
Performance of High-Accuracy PDE Solvers on

a Self-Optimizing NUMA Architecture

Sverker Holmgren and Dan Wallin

Uppsala University, Information Technology, Department of Scientific Computing
P. O. Box 120, SE-751 04 Uppsala, Sweden

{Sverker.Holmgren,Dan.Wallin}@tdb.uu.se

Abstract. High-accuracy PDE solvers use multi-dimensional fast
Fourier transforms. The FFTs exhibits a static and structured mem-
ory access pattern which results in a large amount of communication.
Performance analysis of a non-trivial kernel representing a PDE solu-
tion algorithm has been carried out on a Sun WildFire computer. Here,
different architecture, system and programming models can be studied.
The WildFire system uses self-optimization techniques such as data mi-
gration and replication to change the placement of data at runtime. If
the data placement is not optimal, the initial performance is degraded.
However, after a few iterations the page migration daemon is able to
modify the placement of data. The performance is improved, and equals
what is achieved if the data is optimally placed at the start of the ex-
ecution using hand tuning. The speedup for the PDE solution kernel is
surprisingly good.

1 Introduction

The kernel in many important computational codes consists of multi-dimensional
fast Fourier transforms, i.e. 2D, 3D, or higher-dimensional FFTs. One area where
such computations arises is the numerical solution of partial differential equa-
tions (PDEs) using spectral or pseudospectral discretizations. Such methods are
used in a wide spectrum of applications, e.g. computations of turbulent flows
for optimization of aircraft performance, numerical weather prediction, and ab
initio computations for predicting the outcome of chemical reactions.
When using discretization methods employing structured grids, the data is

represented as large multi-dimensional arrays where the size is determined by
the number of grid points. Using many grid points generally yields a more ac-
curate solution. For multi-dimensional problems, the resolution is in practice
often limited by the amount of main memory available. The major advantage
of employing pseudospectral discretizations is that, for many problems, it gives
the best possible accuracy for a given number of grid points.
The time-consuming part in a PDE solution algorithm consists of computing

approximations of the derivatives. In a pseudospectral scheme, these computa-
tions are performed using multi-dimensional FFTs, which are global multi-stage
grid operations. Each stage has a specific communication pattern involving a

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 602–610, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

PDE Solvers on a Self-Optimizing Architecture 603

large amount of data, and every value in the solution array is updated using
information originating from all other grid points. At a first glance, this is a
very difficult situation for parallel computations. However, since the commu-
nication patterns are static and highly structured, efficient parallel implemen-
tations are possible. A number of quite efficient parallel implementations for
multi-dimensional FFTs have been developed. For example, the FFTW pack-
age [3] includes both a multi-threaded (Pthreads) and a message passing (MPI)
implementation.
We study a multi-threaded implementation of a kernel representing a PDE

solver employing a pseudospectral discretization [10]. The aim is to examine
the parallel performance of an important non-trivial algorithm with significant
inherent communication on a cc-NUMA [6] system with SMP nodes. A similar
investigation has earlier been performed for a finite difference solver kernel [9],
which only involves local grid operations and very little communication. For our
more realistic problem, we want to investigate the performance effects of self-
optimizations such as page migration and replication. For a programmer, it is of
interest to know how successful such techniques are. The result determines the
importance of performing careful hand tuning, considering data allocation and
thread scheduling policies.
The kernel algorithm is described in Section 2. The WildFire architecture and

the different configurations used are presented in Section 3, and in Sections 4–7,
a number of performance experiments are presented.

2 A Generic PDE Solver Using a Pseudospectral Method

The high-accuracy derivative approximation in a pseudospectral solver is per-
formed by a convolution, i.e. a transform to frequency space, a local multiplica-
tion, and an inverse transform back again. For a uniform grid, the FFT and its
inverse yield a very efficient tool for the transformations, resulting inO(n2 log2 n)
arithmetic complexity for computing the derivatives on a grid with n2 grid
points. Normally, the computation is performed within an iterative solver or
a time-marching procedure. Hence, a representative kernel for a pseudospectral
solver is an iteration where the loop body consists of convolution computations.
The standard implementation of a 2D FFT is to first perform 1D FFTs for

all the columns in the data matrix, and then do the same for all the rows.
In a convolution computation, this results in a five-stage scheme described in
Figure 1. In general, it is sufficient to study 2D problems to get a picture of the
performance also for multi-dimensional pseudospectral solvers, since the FFTs
for the extra dimensions will be performed locally.
In Figure 1, each arrow represents a 1D FFT. For a vector of length n, this is

a log2 n-stage computation involving a rather complex but structured communi-
cation pattern. There are a number of different FFT algorithms available, for a
review see, e.g. [7]. In the experiments presented here, we use an in-place radix-2
Gentleman-Sande version of the FFT, and an radix-2 in-place Cooley-Tukey ver-
sion for the inverse transforms. This allows for a convolution algorithm where no

604 Sverker Holmgren and Dan Wallin

1. FFTs of the columns 2. FFTs of the rows 3. Pointwise multiplication 4. FFTs of the rows 5. FFTs of the columns

Fig. 1. A single convolution computation for a 2D problem

bit-reversal permutations are required. This is important, since the bit-reversal
permutation introduces a lot of communication, and affects the performance sig-
nificantly. Also, the FFTs should be performed in situ. If workspace is used, the
maximal number of grid points is reduced, leading to a less resolved solution.

3 A Self-Optimizing cc-NUMA Architecture

The Sun WildFire system [5] is a prototype architecture developed to evaluate
a scalable alternative to symmetric multiprocessors (SMPs). WildFire can be
viewed as a cc-NUMA system with self-optimizing features, built from unusually
large SMP nodes. Up to four nodes, each with up to 28 CPUs, can be directly
connected by a point-to-point network between the WildFire Interfaces (WFI)
in each node.
The experiments presented in this paper have been performed on the two-

node WildFire system Albireo at the Department of Scientific Computing, Up-
psala University. Each node has 16 processors (250 MHz UltraSPARC II with 4
Mbyte L2 cache) and 4 Gbyte memory. Logically, there is no difference between
accessing local and remote memory, even though the access time varies: 310ns
for local and 1700ns for remote memory. Coherence between all the 32 caches
is maintained in hardware, which creates an illusion of a system with 8 Gbyte
shared memory.
In order to ease the burden on the programmer, different forms of optimiza-

tion are supported by the system. A software daemon detects pages which have
been placed in the wrong node and migrates them to the other node. The dae-
mon also detects pages used by threads in both nodes and replicates them. Wild-
Fire’s cache coherence protocol keeps the coherence between replicated memory
pages with a cache line granularity. This is called Coherent Memory Replication
(CMR), but the technique is also sometimes referred to as Simple COMA (S-
COMA) [4]. The maximal number of replicated pages as well as other parameters
in the page migration and CMR algorithms may be altered by modifying system
parameters.
The codes were written in Fortran 90 using double precision complex (16

byte) data. The program was compiled and parallelized using the Sun Forte 6.1
compiler employing OpenMP-directives. In OpenMP, we use the default static
scheduling. The experiments were performed on a lightly loaded system.

PDE Solvers on a Self-Optimizing Architecture 605

On WildFire, allocation of data uses a first-touch policy. The allocate state-
ment reserves virtual address space, and the physical memory is allocated on the
node where the thread first touching the data resides. The threads normally stay
on the processor they are spawned at. The default WildFire scheduling policy
is to, if possible, confine the threads to a single node. Only if the number of
threads is larger than the number of processors in the first node, threads are
spawned also on the other node. The compiler does not support memory place-
ment directives. However, data distribution can be achieved by using a system
call to bind the threads to a specific node and utilize the first-touch policy. Data
placement should therefore be carried out within a parallel region to achieve a
beneficial allocation.
If both page migration and CMR are disabled, the code will run in pure

cc-NUMA mode. We have used the configurations listed below. Here, thread
matched allocation means that the data is allocated such that the FFTs in
phase 1 can be computed without introducing any remote accesses:

1. Single node SMP - Data is allocated on one node. The threads are bound
to the same node. Migration and replication is turned off.

2. Single node allocation WildFire - Data is allocated on one node. The
threads are not bound, and the WildFire default scheduling algorithm is
used. Migration and replication is turned on.

3. Thread-matched allocation WildFire - Data is allocated using thread
matching. The threads are not bound, and the WildFire default scheduling
algorithm is used. Migration and replication is turned on.

4. Single node allocation balanced WildFire - Data is allocated on one
node. The threads are evenly distributed between the two nodes and bound.
Migration and replication is turned on.

5. Thread-matched allocation balanced WildFire - Data is allocated us-
ing thread matching. The threads are evenly distributed between the two
nodes and bound. Migration and replication is turned on.

6. Single node allocation balanced cc-NUMA - Data is allocated on one
node. The threads are evenly distributed between the nodes and bound.
Migration and replication is turned off.

7. Thread-matched allocation balanced cc-NUMA - Data is allocated
using thread matching. The threads are evenly distributed between the nodes
and bound. Migration and replication is turned off.

4 Parallelization of the Pseudospectral Solver Kernel

As seen in Figure 1, the 1D FFTs in the convolution algorithm are first carried
out for the columns of the data matrix, and then for the rows. For large number
of grid points, experiments show that applying the FFTs directly to the matrix
rows is not efficient. Using this type of implementation leads to extremely poor
cache utilization, and the performance and speedup for large problems is not
acceptable. If the threads reside in both nodes, optimizations like page migration
and CMR are not able to detect and adapt to the changing access pattern fast

606 Sverker Holmgren and Dan Wallin

enough, and in practice almost no migration/replication occurs. Hence, a large
amount of remote accesses further degrades the performance.
To improve cache utilization and to allow for more efficient communication

between the nodes, our experiments show that a better scheme is to explicitly
transpose the data matrix, and again apply the FFTs to matrix columns. After
applying the 1D FFTs in one direction, FFTs in the other direction should be
computed. If the threads reside on more than one SMP node, some data will
always be located on a remote node when the transpose is performed. On a
two-node system with evenly distributed data, the lower left and the upper right
matrix blocks will have to be exchanged between the nodes in the transpose
operation, see Figure 2. Half of the data matrix will bounce back and forth

z1 z3

z2 z4

n

n

Fig. 2. The n×n matrix z consists of the blocks z1, z2, z3 and z4. If the data is
evenly distributed between the two SMP nodes, the z2 and z3 block will travel
across the WFI when the matrix transpose is applied

between the two nodes, still causing a large amount of communication over the
WFI. In our implementation, the parallel transpose operation is performed using
the ZTRANS routine in the Sun Performance Library.

5 Impact of Migration and Replication

The time per iteration for the PDE solver kernel for several configurations using
24 threads is shown in Figure 3(a).
The performance results for the finite difference algorithm presented in [9] are

derived using the single node allocation WildFire configuration (2). Using the
same setting, the results for the pseudospectral solver kernel are similar. There
is a significant decrease of the time per iteration during the first 6-7 iterations,
and then the curve levels out. The WildFire optimizations move/replicate data
from the remote to the local node, and remote accesses become more and more
rare. Hence, the time per iteration decreases to a steady-state. Further investi-
gation shows that the amount of replicated pages is small. The number of pages
migrated is large at the beginning but decreases over time. The same phenom-
ena is also present for the single node allocation WildFire with balanced thread
scheduling (4), but here the initial time per iteration is shorter. The reason could
be that, when all processors on a single node are computing as in configuration

PDE Solvers on a Self-Optimizing Architecture 607

0 5 10 15 20 25 30
2

2.5

3

3.5

4

4.5

iteration number

ite
ra

tio
n

tim
e

(s
ec

)

(2) Single node allocation WildFire
(3) Thread−matched allocation WildFire
(4) Single node allocation balanced WildFire
(6) Single node allocation balanced cc−NUMA
(7) Thread−matched allocation balanced cc−NUMA

(a) Iteration times for the first iter-
ations on different computer config-
urations.

0 10 20 30 40 50 60 70 80
2

2.2

2.4

2.6

2.8

3

3.2

iteration number

ite
ra

tio
n

tim
e

(s
ec

)

no migration or replication
replication
migration
migration and replication

(b) Iteration times for the single
node allocation balanced configura-
tions.

Fig. 3. Results for a 2048× 2048 grid using 24 threads

(2), the bus is heavily loaded in this node, and the bandwidth available for page
migration will be small. The page migration daemon will suffer from this, and
the migrating pages will be unaccessable for a longer time.
Using all the threads in a single node for computations leads to large variation

in iteration times, probably because activities of other users stall the computa-
tions. This is most apparent in the WildFire configurations with the default
scheduling policy (2,3).
For the other configurations shown in Figure 3(a), the behavior is different.

The first iteration takes longer time, but after this, a steady-state is immedi-
ately reached. Here, the relatively slow first iteration can be explained by cache
effects. For the cc-NUMA configurations (6) and (7) the result is natural, since
the adaptive optimizations are shut off. For the single node allocation balanced
cc-NUMA configuration (6), one of the nodes perform exclusively remote ac-
cesses, leading to unbalanced execution times and a significantly larger time per
iteration in steady-state.
The performance is almost the same for the thread-matched allocation Wild-

Fire (3) and cc-NUMA configurations (7). The memory is initially optimally
placed for the first FFT, and in the matrix transpose a minimal amount of com-
munication takes place. The WildFire optimizations are not activated, but it is
also clear that they do not introduce any performance degradation.
Figure 3(b) shows an interesting, but not yet fully understood, result. Here,

the single node allocation WildFire (4) configuration has been tested with differ-
ent optimization strategies. With no migration and replication, the configuration
is equivalent to the cc-NUMA case (6). The default setting is to enable both op-
timizations. Interestingly, the best results are achieved when only migration is
enabled, and similar results have been observed also for a number of different
problem sizes.

608 Sverker Holmgren and Dan Wallin

6 Speedup

Speedup results for a 2048 × 2048 grid are shown for a number of different
configurations in Figure 4. The graphs show the average time per iteration when
steady-state has been reached, c.f. Section 5. The results are normalized by the
execution time of a single thread.
In general, the results are remarkably good. As mentioned before, the al-

gorithm uses global operations, and involves heavy communication. The single
node SMP (1) and the WildFire configurations using the standard scheduling
policy (2,3) show very similar behavior up to about 14 threads. This is natural,
since for these cases only one SMP node is involved in the computations. For 16
threads, the first SMP node is filled, and for the WildFire configurations (2,3),
it is possible that one of the threads have been moved by the OS scheduler to
the other (almost idle) SMP node. This is not possible for the SMP configura-
tion (1), where the threads are bound to a single node. Again, the problem of
computing on a filled SMP node results in a degradation of performance.
There is a short plateau in the speedup curve around 16 threads for the

WildFire configurations (2,3). Here, the threads begin to be spawned on the other
SMP node. For the balanced configurations (5,7), there is a more even growth in
speedup as the number of threads is increased. The amount of communication
causing remote accesses is constant, which should result in a smooth speedup
curve. The communication results in that it is favorable to use the default thread
scheduling, compared to spawning the threads in a balanced way on the two
nodes.
The speedup is considerably smaller for the single node allocation cc-NUMA

configuration (6) than for the other configurations. The reason is again that a
large amount of remote accesses are being performed by threads in one of the
nodes.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

number of threads

sp
ee

du
p

Reference
(1) Single node SMP
(2) Single node allocation WildFire
(3) Thread−matched allocation WildFire

0 5 10 15 20 25 30
0

5

10

15

20

25

30

number of threads

sp
ee

du
p

Reference
(5) Thread−matched allocation balanced WildFire
(6) Single node allocation balanced cc−NUMA
(7) Thread−matched allocation balanced cc−NUMA

Fig. 4. The speedup for different configurations, compared to the execution time
of a single thread. The grid size is 2048× 2048

PDE Solvers on a Self-Optimizing Architecture 609

7 Impact of Problem Size

For the single node allocation WildFire configurations, we find that the number
of iterations performed before steady-state is reached grows as the number of
grid points is increased. This result is consistent with the results in [9].
As seen in Figure 5, there is no performance gain in using more than one

SMP node for a small problem. However, as the problem size grows, the slope
of the speedup curve once again approaches the ideal speedup ratio when the
“WildFire-plateau” mentioned in Section 6 has been passed. For a very large
grid, possibly more than two dimensions, the performance gain from using more
than one SMP node will be large. Note that, for such problems, the memory of
the additional SMP nodes will probably also be needed.

8 Conclusions

The pseudospectral solver kernel is an example of a non-trivial algorithm with
heavy communication. The parallelization on the WildFire system is surpris-
ingly successful; Using 28 OpenMP threads distributed over two SMP nodes,
the speedup is approximately 21. For problems of interest in applications, the
number of grid points will be even larger than used in the experiments, and the
performance will probably be further improved.
The WildFire system will perform page migration if the initial distribution

of data over the SMP nodes is not optimal. After some iterations, a steady-state
is reached where no further migration occurs. For all configurations where the
data is optimally distributed in steady-state, the difference in performance is
very small. The WildFire migration optimization makes up for programming
errors and/or deficiencies in the programming model, without introducing a
performance loss when the data is optimally placed from the beginning. Note
that, if the data is allocated on only one of the nodes and the optimizations are
disabled, i.e. the code is executed in pure cc-NUMA mode (configuration 6), the
performance is significantly reduced.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

number of threads

sp
ee

du
p

Reference
512 x 512
1024 x 1024
2048 x 2048

Fig. 5. Thread-matched WildFire configuration (3) speedups

610 Sverker Holmgren and Dan Wallin

The WildFire system using the default configuration exhibits a typical speed-
up behavior for a problem involving communication, e.g. the pseudospectral
solver kernel: Until the number of threads is almost equal to the number of
processors in an SMP node, the performance is identical to that of the SMP.
When the number of threads is further increased, there is a short plateau in the
speedup curve before it starts to grow again. If the problem is large enough, the
slope of the speedup curve will again be close to optimal.
The speedup curve becomes smoother using a balanced thread scheduling

policy. For the pseudospectral solver this implies a small performance loss when
the number of threads is small, because of the large amount of communication
over the WFI. However, distributing the threads in a balanced way over the
SMP nodes might yield improved performance for a memory bound algorithm
with a small amount of communication.
Note that the initial distribution of data has a large effect on the execution

time if the convolution in the pseudospectral solver is only performed a small
number of times. The goal of algorithm improvements, e.g. preconditioning, is
to reduce the number of iterations in the computational scheme. It is important
to make sure that the data is optimally distributed from the beginning if only a
few iterations are required. There is currently discussion whether directives for
data distribution should be included in OpenMP [8,1]. Data placement can be
achieved without such directives on the WildFire system using the first-touch
scheduling policy. In certain cases, when data can not be accessed within a
parallel region, e.g. file I/O, data distribution directives would be useful.

References

1. Bircsak J. et al., Extending OpenMP for NUMA Machines, Proceedings of Super-
computing 2000. 610

2. Falsafi M., Wood D. A., Reactive NUMA: A Design for Unifying S-COMA with
CC-NUMA, Proceedings of ACM/IEEE International Symposium on Computer
Architecture 1997.

3. Frigo M., Johnson S. G., FFTW: An Adaptive Software Architecture for the FFT,
1998 ICASSP proceedings (vol. 3, p. 1381). 603

4. Hagersten E., Saulsbury A., Landin A, Simple COMA Node Implementations, Pro-
ceedings of Hawaii International Conference on System Science, 1994. 604

5. Hagersten E., Koster M., WildFire: A Scalable Path for SMPs, Proceedings of 5th
International Symposium on High-Performance Architecture, 1999. 604

6. Lenoski D. E., Weber W. D., Scalable shared-memory multiprocessing, Morgan
Kaufmann publishers, 1995. 603

7. van Loan C., Computational Frameworks for the Fast Fourier Transform, Society
for Industrial and Applied Mathematics, Philadelphia, 1992. 603

8. Nikolopoulo D. S. et al., Is Data Distribution Necessary in OpenMP?, Proceedings
of Supercomputing 2000. 610

9. Noordergraaf L., van der Pas R., Performance Experiences on Sun’s WildFire Pro-
totype, Proceedings of Supercomputing 99, 1999. 603, 606, 609

10. Fornberg F., A Practical Guide to Pseudospectral Methods, Cambridge University
Press, 1998. 603

	Performance of High-Accuracy PDE Solvers on a Self-Optimizing NUMA Architecture
	Introduction
	A Generic PDE Solver Using a Pseudospectral Method
	A Self-Optimizing cc-NUMA Architecture
	Parallelization of the Pseudospectral Solver Kernel
	Impact of Migration and Replication
	Speedup
	Impact of Problem Size
	Conclusions

