it should be quick and cheap to develop
and engineer.

1 Introduction

Multiprocessors with cache-coherent shared mem-
ory can be built in many ways. Systems based on
a single bus suffer from bus saturation and therefore
typically have only some tens of processors, each with
a local cache. The contents of the caches are kept co-
herent by a cache-coherence protocol, in which each
cache snoops the traffic on the common bus and pre-
vents any inconsistencies from occurring [21]. This
architecture provides a uniform access time to the
whole shared memory, and is therefore called uniform
memory architecture (UMA).

In architectures with distributed shared mem-
ory, known as Non-Uniform Memory Architectures

*This work was done while the author was at SICS.

Ashley Saulsbury and Anders Landin
Swedish Institute of Computer Science
Box 1263
164 28 KISTA; SWEDEN

Memory Network Network
I
Network ﬂMem‘ ﬂMem‘ ‘ AM ‘ ‘ AM ‘
[
Ca‘che‘ Ca‘che‘ ‘Cach ‘Cach Cache‘ Cache‘
Proc Proc Proc Proc Proc Proc

Shared Memory (UMA) Shared Memory (NUMA) Cache Only Memory (COMA)

Figure 1: Comparing COMA to more conventional ar-
chitectures.

(NUMA)!, each processor node contains a portion of
the shared memory; consequently, access times to dif-
ferent parts of the shared address space can vary. NU-
M As often have networks other than a single bus, and
the network delay to different nodes might vary. Early
NUMAs did not have coherent caches and left the
problem of coherence to the programmer. Research
activities today are striving toward coherent NUMAs
with directory-based cache-coherence protocols, e.g.
Dash [14] and Alewife [1]. Programs can be optimized
for NUMAs by statically partitioning the work and
data. Given a partitioning where the processors make
the most of their accesses to their part of the shared
memory, a better scalability than for UMAs can be
achieved.

In a cache-only memory architecture, COMA [8],
the memory organization is similar to that of NUMA
in that each processor holds a portion of the shared
memory space. However, the partitioning of data be-
tween the memories is not static, since all distributed
memories are organized as large (second-level) caches.
The task of such a memory is twofold. Besides be-
ing a large cache for the processor, the memory may
also contain some data from the shared address space
that the processor never has accessed, 1.e., it 1s a cache
and a virtual part of the shared memory at the same
time. We call this intermediate form of memory At-

1In this paper, NUMAs are assumed to be cache-coherent.
Also referred to as CC-NUMA.

traction Memory (AM). A coherence protocol will at-
tract the data used by a processor to its attraction
memory. The unit of coherence, called an item, is
comparable to a cache line, and is moved around by
the protocol. On a memory reference, a virtual ad-
dress is translated into an item identifier. The item
identifier space is logically the same as the physical
address space of conventional machines, but there is
no permanent mapping between an item identifier and
a physical memory location. Instead, an item identi-
fier corresponds to a location in an attraction memory,
whose address tag matches the item identifier. There
are cases where multiple attraction memories could
have matching items, i.e., the item is replicated. FEx-
amples of such architectures are the DDM [8] and the
KSR1 [13].

The new requirements of building efficient large
caches have led to the design of a proprietary processor
cache in the KSR1, as will be described in more de-
tail later. Other proprietary parts of the KSR1 are the
processor and the network. This proprietary choice re-
sults in a processor three to four times slower than to-
day’s commercial offerings, and remote latencies three
to four times longer than necessary. In spite of its
longer delays, the KSR1 has proven a performance
comparable to the Dash architecture for the SPLASH
applications [11]. Another comparative study assum-
ing that a COMA implementation suffer from longer
remote access delays also concluded that half of the
studied applications were in favor of COMA and half
of NUMA [22]. However, since both these studies
compares one specific implementation of a hierarchi-
cal COMA to a NUMA based on a 2-D mesh network,
it 1s not clear what conclusions can be made on the
general NUMA-or-COMA question.

However, the latter of the two studies also com-
pared NUMA and COMA on equal grounds (COMA-
F), concluding that COMA beat NUMA for all stud-
ied applications. Yet another comparative analyti-
cal study of general implementations of NUMA and
COMA, covering a large design space, reports a per-
formance advantage for COMA architectures for the
same set of programs [4].

The aim of this work is to find a simple COMA
implementation which is compatible with existing
computer technology and knowledge, such as cache-
coherence protocols, microprocessor implementations,
programming paradigms, and operating systems.

In the remainder of this paper, we first discuss some
general issues for COMA architectures; the next sec-
tion reviews some existing COMA node implementa-
tion proposals, followed by a description of our simple

COMA proposal. The paper is concluded by a com-
plexity and performance study followed by a summary
of related work and our conclusions.

2 COMA properties

This paper does not take a position on network
topology and/or choice of coherence protocol. How-
ever, a short discussion about these two important
topics might be appropriate.

Recent years have seen extensive studies of
the problem of maintaining coherence among read-
write data shared by different caches—for example
directory-based and snooping-based techniques [21].

Even though both COMAs being built today, KSR1
and DDM, rely on a hierarchical network topology,
COMAs can be built upon general networks [7, 22].
The cache-coherence protocol for a COMA can adopt
the techniques of other cache-coherence protocols [14,
1, 10] and add functionality for finding an item on
a cache-read miss and for handling replacement [8].
The search for the item compensates for the lack of
a home for data in a COMA. The problem of finding
an item on a read miss has already been addressed in
the NUMA protocols for situations where a dirty copy
of the requested item resides in a node other than
the home node. Most accesses missing in COMA’s
attraction memory at steady state execution are likely
to be coherence misses, caused by true or false data
sharing between one or more processors. For those
misses, chances are high that dirty data will reside
in a remote node in a NUMA architecture, i.e., about
the same amount of overhead can be expected for both
architectures. Therefore, the overhead for locating the
data on a read miss in a COMA architecture is not
expected to be significant.

A COMA protocol also must have a replacement
strategy which makes sure that the last copy of an
item is not lost when replacement occurs. One solu-
tion to this has been suggested by Hagersten et al. [6]
where all shared copies are replaced with care. In or-
der to guarantee some space for all items in a COMA,
the address space in use cannot be larger than the
sum of the attraction memories and the distribution
of addresses evenly distributed over the sets in the
attraction memories. Another solution has been pro-
posed by Wallach and Dally [24], where each shared
item has one tagged owner who replaces with care.
Gupta et al. propose a strategy where each item has
a defined home which is the synchronization point for
the replacement action [3].

One important, and unique, property of COMA
is its ability to dynamically adjust its ratio between
replication and memory size according to the needs of
the current applications [4]. Some applications have
no need for massive sharing (replication), but need a
large shared (physical) memory to avoid frequent disk
accesses. Other applications, e.g., some database ap-
plications, benefit by large portions of their data be-
ing replicated among all the processors. In a NUMA
architecture, the replication is limited by the size of
its (second-level) caches, and its shared memory size
is also fixed. The two application behaviors described
above would need two different parameterizations of
NUMA in order to run well. In a COMA, both behav-
iors could run well on the same architecture, thanks
to 1ts dynamic property.

A COMA will increase its replication until space
runs out in the attraction memories. At this point, the
amount of replication is determined by the size of the
item space presently mapped by the operating system.
A large, mapped item space results in a lower amount
of replication, and vice versa, as shown in Figure 2.
The operating system of the COMA can decrease the
item space by reclaiming more pages, and increase the
space again by mapping more pages.

Physical
address NUMA
size
Memtot - I—/ NUMA cache
NUMA memT NG ®:-

NUMA cache Replication

Figure 2: A NUMA has a statically fized relation-
ship between the size of the caches (replication) and
the physical memory, while a COMA dynamically can
change its working point to suit the application.

One drawback of the COMA architecture is the ex-
tra memory overhead required to make the local mem-
ory associative. This paper calculates this overhead to
be between 1.5 to 6.5 percent of the local memory size.
This memory overhead is marked as COMA memory
overhead in Figure 2. In a NUMA | this memory could
for example have been spent implementing yet another
level cache, i.e. a remote access cache.

Figure 2 assumes a NUMA remote access cache

larger than the COMA memory overhead, marked
NUMA cache, and that the size of the first-level caches
of the COMA and NUMA are neglectable.

3 Existing COMA node proposals

So far, we have explained why the dynamic be-
havior of attraction memories is preferable to the
statically bound memories of NUMA architectures.
However, if in implementing this dynamic prop-
erty the hardware has a significantly longer access
time for local accesses, the advantage of a COMA
architecture over a NUMA 1s not clear. In this sec-
tion we will review a few existing proposals for how
the associativity of the attraction memories can be
achieved. We study cache organizations which are
direct-mapped, set-associative and an optimized ver-
sion of set-associativity. They are compared to the
organization used in the KSR1 architecture and the
technique used in the DVSM proposal. All imple-
mentations are described with reference to a baseline
architecture similar to the DDM prototype implemen-
tation [8].

3.1 Baseline architecture

The baseline architecture is shown in Figure 3. The
processor 1s connected through its first-level cache to
the local data memory (DM) on the local bus. Three
additional units: BP, SM and AP, convert the data
memory into the data part of an attraction mem-
ory. The below protocol (BP), snoops the traffic on
the bus. The protocol makes lookups in the state
memory (SM), and may abort (retry) any transaction
due to non-matching address tags in the state mem-
ory and/or because the state of the matching data
does not allow for the transaction. The below pro-
tocol also initiates necessary network transactions so
that the requested operation on the local bus can be
performed later. The below protocol may also provide
parts of the address for the data memory based on
which address tag in the state memory that matched
the address on the local bus. The above protocol han-
dles traffic from the network and (logically) shares the
state memory with the below protocol.

3.2 A direct-mapped AM

In order for the protocol handler to determine if an
item 1s stored in the attraction memory, each 1tem is
associated with an address tag in the state memory,
which is compared to the most significant bits (MSB)

Network

BP ™1 SM*7 AP

Local Bus

|] +:DM (Data
CPUTPeach¢— | Memory)

Figure 3: The Base Architecture. (BP=below protocol,
SM=state memory, AP=above protocol)

of the requested address. A direct-mapped AM has
each 1tem mapped to a specific location, so there is no
need to compare tags to determine which set an item
resides in. For this reason, we can start the read line
before the approval from the below protocol (tag com-
parison) is received. We rely on being able to restart
a processor cache read before reading the last word
of a cache line. In this case, the below protocol can
wait until the very last cycle before deciding whether
to force a retry or not. This allows for state lookup
and data transfer to overlap. Only one access to the
state memory is needed while several accesses to the
data memory might be needed to transfer the whole
cache line. Thus, state memory may use the same, (or
possibly slower), memory technology as that used for
the data memory,? and the delay in accessing the state
memory will still be completely hidden, adding no ex-
tra latency caused by the functionality of the AM.

At first one might believe that the latency for ac-
cessing the state memory cannot be hidden on a write,
since overwriting part of another item would be fatal.
There is, however, full inclusion between a processor’s
(data) cache and its AM; in other words, there can
be no copy of an item in the processor’s cache un-
less there is also a copy of the item in the AM. This,
together with the fact that a write to the attraction
memory is never performed by the Pcache unless it
already contains a copy of the item [18], can hide the
state memory access—even from write accesses.

As can be seen in Figure 4, the implementation of a
direct-mapped attraction memory is straightforward.
The access time to data stored in data memoryis equal
to the data memory access time.

One major problem with this solution does how-
ever exist: Recent microprocessor designs can perform
“critical word first” cache line fills; and/or complete
the register file write back (from a load) as the ap-
propriate word enters the cache. With these devices
any retry for a cache line fetch should be issued be-

2probably DRAMs

ﬁ
Shared Phys. AddressShared Phys. Address Shared Phys. Address
MMU MMU MMU

Virtual (\ddress Virtual ‘Address VirtuaI‘Address

Processor Processor Processor
Direct Mapped Set-Associative Set-Associative LAM
Figure 4: Data dependency graphs for different

ways of implementing associativity (BP=below pro-
tocol, SM=state memory, DM=data memory, and
LAM=last accessed memory).

fore data is transferred. In this case then, the above
proposal 1s not applicable.

3.3 Set-associative attraction memory

A direct-mapped cache (when possible) may be ad-
vantageous over a multi-way associative implementa-
tion for shortening access time to the AM, but it also
increases conflict misses [9]. More associativity is ex-
pected to increase the hit rate in the AM. One can
imagine situations for which a directly mapped attrac-
tion memory could be fatal for performance.

Another drawback of a directly mapped attraction
memory is its limitation for replication of popular
items. In order for one item to get replicated in all
attraction memories, no other items for the same set
of the attraction memory can be present in the ma-
chine; i.e., the item space cannot be larger than the
size of one attraction memory. For two-way attraction
memories, the item space can be half the sum of the
AMs, and for four-way attraction memories, the item
space can be three quarters of the sum of the AMs.

If the AM organization is multi-way set-associative,
finding the location for the requested item is harder,
since several possible locations exist for each item.3
The address tag of all possible locations must be com-
pared to the requested item’s before the location in
data memory can be determined. Small caches, imple-
mented on a single chip, often access all possible data
locations in parallel with the tag comparison, and se-
lect the right data at a late stage of the access. This

3Equal to the number of ways.

results in only a minor overhead compared to a direct-
mapped implementation. Still; direct-mapped cache
implementations have been justified for large cache
sizes [9].

Accessing all possible data locations in parallel is
complicated and impractical for the implementation
of a large attraction memory with several ways, which
is why the whole address tag lookup and comparison
must be performed before the data access is started.
This means putting the state memory lookup and the
comparison on the critical path, as shown in Figure 4.
As a result of its size, the state memory might be im-
plemented with slow memory devices, resulting in a
substantial overhead.

3.4 Last-access memory optimization

It 1s possible to implement a set-associative mem-
ory and retain the same low access latency for reads
as described above for direct-mapped caches. A fast
last-accessed memory (LAM) is added [4] to pro-
vide a guess as to which way in the set contains the
item required. This memory contains one pointer of
log,(ways) bits per set, pointing to the way of the last
accessed entry in the set. This is a most recently used
algorithm - it assumes the way used in the set will be
the same as the one used previously. As it requires
only a few bits per set, the total LAM can be cheaply
implemented in fast memory - therefore the cache item
read can be started from the data memory using the
way indicated by the LAM, and possibly aborted later
if the tag check (from slower conventional memory)
indicates the data i1s not present in the set or in an-
other way. The LAM is updated if the initial guess
turned out to be incorrect, and the same transaction
is restarted after the abort, but with the correct LAM
pointer.

If the data memory is built of DRAMs, the latency
of the LAM can be totally hidden. The access to the
LAM is made as the Row Address Strobe is applied
to the DRAM. The LAM result is then ready to use
as part of the Column Address.

A read access according to this scheme is shown in
Figure 4.

The LAM optimization only works for read ac-
cesses. A write access is performed similarly to the
set-associative implementation described earlier, since
a write cannot be performed until the correct way has
been determined.

The positive effects of returning the MRU data first
in large multi-way caches have been studied by Chang
et al. [2]. The LAM technique divides the AM into two
parts, one with access time comparable to the data

memory and one with a longer access time, similar to
introducing yet another layer in the cache hierarchy.
As such, the LAM strategy can potentially cut the
access time for many applications, but is not expected
to be successful for all applications. For a program
that accesses a data set larger than the LAM part of
the AM, the “LAM guess” may consistently turn out
to be the wrong one.

As with the direct-mapped optimization above, we
rely on being able to abort or retry the cache line read
during the data transfer phase.

3.5 KSRI1

It is hard to get full information about the KSR1
design and the facts presented here are partly based
on assumptions and guesses. KSR has introduced
proprietary solutions to many parts of its design [25,
13, 12]. This is also true for its caching system. Its
first-level cache* appears to be large, 256 kbytes, but
is organized in a somewhat unorthodox way. The
cache 1s divided into associativity units of 2 kbytes.
As a whole, the cache contains 128 such units, or-
ganized in a two-way set-associative manner, i.e.,
2 x 64 x 2 kbytes. Each unit contains (among other
things) one address tag, one “AM-way” pointer, and
has space for 32 coherence units of 64 bytes of data
and a few bits of state each. The replacement strategy
is random.

The second-level cache (AM) is 32 Mbytes with as-
sociativity units of 16 kbytes, called a page, organized
in 16 ways, i.e. 16 x 128 x 16 kbytes. Each page con-
tains one address tag, some random information about
the page’s usage, and 128 coherence units of 128 bytes
data plus some state bits, as can be seen in Figure 5.

On an access to a new associativity unit in the first-
level cache, new space in the cache must be allocated
(randomly). Secondly, the 16 possible locations in the
AM are checked for a matching address tag. These
16 comparisons are (probably) performed partly se-
quentially in a scheme similar to the set-associative
implementation just described. So, the overhead for
bringing the first 64 bytes of an associative unit to the
first-level cache from the AM is significant. The iden-
tity of the way that matches the address tag is stored
in the first-level cache (AM-way), so that the next ac-
cess to the same 2kbytes can be performed with no
extra overhead. The data dependency of a KSR1 AM
access when the AM-way information is available in
the Pcache, can be found in Figure 6.

Allocating large associative units in the caches can

4Called “subcache” by KSR.

avold the extra associative overhead for many accesses,
as shown. It also cuts down on the memory required to
store the address tags. The drawback of this scheme
is a potentially low utilization of the data space in
the caches. Even if only a single word is requested
by the processor, 2 kbytes of the processor cache and
16 kbytes of the AM must be allocated, i.e., only 128
sparsely used words may reside in the data cache at
the same time.

AM 1 ... 16 kbytes:

32 Mbytes ~° P yta :

23 cycles .. . (SQ]128 BData....

access Setl27 [T . . |[Sil128BData. ...
Way 0 Way 1......... way1s | SI7i3EE Data

Set0 [2 kbytes:

Dcache Set1 A—Tagv AM-way

256 kbytes Set3 . S0|.64BData.....

2 cycycles S1]64ARData.....

access Set63 SR PO,

~..[S31] 64'B Data

Way 0 Way 1

Figure b: The organization of the caches in the KSR1
architecture.

There is no ordinary MMU functionality found in
the KSR1. Virtual addresses are used as the global
addresses in the system. This creates problems with
aliasing and prevents efficient implementation of copy-
on-write. The lack of page fault exceptions forces the
search of a requested page in the whole machine before
it can be determined whether or not a disk access is
necessary. This should be compared to the early page-
fault exception generated by an MMU. Furthermore
it is not compatible with existing OS, compilers, and
some applications, so a potentially large design effort
1s needed to rewrite portions of the software.

3.6 Distributed virtual shared memory

The title Distributed Virtual Shared Memory
(DVSM) covers a range of multiprocessor shared-
memory implementations where the coherence and
migration of data between processors is maintained
purely by software [15, 23]. DVSM systems utilize
the processor’s Memory Management Unit to detect
and initiate coherence protocol actions, which are im-
plemented in software. Just as hardware distributed
shared memory systems, coherence traffic between
nodes consists of messages on a network (for exam-
ple, packets on an Ethernet). Most DVSM system
implementations have COMA properties - the local
(or main) memory of each processor is treated as a
cache, with data items (pages) being allocated and in-
validated, and data being moved and replicated from
node to node without the notion of a fixed home which

NUMAs have.

When a processor makes a “first-time” reference to
a virtual memory address, the MMU has the respon-
sibility to convert that virtual address into a physi-
cal memory address. In this case, the MMU will not
have a translation in its Translation Look-aside Buffer
(TLB), nor will an entry (physical-page pointer) be
found in the current page table.® After failing to trans-
late the virtual address, exception is taken, and the
flow of the process is interrupted—a page fault.

In the event of a page fault, it is the responsibility
of the operating system to allocate an unused physical
page for the virtual page referenced. Further accesses
by the application to the same virtual page “hit” in
the TLB and are therefore completed without penalty.

The “first time” another processor access to data on
the same virtual page, its MMU cannot perform a vir-
tual access to physical address translation, so a page
fault exception is generated. The operating system (or
DVSM system) then allocates a new physical page in
its memory. Data for the page is retrieved from the
other processor node which already has a copy of the
data corresponding to the virtual page being accessed.
This is done by sending a request message to the other
node, and then receiving the reply, which includes a
copy of the data—much the same as one Attraction
Memory requesting a copy of data from another in a
COMA.

Aside from detecting the validity of an item (page),
to maintain coherency we need to detect write ac-
cesses to a shared item (page)—for example when the
item is shared across several nodes. To do this the
page write-protect functionality of the processor MM U
is used. By write-protecting a shared virtual page,
read accesses proceed as normal, but write accesses
cause the MMU to generate a write-protect page fault.
Any coherency protocol of choice is implementable for
DVSM.

Software (DVSM) COMA implementations have a
number of advantages over hardware COMAs. The
MMU functionality of the processor enables a virtual
memory page to be mapped to any physical memory
page on the local node. This enables a DVSM COMA
to be built with a fully associative attraction mem-
ory, while hardware COMASs are restricted to either a
direct mapping or limited associativity.

Being implemented in software means that DVSM
systems can have more complex replacement and
prefetching algorithms than would be reasonable to
implement in hardware. The simplicity of a DVSM
memory access can be studied in Figure 6.

5By ecither a software or hardware table lookup—depending
whether the CPU’s TLB is software or hardware loaded.

Retr}//OK DTata D;ta Retrf(/OK DTata
BP BP
\—‘—1 DM DM Page Identifie\r—‘—‘ DM
State State
SM SM

i t

Local Phys. Address
Virtual CVM Local Phys. Address Local Phys. Address
ay

Addresg
Cache
. , rUAlloc. exc.

(LSB)
Virtual Address

Processor
Simple COMA

Virtual Address Virtual Address

Processor Processor
KSR DVSM

Figure 6: The data access route for different attraction
memory tmplementations.

DVSM systems suffer from three problems. The
first is the large item size—typically page sizes for to-
day’s microprocessors are 4 kbytes and growing. This
large item size results in a potentially large amount of
false sharing. For this reason more recent DVSM sys-
tems are turning to weaker memory consistency mod-
els to achieve performance.

The second problem is the long latency associated
with a cache miss. This, perhaps surprisingly, is not
due to the cost of taking a page fault—processors with
software loaded TLBs [17] illustrate that page faults
can be dispatched and dealt with in only a few tens
of cycles. The costs are associated with the creation
and dispatch of messages on more traditional networks
such as Ethernet.

Finally, and most importantly, the processor must
also deal with the coherency traffic from other nodes
as well as its own. Hardware COMAs such as the
DDM and KSR1 can deal with coherency traffic from
other nodes on the network without disturbing the
local processor.

4 The simple COMA

We have seen in earlier sections how a COMA can
be built on an arbitrary communication network, and
how the coherence protocol of a COMA is very sim-
ilar to NUMA coherency protocols. So where is the
complexity in a COMA 7

From the DDM and the KSR1 it appears that at-
traction memory implementation are complex. This
would not be an accurate conclusion, as both the DDM
and KSRI1 are early all-hardware implementations of

COMAs. We believe the right implementation solu-
tion for a COMA results from combining the best fea-
tures of the complex all-hardware COMA approach,
and the simple-but-poor-performance software DVSM
approach.

4.1 A better COMA implementation

Here we describe a solution to the problem of
attraction-memory implementation, which we believe
is simpler and faster than the previously described so-
lutions. Our proposed implementation has a fully as-
sociative attraction memory with a short access time.
It 1s far simpler than the KSR1 implementation, and
eliminates some of the disadvantages found in the
KSRI1.

COMAs differ from DVSMs mainly by their smaller
coherence units (items), and by the coherency pro-
tocol being implemented in hardware, rather than in
software. We propose to retain some of the DVSM
software functionality, while additional hardware sup-
port, similar to the DDM implementation, is added to
decrease the size of the coherence units and also make
the coherency protocol implementation more efficient.

Our proposal is a combination of fully associative
mapping using the MMU, as seen in DVSM | in combi-
nation with a coherence protocol implementation simi-
lar to the protocol handler of the baseline architecture.

4.2 The proposed COMA node

Ignoring issues of network and protocol as orthog-
onal, we propose a COMA node designed as follows.
Just as with DVSM implementations, the allocation
and replacement of items within the attraction mem-
ory 1s handled by software — performed necessarily at
page-size granularity. This enables our COMA system
to have a fully associative attraction memory. Un-
like DVSM, coherence actions will not cause MMU
exceptions, the addition of state memory and a sim-
ple protocol handler (PH) enables coherence checks to
be performed on a per-item granularity - typically a
first- or second-level cache line size.

Therefore the state memory holds protocol state
bits per attraction memoryitem. Unlike the DDM im-
plementation, however, there is no address tag stored
with each item. We do not need to validate access
to an item with an address tag, since we performed
the item 1dentification validation effectively with the
MMU.

An additional state memory (or part of the state
memory) holds one page identifier for each page (of
items) in the attraction memory. The page identifier

(PI) is assigned by the software which allocates the
virtual-to-physical attraction memory page mapping.
This page identifier is used by the protocol handler
to identify a shared page when communicating with
another node. In order to uniquely identify a page ,
a 20 bit identifier is enough for a machine with up to
4 Gbytes held in 4 kbytes pages.

Note that the number of bits for the page identifier
in no way affects the virtual addressing capabilities
of the processors, just the total number of physical
memory pages in the machine. Figure 7 compares the
state memory in the proposed solution to that in the

DDM.

Data Memory (DM) State Memory (SM) State Memory (SM)
DDM and Simple DDM Simple

State _Addr Tag State

E } One Item
— One Page

Page Identifier

ﬁ

Figure 7: Comparison of the DDM and Simple-COMA
state memories

Figure 6 illustrates the memory access paths of the
proposed simple COMA alongside those of a basic
DVSM system, and the KSR1 architecture. Access to
the attraction memory may be started simultaneously
with the state memory lookup. This is because the
MMU performs the associative cache lookup for the
item position. When the physical memory address
appears, for both the state memory and data mem-
ory lookup, there is a direct mapping for an item
within the selected page. This functionality enables
the state memory to be implemented using the same
speed devices as the attraction memory - for example
conventional DRAM. The MMU has already tested
the validity of the mapping (item identification) in the
attraction memory, and so we can start either a read
or a write knowing that the item either exists or will
exist at that location. A miss caused by an unfavor-
able item state can simply abort the operation as part
of the coherence actions taken.

4.3 Implementing remote associativity

So far we have described the mechanism by which
local processor memory accesses are directed to the
correct data item, and access is validated by the state
memory. We have not discussed how the coherency
protocol handler on one node can communicate with
its counterpart on another processor node.

When a local memory access fails, for example be-
cause of aread to an invalid data item in the attraction
memory, the page identifier is produced by the smaller

state memory, or possibly even from a table in main
memory. This PI is used in a message to another node
to retrieve a copy or exclusive ownership of the missing
item.

When the protocol message arrives at the destina-
tion node, that node must, from the page identifier,
be able to lookup its local physical page mapping in
order to find its copy of the item and state. There
are several methods of performing this reverse PI to
physical page translation.

Page identifier CAM
A PI CAM is a Content Addressable Memory - when
an incoming PI is applied, the PI CAM can return the
physical page number corresponding to that page on
the local node. When a physical page is allocated on
a node, the entry in that node’s PI CAM allocated for
the physical page chosen is filled with the PI given to
the page.

For a processor node with say 64 Mbytes of RAM
organized in 4 kbytes pages, a PI CAM with 16384
entries 1s required, something which is practicable with
today’s technology.

Page identifier MMU
A simpler solution to the fully associative memory as
described above, a kind-of MMU functionality, can be
implemented. A small associative cache (like a TLB)
holds the most recent PI conversions, and a PI table
1s walked when an entry is not found in the PI-TLB.

It is not clear how effective this will be in practice
compared to the PI CAM, since the PI MMU receives
coherency traffic from potentially all other nodes in
the system. Such traffic will not have as much locality
as the memory accesses from the single local processor
(the latter fact exploited by the processor’s own TLB).
The PI-TLB may have to be several times larger than
one might allocate for the CPU.

A similar functionality to this is already imple-
mented for the “DMA Engine” (Elan chips) in the
Meiko CS-2 network communication interface [16].
This is used under direct processor control to transfer
messages from one processor’s memory to another’s.

Physical pointers
This scheme effectively moves the hardware complex-
ity of a PI-MMU or PI-CAM into software. In addi-
tion it reduces the latency of a remote access to data,
at some extra cost to the page replacement and the
protocol implementation.

The idea of this scheme is that the page identifier
should be the physical page number of the correspond-
ing page on another node (and possibly also some form
of node identifier). For example if node A shares a
page copy with the owner of the page — node O, then

node A will have the physical page number of the page
on node O as its page identifier.

When node A wishes to perform some protocol ac-
tion (such as item invalidation), it sends a message to
node O. As the physical page number is given with
the message access to the correct state memory slot
can be started immediately. There is no need for the
delay associated with the PI-CAM or PI-MMU.

To complete a protocol implementation, there must
be some way of identifying the physical pages allocated
on the sharing nodes (node A in the example above).
This is achieved by storing their respective physical
page numbers with the item copy set information.

As with other hardware COMAs or NUMAs, the
copy set (and reverse page identifiers) may be held in
any form: as linked lists such as SCI [10], or even in
hierarchical directories as in the DDM.

Note, we introduced the notion of an “owner” node
merely as a focal point for identifying the copy list.
Since pointers are allocated and reclaimed by software,
ownership of a page may be easily made to move.

While providing faster access when a coherence
message arrives at a node, this scheme requires ex-
tremely careful pointer allocation and reclamation. A
physical page may not be reallocated until all other
nodes which hold pointers (node and physical page
number) to it have this mapping invalidated. This
may require expensive interprocessor interrupts and
synchronizations. All said and done, the one or two
cycle extra cost of the PI-CAM or PI-MMU may be
of no significance in the face of a typical 100 cycle
network latency.

Experiments will indicate which of the above three
schemes 1s likely to be the most effective. An attrac-
tive solution might, once more, be not to choose either
the simple (MMU) solution or the efficient (physical
pointer) solution, but rather a combination of all three
solutions and thus combining simplicity and efficiency.

4.4 Potential drawbacks

Using the MMU to perform the attraction memory
item lookup has one potential drawback. It is possi-
ble for an application to access only one item on each
memory page. This commits the other unused items
on the same page to particular virtual memory ad-
dresses; the physical memory cannot be used for other

virtual items.5.

6 This is not quite true. With care, two virtual pages can
be mapped onto the same physical page, provided it can be
guaranteed that the accessed items in each of the respective
virtual pages do not overlap in the physical page. This requires
some knowledge of the application by the OS.

In the worst case, a machine with 64 Mbytes
of memory could share only 4096 items (if using a
4 kbytes page size). With an item size of, say, 128 bits
(16 bytes), this enables a maximum shared data space
of 64 kbytes before thrashing starts taking place —
such thrashing involves full page faults. This might be
a potential problem and more statistics are needed be-
fore we understand its impact. Simple COMA is bet-
ter than the KSR1 though, which uses a similar alloca-
tion scheme with larger allocation blocks (16 kbytes).

5 Performance and complexity

When comparing different implementation propos-
als 1t is important to deal with both the performance
and the implementation complexity. Here we will
qualitatively discuss the performance and complexity
of the direct mapped, the set associative, the KSR and
the simple approaches to building a COMA.

5.1 Performance

The performance of a COMA implementation is
characterized by the hit rate in the attraction mem-
ory and first-level caches, and by the latency for the
different types of accesses. This study focuses on the
node implementation techniques and does not cover in
detail the differences in latency for remote accesses.

Typical applications generally have good hit rates
for attraction memory accesses [5]. To achieve good
performance in a COMA machine it is essential to min-
imize the latency for these hits. In the case of an at-
traction memory miss, the latency differences due to
these node implementation considerations are not so
significant since they are part of a much larger latency
associated with the remote access. Other implementa-
tions such as network structure and COMA directory
policies are, of course, also highly important but lie
outside the scope of this study.

The Table in Figure 8 summarizes the main charac-
teristic differences for the implementation alternatives
considered in this study.

Note that direct mapped has a lower hit rate for
the same size of attraction memory since it might suf-
fer from an increased number of conflict misses. It
also has limitations on the degree of replication that
can be utilized. We also assume that there is full in-
clusion between the primary cache and the attraction
memory.

The KSR can be expected to have a lower hit rate in
its Pcache since it has very large allocation blocks and
will suffer if the accesses are sparse and spread in the

Impl. Access time Comment
Pcache | AM
Direct fast fast Lower AM
mapped (DM access) hit rate.
Set fast slow
assoc. (SM+4+DM acc.)
KSR fast fast or slow Proprietary
(DM or Pcache
SM+CMP+DM) || with lower
hit rate.
Simple fast fast or slow Fully
(DM or associative
TLBfill+DM) AM.

Figure 8: Main performance characteristics for the dif-
ferent implementation strategies.

address space. On the other hand it is fair to assume
that the caches can be made larger using KSR’s tech-
nique since the associative part is comparably small.

The fast access times for the KSR AM applies for
blocks that have already been allocated in the primary
cache. For the first access after a block has been re-
placed from the Pcache, the longer access time applies.

The Simple and the KSR alternatives might suffer
from reduced AM hit rate since they both have large
allocation units. If accesses are sparse the effective
size of the AM can be significantly smaller than it
nominally appears to be.

At a first glance, it looks like the proposed solu-
tion is not that different from a NUMA where pages
can migrate, which has been proven useful [22]. The
similarity is true for read-only data. However, sim-
ple COMA can also allow replication of read-write
data and still maintains coherence between the many
copies. Also, different parts of a page may migrate to
different nodes in the simple COMA, at the expense of
wasted memory, suiting a wider range of applications.
The migration decision is also made less fragile. In-
stead of using sophisticated hardware solutions to fig-
ure out where the only precious copy of a page should
be kept [22], a more liberal strategy can be used. Ev-
ery node that needs a copy of the page as a whole,
or parts there off| is given a copy. A page reclaiming
algorithm in each node decides about when a page is
no longer in use in the node, and therefore should be
reclaimed.

5.2 Complexity

All the hardware-based implementation proposals
differ from the DVSM approach in that hardware com-
plexity is added to improve the performance of the
system. The central problem is of course how to
achieve the highest performance with the least hard-
ware. While this is normally hard to do, 1t is desir-
able to find solutions that with a limited hardware
complexity give a high performance.

We have studied the hardware needed to implement
each scheme. We assume a machine of 500 nodes each
with an attraction memory of 64 Mbytes. We assume
a word size of 64 bits. The size of a page is 4 kbytes
and the coherence unit is 4 words (32 bytes).

Note that we do neither consider the hardware
needed for the interconnection network nor the direc-
tory information needed to find remote copies in the
machine. These are properties that are orthogonal to
the node implementation which is the focus of this
paper.

Direct mapped
The direct mapped approach is probably the most
straightforward method to implement a COMA. Each
node needs a state memory that contains state and
tag information for all 4-word items in the node.
64 Mbytes of data makes 2 Mitems. The total memory
space in the machine is 64 Mbytes * 500 = 32 Gbytes.
To address this the item identifiers need to be 35 bits.
The lower 26 bits are needed to address within the
attraction memory. This leaves 9 bits for tags asso-
ciated with each item entry. If we reserve 4 bits for
state information the net result is 13 bits per item
(32 % 8 bits = 256 bits). This leaves us with an over-
head of 13/256 = 5 percent.

Set associative
If we assume a 16-ways associativity we get the fol-
lowing overhead calculations:

The 64 Mbytes attraction memory contains
2 Mitems/16 = 128 ksets. These are addressed with
17+5 = 22 bits , leaving 13 bits for tag. The memory
overhead evaluates to: (13 +4)/256 = 6.6 percent.

In addition to the memory overhead we also need
hardware for the associative comparison. In this case
sixteen 13-bit comparators are needed for the attrac-
tion memory. The state memory also requires to be
able to support all the 16 * 13 = 208 bits simulta-
neously. The alternative is to make the comparison
in serial. This requires less hardware but further in-
creases the access latency.

KSR
Unlike the other proposals, the KSR approach requires

special hardware at the primary cache level. This rules
out the use of off-the-shelf processors with on-chip
caches. Although the actual overhead is very small
(0.2 percent) the inconvenience of a proprietary de-
sign might be substantial.

The overhead of the attraction memory state and
tag is reduced in the KSR approach since the AM is
divided into 16 kbytes pages. Tag information is only
stored with each page while state still must be sup-
plied with every item. Similarly to the set-associative
case, the tag associated with a page is 13 bits. This is
however negligible compared to the 16 Kbytes data of
that page. The state overhead is 4/256 = 1.5 percent.

Simple
The Simple approach uses the standard MMU for as-
sociativity. State information still has to be supplied
with each item as in the KSR case. The overhead is
also 1.5 percent.

Complexity summary
The complexity properties for the proposals are sum-
marized in the following table:

Impl. AM Overhead Off-the-
Tag | State | Other shelf-comp
Dir. map. || 3.5% | 1.5% YES
Set assoc. 51% | 1.5% Wide YES
mem cmp
KSR 0% 1.5% NO
Simple 0% 1.5% YES

Figure 9: Complexity summary.

As can be seen, both the KSR and the simple pro-
posals have very small overhead, while the simple pro-
posal can be implemented with standard hardware and
also gives a fully associative attraction memory.

6 Related work
6.1 Wind tunnel

In an attempt to create an efficient parallel simula-
tor on the CM-5 for simulation of shared memory ar-
chitectures, a research group at the University of Wis-
consin came up with a solution similar to the one de-
scribed here [20]. That solution combines the DVSM
coherence mechanism with support for coherence units
smaller than a page. Both allocation exceptions and
coherence exceptions are handled by software, simi-

larly to the DVSM, but validation checks of access
right can be made with a finer granularity than a page.

A bogus ECC code is simply set for the memory of
all “invalidated” cache lines of a page. Only accesses
to these cache lines will generate exceptions. A prob-
lem arises if cache-lines with different access priority
co-exist on a page, sine the ECC code cannot differ-
entiate between read and write accesses. Instead, the
whole page will be write-protected, causing some valid
writes to cache lines to create exceptions, a potential
drawback of this scheme. The advantage is that it
makes use of an existing architecture and its ECC im-
plementation.

6.2 The Sun S3.MP project

The S3 MP project [19] aims to build a distributed
shared memory architecture by adding a relatively
small amount of electronics to an existing worksta-
tion’s memory bus (typically a SPARC-10).

The S3 operates by partitioning the main mem-
ory of the local processor into a local main memory
partition, to be used as usual, and a cache partition
for remote memory accesses. This cache size is pro-
grammable — a distinct advantage over conventional
NUMAs which have their cache size fixed by hardware;
however, it does not allow a dynamic trade between
replication and problem size as COMAs do, since the
cache size is determined when the machine is booted.

The S3 MP includes hardware to convert local
memory addresses into a “global 64 bit address.” Sim-
ilarly, hardware converts such global addresses from
the network into local memory addresses.

The design philosophy has much in common with
the simple COMA we propose: use existing worksta-
tion technology, simple coherence, and communication
hardware as an extension to the main memory oper-
ating as the cache. However the result of the S3 MP
is still a cache-coherent NUMA; there is still the fixed
cache size; and fixed home.

7 Conclusion

A COMA node has been believed to be slower and
more complex to implement than alternatives. In this
paper we propose a simple and efficient COMA im-
plementation based on existing commercially available
components.

In spite of 1ts new structure and behavior, the im-
plementation presented conforms to existing assump-
tions about shared memory architectures made by op-

erating systems, compilers, and applications, and ac-
tually adapts to their behavior.

Acknowledgements

Several useful comments on an earlier draft of

this paper was provided by Rafael Saavedra.

SICS

is sponsored by Asea Brown Boveri AB, Ericsson

AB,

IBM Svenska AB, Televerket (Swedish Telecom),

Forsvarets Materielverk FMV (Defense Material Ad-
ministration), and the Swedish National Board for In-
dustrial and Technical Development (Nutek).

References

(1]

[10]

D. Chaiken, J. Kubiatowicz, and A. Agarwal. Lim-
itLESS Directories: A Scalable Cache Coherence
Scheme. In Proceedings of the 4th Annual Architec-
tural Support for Programming Languages and Oper-
ating Systems, 1991.

J.H. Chang, H. Chao, and K. So. Cache Design of A
Sub-Micron CMOS System/370. In Proceedings of the
14th Annual International Symposium on Computer
Architecture, pages 208-213, 1987.

A. Gupta, T. Joe, and P. Stenstrom. Comparative
Performance Evaluation of Cache-Coherent NUMA
and COMA Architectures. TR #CSL-TR-92-524
Stanford University, 1992.

E. Hagersten. Toward Scalable Cache Only Memory
Architectures. PhD thesis, Royal Institute of Technol-
ogy, Stockholm/ Swedish Institute of Computer Sci-
ence, 1992.

E. Hagersten, M. Grindal, A. Landin, A. Saulsbury,
B. Werner, and S. Haridi. Simulating the Data Diffu-
sion Machine. In Proceedings of Parallel Architecture
and Languages Furope. Springer-Verlag, 1993.

E. Hagersten, S. Haridi, and D.H.D. Warren. The
Cache-Coherence Protocol of the Data Diffusion Ma-
chine. In M. Dubois and S. Thakkar, editors, Cache
and Interconnect Architectures in Multiprocessors.
Kluwer Academic Publisher, Norwell, Mass, 1990.

E. Hagersten and A. Landin. An Initial Attempt to a
General Network COMA. DDM-memo, SICS; August
1991.

E. Hagersten, A. Landin, and S. Haridi. DDM - A
Cache-Only Memory Architecture. IEFE Computer,
25(9):44-54, Sept. 1992.

M. Hill and A.J. Smith. Evaluating Associativity
in CPU Caches. IFEF Transactions on Computers,
38(12):1612-1630, December 1989.

D. James, A.T. Laundrie, S. Gjessing, and G.S.
Sohi. Scalable Coherence Interface. IFEE Computer,
23(6):74-77, June 1990.

[11]

[20]

[21]

[22]

[23]

[24]

[25]

T. Joe, J. P. Singh, A. Gupta, and J Hennessy.
An Empirical Comparison of the Kendall Square Re-
search KSR1 and the Stanford DASH Multiprocessor.
Presented at the Third Workshop on Scalable Shared
Memory Multiprocessors (in connection with ISCA),
May 1993.

U.S. patent 5,005,999 Multiprocessor Digital Data
Processing System, October 1991. Kendall Square
Research.

Technical Summary, 1992. Kendall Square Research.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta,
and J. Hennessy. The Directory-Based Cache Coher-
ence Protocol for the DASH Multiprocessor. In Pro-
ceedings of the 17th Annual International Symposium
on Computer Architecture, pages 148—159, 1990.

K. Li and P. Hudak. Memory Coherence in Shared
Virtual Memory Systems. ACM Transactions on
Computer Systems, 7(4):321-359, November 1989.

Meiko Ltd. CS-2 Product Description, 1992.
MIPS. R4000 Users Reference Manual, 1992.

Motorola. M C88200-Cache/Memory Management
Unit, User’s Manual. Prentice Hall, New Jersey, 1989.

A. Nowatzyk, M. Monger, M. Parkin, E. Kelly,
M. Browne, G. Aybay, and D. Lee. S3.mp: A
multiprocessor in a matchbox. Technical Report
parcftp.xerox.com:/pub/dlee/PASA _proc.ps, Sun Mi-
crosystems Computer Corporation, 1993.

S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck,
J. C. Lewis, and D. A. Wood. The Wisconsin Wind
Tunnel: Virtual Prototyping of Parallel Computers.
In Proceedings of ACM SIGMETRICS Conference,
May 1993.

P. Stenstrom. A Survey of Cache Coherence for Mul-
tiprocessors. IEEE Computer, 23(6), June 1990.

P. Stenstrom, T. Joe, and A. Gupta. Comparative
Performance Evaluation of Cache-Coherent NUMA
and COMA Architectures. In Proceedings of the
19th Annual International Symposium on Computer
Architecture, pages 80-91, 1992.

T. Stiemerling, A. Saulsbury, and T. Wilkinson. A
DVSM server for Meshix. In Symposium on Fxpe-
riences with Distributed and Multiprocessor Systems

IIT, March 1992.

D. Wallach. A Scalable Hierarchical Cache Coherence
Protocol. SB Thesis. MIT Al lab, May 1990.

D. Windheiser, E. L. Boyd, E. Hao, S. C. Abraham,
and E. S. Davison. Analysis of Latency Hiding Tech-
niqueus in a Sparse Solver. In Proceedings of IPPS,
1993.

