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Abstract 
    This is a good time for parallel-computer development and research in both academia 
and  industry. The performance improvements predicted by Moore’s Law has proven it-
self quite accurate over many years. However, the  doubling of processor performance 
every 18 months cannot keep up with the growing demand of  many applications.  The 
performance of database applications has been doubling every 9-10 months. At last,  
parallel-computer technology has come to play an important role in the commercial mar-
ketplace. 
   Multiprocessing has been an active research area for almost 40 years and com-
mercial parallel computers have been available for more than 35 years.  After getting 
off to a slow start, this area has now taken off . Shared-memory multiprocessors have 
dominated this development. This is an area that has sprung out of tireless research 
and numerous published breakthrough results. 
   This article analyzes some of the reasons for the sudden acceptance of the relatively 
old parallel computing  field, outlines the key properties of a successful parallel com-
puter of the ’90s and identifies some important research areas and key technologies for 
the future. 

1. Introduction
Parallel-computer architecture is a classic research topic and has attracted good re-
searchers and produced ground-breaking results the last 40 years. This technology 
has been applied to the commercial world over time with mixed results. Only in the 
last five years has this turned from being "interesting and promising" to being one of 
the key technologies of the world’s largest computer companies. Commercial parallel 
computers have evolved and matured in different distinctive waves: 
1. The pioneer parallel computers (1960-2000): The first parallel computers were 

built from a handful of mainframe-style CPUs, connected through a switch to one 
common shared memory. This fairly expensive and non-scalable style of building 
top-of-the-line computers culminated with the CRAY-XMP architecture. This is 
still a viable technology provided by some mainframe vendors, but, its importance 
is diminishing. 

2. The massively parallel processors (MPPs) (1980-1995): The cold war and its 
quest for computepower fueled a focused effort in academia and primarily start-up 
companies to build the ultimate scalable machine, dominated by massively paral-
lel processors, MPPs. Many different experimental approaches were tested during 
this time, yet, the dominating architecture was that of the message-passing multi-
computers (MMCs). The MPPs were much harder to use than anticipated. You had 
to really want to solve a problem with them! A lack of market volume and the end 
of the cold war terminated this wave abruptly.  During the same time period, the 
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introduction of  the workstation’s distributed computing power also decreased the 
need for centralized servers. 

3. The general-purpose parallel computers (1993 - Present): Like the disappear-
ance of the specialized processors (such as the LISP processors) in favor of the 
more general purpose RISC/CISC microprocessors of the 80s, this third wave is 
dominated by general-purpose parallel computers rather than the more special-
ized MPPs. The parallel computers of this wave are often compatible with already 
existing operating systems and are cost-effective both at the high-end of the mar-
ket as well as the mid-range, overcoming the MPPs’ deficiency of scaling up, but  
not scaling down, which allows this third wave to appeal to a much wider and 
growing market. 

2. General-purpose Parallel Computers
So why did parallel computers wait until the mid 90s before taking off? We can iden-
tify a number of important factors which all coincided and contributed to the parallel 
computer revolution: 
• A return to centralized computing driven by its ease of management 
• Cheaper disks allowing for more on-line data 
• Growing database sizes and a need to analyze the data 
• Parallelizable databases from independent software vendors (ISVs) 
• The explosion of Internet, Intranet, Extranet and the World Wide Web
• Increasing speed of cheap microprocessors
• The arrival of stable and scalable versions of the UNIX operating system

However, the primary reason for the boom is probably the introduction of various 
forms of shared-memory multiprocessors, here collectively  referred to as SMMs. At 
this time, several major computer vendors started offering shared-memory architec-
tures running fairly stable versions of UNIX. Suddenly, this became a technology that 
could be relied on beyond high-performance HPC applications [Brewer97, 
Charlesworth98, Laudon97, Lovett96, Singhal96, Clark96, Protic98].  

These machines are applicable to a wider range of applications than the MMCs of the 
previous wave and compatible with many widely used UNIX desktop applications, 
some of them already parallelized. Overnight, these parallel computers seamlessly be-
came centralized computing resources serving many workstation users. These archi-
tectures were also much more focused on medium-sized scalability and offered more 
appropriate solutions for the sweet spot of the market than the world-record-lusting 
MMCs of the previous wave. This provided for a much larger customer base and 
made the parallel computers less dependent on one single application area or a single 
source of financing. In 1997, the UNIX server market was estimated to be almost $24 
billion and growing at a yearly rate of 22% [IDC98]. This can be compared to the tech-
nical supercomputer market the MMCs tried to feed on in 1995 (machines costing 
more than $1 million) estimated at $750 million and an annual growth of 3.4% 
[Dataquest96,Stenstrom97].



1Running it on the CPU where it last ran has a small advantage since its hot cache 
can be leveraged, i.e., affinity scheduling.
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3. Important Properties of Shared-Memory Architectures
The commercial database market dominates the server market today. This is why da-
tabase applications are the focus of many parallel-computer architecture design deci-
sions. These applications are a good fit for shared-memory multiprocessors (SMMs). 
Contrary to many shared-memory proponents, however, we do not believe their 
loudly claimed "simpler programming model" compared with message-passing multi-
computers (MCCs) is the primary reason. An even more important property is the 
simple resource-sharing model provided by SMMs. The SMM, everything-is-shared, 
view of the world provides a simple performance and resource-sharing model for pro-
cessors, memory and I/O. While such properties may matter less for some regular 
and easily partitionable technical HPC applications, flexible resource sharing is cru-
cial to  many of the less predictable commercial applications with widely shifting de-
mands for resources. This is what lends the SMMs to a wider market and, thus, a 
general purpose solution. 

An SMM does not require data and code to be placed in any special node, nor does it 
need any special configure-to-fit hardware organization for an application to run well. 
Popular code and data structures are easily shared by all the CPUs. A suspended 
process may be rescheduled on any processor.1 Managing the memory is also easier: 
any free physical memory can be utilized when any processor needs more memory al-
located.  Imagine a hypothetical case of two parallel tasks, one needing 1 GB of 
memory and one CPU, and another task requiring 100 MB of memory and four CPUs. 
In order to run the two tasks in parallel, an MMC built from five identical one-CPU 
nodes will need 1 GB memory each node; i.e., a total of 5 GB, of which 3.9 GB will 
not be utilized, in order to run well. On the other hand, an SMM with  only 1.1 GB of 
total memory and at least five CPUs will run these two tasks well in parallel. As long 
as the total number of resources in a shared-memory machine matches the total re-
quirements of the two tasks, that architecture will fit. The resource scheduling in an 
SMM can be resolved dynamically at runtime while the MMC requires static schedul-
ing of resources. Some of the static sceduling has to be done before the MCC 
hardaware is even assembled while other scheluding can do be done before, or at, 
compiletime. 

Another important property of the SMM is the creation of a seamless family of scal-
able architectures. The workstation with two CPUs, the work-group server with four 
CPUs and the supercomputer with 64 CPUs can all have the same programming 
model and be binary-compatible with each other.  

However, the introduction of nonuniformity in some shared-memory implementations 
makes all these SMM features less attractive and makes the SMM behave more and 
more like an MMC. More about that later.
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Yet another important, but rarely discussed, issue is the complexity involved in the 
management of the large-scale systems.  Adding and removing resources from an 
SMM does not change its being a single system running one operating system--the 
SMM comes up and down and gets upgraded like a single system. So, adding re-
sources to an SMM does not add complexity at the same rate.  The same cannot be 
said of the MMCs or the network of  workstations, where an increased number of 
nodes increases the number of systems to manage and adds substantially to  man-
agement complexity. 

One last important property of the SMMs is their excellent cost/performance charac-
teristics. There is nothing intrinsically more costly about a well-designed SMM com-
pared to a network of workstations (NOW) or an MMC as long as the volume of the 
product families is the same. Note that the bulk of the cost of a parallel computer 
rests in its disks, memory, processors and cache modules. Everything else being 
equal, i.e., with the same programming and managing effort, the communication re-
quirement of both SMM and MMC is roughly the same. A well-designed NOW/MMC 
would, therefore, roughly have the same cost as an SMM. Many papers on this sub-
ject compare the prices of different systems with the same number of processors, but, 
with interconnects of widely different latencies and bandwidths. Note that price in-
volves many more system properties than just number of processors. What about 
value-added features, such as a better use of resources, achieved performance, cost 
of ownership, and simply customer demand? Once more, the task is not to find any 
single suitable application in order to prove a point, but, rather to build an architec-
ture appealing to a wide market [tpc98].

4. Increasing the Availability
The model of resource sharing in SMM today has been taken to yet another level by 
the introduction of dynamically configurable domains [Charlesworth98, Teodosiu97]. An 
SMM can be divided into several domains, each configured to include a set of re-
sources, such as CPUs, I/O and memory. Each domain runs its own operating sys-
tem and has its own isolated error-handling system. A domain can be dynamically re-
configured to include more or less resources by moving the domain boundaries while 
the applications are running. This effectively turns a physical SMM into a heap of re-
sources consisting of CPUs, memory and I/O, which can be configured into a number 
of error-isolated logical SMMs, each dynamically customized to fit the customers’ cur-
rent resource needs. Resources can be moved from one domain to another while the 
operating systems and the applications in both domains keep running. 

Dynamic domains provide a degree of coarse-grained resource management while 
overcoming the largest Achilles’ heel of an SMM: the vulnerability of the single 
operating-system  kernel. A single hardware or software error may bring down the en-
tire machine. The domains provide error isolation, and an error will only bring down 
the domain in which the error occurred. 



2Or connecting several logical SSMs in the same physical SSM machine
_________________________
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The term "cluster" is often used to describe an MMC built from many independent 
nodes, each running its own operating system, in contrast to the MPPs, where the 
same operating system controlled all the nodes. Further availability can be achieved 
by running a cluster-based  high-availability database software, connecting several 
large SMM machines2. The clustering software implements a special high-availability 
message-passing protocol between the SMM nodes; it allows the database to stay up 
even if one of the SMM nodes crashes.  This combines the best of two worlds: the 
scalability and resource sharing provided by the large SMMs with the high availability 
of clustering software. 

So, what happens when the capacity of an SMM is exceeded, or high availability is 
needed and a cluster is required? Doesn’t this negate the advantages of an SMM?  
Wouldn’t it be better to jump to a pure MMC with a more regular architecture or to a 
huge number of thin PC nodes? The answer to this question differs depending on 
whom you ask. For companies lacking the technology needed to build large SMMs 
and capable only of providing thin nodes, the answer is "Yes", of course. However, if 
you ask a company capable of providing both small and large SMMs with clustering 
capabilities, the answer will be an emphatic "No". The partitioning problem grows 
more difficult with the number of partitions to manage; so, in every case, we would 
claim that for a given amount of resources, fewer bigger is better than many small. 

5. Fewer Bigger or Many Small
At the most basic level, an SMM is about pooling resources, while an MMC and clus-
ter is about statically dividing them. The driving principle of an SMM design is to pro-
vide an easy and efficient way of sharing processing, memory and input/output re-
sources. That is, all of the resources in an SMM are almost equivalent or symmetric. 
This symmetry is a great simplifying assumption for both the application developer 
and the system/application administrators. It decouples the exploitation of parallel-
ism from the placement of data. 

Conversely, an MMC introduces significant nonuniformity. Good performance is 
achieved only when most of the data a processor needs is found in its local memory 
or on its local disk. Otherwise, the data has to be communicated from one processor 
to another via the MMC’s communication network, which is at least an order of mag-
nitude less efficient than communications between a processor and its local storage, 
even for the very best interconnection network. The bottom line here is that the ap-
plications developer and administrator must be acutely aware of the need to align 
threads of computation with the placement of data involved in the computation. This 
is hard because it adds a big constraint. Not only must one decompose the control 
into separate computation streams or threads (true for SMM and MMC), but must 
also decompose the data to line up with the control (which is automatic in SMMs).

Looking specifically at how decision-support database software  views the difference 
between MMC and SMM,  MMC systems are much more sensitive to how a given 



3Modern SMMs even allow you to hot-plug the new resources while the system runs.
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query maps onto the data partitioning selected at the time the database was built. 
Thus, performance becomes much more variable and far less predictable. Before you 
divide the database data among the nodes, you must know what query will be asked 
and how it will get parallelized. Even if you can master this complex task, it will not 
help you much when you put to it a completely different query, unless you redistrib-
ute your data in the meantime [Carlile96]. The nonuniformity is a bug and not a fea-
ture. 

It is far better to cluster fewer, bigger nodes than more, smaller ones! This is true not 
just for performance, but for system administration as well, as the next examples il-
lustrates. 

6. System Examples
Imagine that the requirements for a large data warehouse dictate a system with 1000 
disks, 100 processors and 20 gigabytes of memory. You are given three specifications 
to choose from: 
• MMC: 100 single-processor nodes, each with 10 disks and 200 MB of memory. 
• Cluster of SMMs: Four 25-processor SMM nodes, each with 250 disks and 5 GB of 

memory. 
• SMM: A single 100-processor SMM machine with 1000 disks and 20 GB of 

memory. 

Which do you prefer? By the "fewer, bigger" rule, you would prefer the SMM. How-
ever, higher availability and/or scalability requirements may also prompt you to 
chose the cluster of  SMMs. 

6.1. Adding more memory or disk per node 
Suppose you needed to expand memory, add more disk storage or upgrade the oper-
ating system or some software. You may  go through the installation procedure 100 
times for the MMC or only 4 times for  the cluster of SMMs; however, SMM operation 
is done just once.3  

6.2. Effects of data skew for a decision-support database
A small amount of data skew, say 1%, can easily be caused by an uneven layout of a 
database with respect to a specific database query. That is, imagine that for a given 
query, 99% of the required data are evenly distributed across the nodes (partitions), 
but that the remaining 1% are skewed onto a single node (partition). In practice, this 
degree of skew is encountered frequently in decision-support databases. On the 
MMC, the 1% skew causes a stunning 50% loss in performance: all nodes make their 
way through their 1/100 of the 99% of the data in parallel ( i.e., each node performs 
0.99% of the total work in parallel.) Now, the remaining 1% of the task rests on a 
single node and is plowed through serially while the other 99 nodes  idly wait for it. 
This makes the utilization of the nodes about 50% ( i.e., a slowdown close to 50% is 
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encountered compared to a  fully-utilized system.) This is example is a direct conse-
quence of Almdahl’s well-known law of serialization when applied to skewed data. 

On the cluster of SMMs, the slowdown is close to 4%. Three of the four nodes do little 
less than 25% of the work, while the one carrying the skew is asked to handle about 
26%. Here, all four nodes are busy most of the time working on their 1/4 of the 99% 
of the data. The remaining 1% of the data can be operated on by  the 25 processors in 
the node carrying the skew --  which is why the waiting time for the 75 processors in 
the three idle nodes is substantially less than for the MMC. This is a great example of 
the resource pooling that big SMM nodes provides. All of the assets of the node can 
be applied to handling the skewed data. The SMM experiences no slowdown. Since it 
is a single system, no data skew is architecturally visible  [Carlile96].

6.3. Growing the Database 
Finally, we’ll look at a rather common procedure: growing the database. For all sys-
tems, we have the option of adding more disks per node or adding more nodes. Add-
ing more nodes is always an issue because it usually requires that the database be 
repartitioned to span the new nodes, a rather involved procedure that may make the 
system unavailable while the action is performed. The benefit is that the processing 
performance is scaled as the disks are added, so the response time of the system 
should remain more or less constant. 

Adding more disks per node typically doesn’t require repartitioning and in most sys-
tems can be performed while the database is operational. Unfortunately, we have just 
added more data to the system without scaling up the processing. This means that 
response times for queries that touch all the data will get longer in proportion to the 
amount of data added. This is always true for the MMC because the processing per 
node is fixed. On the cluster of SMM, however, we have the option of adding more 
processors and memory to each node, up to the SMM’s capacity. Thus, administra-
tors do not have to compromise performance for ease of growing the database. Of 
course, eventually, the capacity of each SMM will be exhausted and the number of 
nodes will need to increase. At least this event is less frequent and can be part of a 
long-term planning cycle. 

7. Technical HPC Computing 
So far, we have discussed how commercial computing has impacted the current wave 
of parallel computers. Contrary to commercial applications, technical HPC applica-
tions are typically programmed using some "standard" message-passing library such 
as MPI or PVM. Does not this make the MMCs the obvious choice in this market? Not 
necessarily. We have to clearly differentiate between a programming model and the 
architectural implementation. There is nothing to preclude one from implementing a 
message-passing library on top of shared memory. The efficiency of such an imple-
mentation, of course, depends on the efficiency of the underlying SMM. It is our expe-
rience that a tightly-coupled low-latency SMM with support for cache bypass lends it-
self to a lower latency MPI implementation than a traditional MMC. 
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High-end computing is currently shifting away from tailor-made, one-of-a-kind ex-
pensive solutions. In 1995, the HPC technical market for machines costing more than 
$1 million represented only 3% of the total server market [Dataquest96, Stenstrom97]. 
This is clearly not a market large enough to drive "architectural changes," and this is 
why so many high-end companies went out of business. Also the HPC market is mov-
ing away from tailor-made exclusive computers. The boutique-shopping era is over. 

Today, the HPC market is often addressed by systems built from building blocks that 
also suits the much larger commercial market. This can be exemplified by studying 
the processors used in the world’s 500 fastest computers[top500]. As late as 1993, 
88% of the computers listed on the top 500 list were based on proprietary CPU archi-
tectures, and only 12% were based on commercially available RISC/CISC micropro-
cessors. Today, about 80% of the top 500 entries are based on commercial micropro-
cessors. The move toward commercial building blocks can also been seen by the ar-
chitecture types represented in the top 500 list, as shown in Figure 1. In 1993, only 
4% of the systems were SMMs. In 1998, that number is 46% and rising.  

Fig 1: The architectural mix among the world’s  500 fastest computers keeps changing 
[top500]. The vector systems dominated the early ’90s, MMC (including clusters) were 
most popular in the mid-’90s and the SMM is currently the most common architecture. 

However, this SMM dominance can not yet be seen among the top 100 systems, 
where only 10% of the systems are SMMs [top500]. We predict SMMs will become im-
portant as buildingblocks also for the top 100 systems. We have already seen how 
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MMCs of large SMMs can add extra availability and scalability beyond the SMMs in 
the commercial market. So, the large commercial market has also turned such com-
bined solutions into commodity technology. High-end, cost-effective technical HPC 
computers assembled from  large shared-memory nodes connected together using 
cluster technology have already entered the HPC arena. The latest supercomputers in 
the Department of Energy’s ASCI program have moved away from the traditional 
MMC built from skinny nodes to clusters of large SMMs. The ASCI Blue Mountain 
from SGI, consisting of 48 clustered SMMs with 128 CPUs in each node, has de-
throned the ASCI Red build from Intel’s quad P6 nodes and is now now the world’s 
fastest computer with a record 1.6 GFLOPS Linpack number. The "bigger is better" 
rule, as discussed above, still applies. The often regular HPC applications can also 
explore efficient "nearest neighbor" message-passing communication implemented on 
top of the shared memory among all the processors residing in the same SMM node. 
Using commercial building blocks not only drives the cost/performance down, but 
also has a much higher level of reliability, availability and serviceability (RAS) than 
the one-of-a-kind systems. We believe that sophisticated RAS features will increase 
the availability of  large HPC systems.

8. SMM Implementation Issues
Today, most SMMs sold are so-called Symmetric Multiprocessors (SMP). This term is 
not very well defined. Most often, SMP is used as a synonym for Uniform Memory Ar-
chitectures, or UMA, where the access time from any processor to any part of the 
shared memory is the same. Our definition of SMP is an architecture which  is  so 
uniform that the placement of code and data does not really matter. This allows the 
shared memory to be viewed as the shared resource, as exemplified above. For this to 
be true, we believe the access time to different parts of the entire memory, as well as 
to dirty data in other caches, should differ less than a factor of 2. This rather tough 
requirement constrains SMP implementations to physically reside in one enclosure. 
The physical limitations of elevator shafts and airplane cargo holds put an upper 
limit on the size of an enclosure and also an upper limit on SMP implementations. 
The number of CPUs per SMP (i.e., per enclosure) has  been increasing steadily, de-
pending on the implementation technology, and is now at 64 CPUs [Charlesworth98]. 

Distributed shared memory, implemented across several enclosures, can allow SMM 
implementations beyond the scalability limit of an enclosure, pushing the "bigger is 
better" rule even further with the introduction of the largest SMM node. Currently, 
SGI supports up to 128 CPU SMMs [Laudon97], and Sequent can build SMMs up to 
252 CPUs [Lovett96]. Both these architectures are SMM implementations with nonuni-
form memory accesses (NUMA) very similar to earlier research machines, such as the 
Stanford Dash [Lenoski90].  The ratio between local memory and remote memory for 
these architectures is a factor between 3 and 20, depending on the size of the system. 
Here, the placement of data and processes matters more than in the general SMM 
case, yet less than the MMC issues outlined above. 
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However, architectural scalability is only one part of the problem (probably the easy 
part). Such an architecture must be accompanied by a scalable operating system and 
a scalable SMM application. Scaling an operating system while maintaining its stabil-
ity is a very complicated task. It has taken eight years of focused development to 
move the scalability of Sun’s operating system from a 4-way system to one that reli-
ably can handle 64-way commercial servers.  Today, the most scalable SMM TPC 
benchmarks published use 64 CPUs from Sun and 32 CPUs from DG, SGI and Se-
quent [tpc98]. Our experience shows the SMMs to double their number of CPUs every 
2-3 years. Sun’s next generation SMM will more than double the number of CPUs.
Figure1 shows how SMM systems have also gained more acceptance in the high-
performance world.  The market share for SMM has increased over the last year while 
the market share for MMCs and vector processors has decreased. We believe this is a 
trend which will continue. We predict that each vendor will cluster the smallest pos-
sible number of the largest possible SMMs to meet the demands of this market. 

9. Future Research Topics for Shared Memory Architectures
As SMM grows in importance in the commercial world, the interest in SMM research 
will remain high. Keep the following guidelines in mind:
• Target research toward general-purpose multiprocessors. A single embarrassingly 

parallel application does not prove a point.
• Scalability is just one of many important properties of an SMM system. Remember 

that most parallel processors are in the 4-32 processor range. 
• NUMAs with too much nonuniformity degrade to MMC-like performance with 

properties similar to the MMCs discussed above. Scalable solutions that minimize 
the application’s exposure to nonuniformity are therefore important. Ideally, a 
nonmodified SMP application should perform well on any SMM, regardless of size. 

• Scalable operating system and algorithms are important. This is  the current 
bottleneck in efficient SMM implementations. Leaving the effect of the operating 
system out of the research picture will limit its value. 

• Efficient cluster interconnects supporting large SMMs are not a very well explored 
topic. SMMs, no matter how large, can be clustered together for scalability and/or 
high availability reasons. 

10. Conclusion 
Parallel Computers are here in large numbers, increasing every day.  Parallel Com-
puters are an undisputed success. Shared-Memory Multiprocessors (SMMs) are a key 
component of most parallel computers, either as the parallel computer’s sole archi-
tecture or as the architecture for its cluster nodes.  We expect large SMMs to meet 
most requirements, and they are by far the best choice when they do. Combining 
Moore’s Law of double processor performance  every 18 months with the SMM’s dou-
bling number of CPUs every two to three years puts the SMMs on a performance dou-
bling rate of 10-12 months. 
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Clustering technology will become the dominant high-availability technology rather 
than a scalability technology. Clustering a handful of large SMM nodes provides suf-
ficient availability in combination with the best scalability, lowest administration 
complexity and the best resource management. 

20 years ago it was believed that efficient SMMs could not be built. Today, most 
manufacturers of  microprocessors, operating systems and computer systems expend 
substantial effort to push the scalability of their  SMM systems. Companies previ-
ously offering 4-way SMMs are pushing for 8-way systems today, companies offering 
16-way systems are now pushing for 32-way systems, and so on. Sun will double, at 
least, the number of CPUs in its next generation system from today’s 64 to more than 
128. We are speaking in unison: fewer bigger, instead of many small. Thanks to all 
the good SMM research.
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