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Abstract. The performance of shared-memory (OpenMP) implementa-
tions of three different PDE solver kernels representing finite difference
methods, finite volume methods, and spectral methods has been investi-
gated. The experiments have been performed on a self-optimizing NUMA
system, the Sun Orange prototype, using different data placement and
thread scheduling strategies. The results show that correct data place-
ment is very important for the performance for all solvers. However, the
Orange system has a unique capababilty of automatically changing the
data distribution at run time through both migration and replication of
data. For reasonable large PDE problems, we find that the time to do
this is negligible compared to the total solve time. Also, the performance
after the migration and replication process has reached steady-state is
the same as what is achieved if data is optimally placed at the begin-
ning of the execution using hand tuning. This shows that, for the ap-
plication studied, the self-optimizing features are successful, and shared
memory code without explicit data distribution directives yields good
performance.

1 Introduction

Many important phenomena in nature are modeled by partial differential equa-
tions (PDEs). For example, such equations describe flow of fluids and gases,
and propagation of electromagnetic and sound waves. Also, PDEs arise in many
other application areas ranging from chemistry to economics. The equations are
often impossible to solve analytically and numerical solution methods must be
employed. The discretizations used can mainly be categorized into three groups;
finite difference methods, finite element/volume methods, and spectral methods.
Finite difference methods normally employ structured discretizations of the do-
main while finite element/volume methods are often used for unstructured grids.
Spectral methods can only be applied for specific combinations of geometries
and boundary conditions, and use global operations such as Fourier transforms
to approximate the spatial derivatives.

In realistic settings, the numerical solution of PDEs requires large-scale com-
putation. The computations are often carried out on parallel computers. Re-
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cently, cc-NUMA (cache coherent non-uniform memory access) parallel comput-
ers with OpenMP as a programming model has gained in popularity. In this
paper, we will evaluate how different PDE solvers perform on a self-optimizing
cc-NUMA architecture built from SMP nodes. A similar investigation has earlier
been performed for a simple finite difference solver kernel [9]. We compare three
more complex PDE solver kernels, representing realistic problems, to investigate
both the performance and the effects of automatic optimization strategies such
as migration and replication.

2 Generic PDE solvers

We have chosen three different numerical kernels representing the three types of
numerical methods used for solving PDEs; a finite difference method for solving
the non-linear Euler equations (gas flow), a finite volume method for solving
Maxwell’s equations (electromagnetic wave propagation), and a pseudospectral
method for solving the time-dependent Schrödinger equation (ab-initio modeling
of chemical reactions).

2.1 Finite difference solver

The finite difference kernel solves the time-dependent Euler equations in a three
dimensional orthogonal curvilinear coordinate system. The geometry is discretized
with a structured grid and spatial derivatives are approximated by central dif-
ference operators, including realistic artificial viscosity. Further details on the
discretization are given in [2].

Since we are using a curvilinear grid, the coefficients in the finite difference
stencil will vary over the grid. Furthermore, the Euler equations are non-linear
and the stencil coefficients depend on the solution. Thus, the operator coefficients
have to be recomputed at every time step. However, the structure of the stencil
is the same all over the grid. For the time-stepping, a standard Runge-Kutta
scheme is used.

2.2 Finite volume solver

The finite volume kernel for the Maxwell equations is based on the integral
formulations of Faraday’s and Ampère’s laws. The three dimensional geometry
is discretized with an unstructured staggered grid using tetrahedrons in the
primary grid, generated by a Delaunay grid algorithm. The time derivatives are
approximated with an explicit time-stepping scheme, the third-order Adams-
Bashforth method. The update of the field variables is performed as matrix-
vector and vector-vector operations, where the matrices are stored in compress
sparse row format. For further details on the solver see [3]. The application relates
to an aircraft where the surface currents are computed after an electro-magnetic
pulse hits the nose, see Figure 1.
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Fig. 1. Cross-section of the unstructured grid around a model aircraft used in the finite
volume solver.

2.3 Pseudospectral solver

In the kernel of the pseudospectral method for the time-dependent, two-dimensional
Schrödinger equation, the computation of the spatial derivatives is performed
within a standard second order accurate split-operator time-marching procedure.
Further details on the scheme are given in, for example, [6]. The computation
consists of a convolution, i.e. a transform to frequency space, a local multiplica-
tion, and an inverse transform [10]. The grid is uniform, and the FFT is used for
the transforms, resulting in O(n2 log2 n) arithmetic complexity for a grid with
n2 grid points.

The standard implementation of a 2D FFT is first to perform 1D FFTs for
all the columns in the data matrix, and then do the same for all the rows.
In a convolution computation, this results in a five-stage scheme illustrated in
Figure 2.

1. FFTs of the columns 2. FFTs of the rows 3. Pointwise multiplication 4. FFTs of the rows 5. FFTs of the columns

Fig. 2. A single convolution computation for a 2D problem.
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In general, it is sufficient to study 2D problems to gain insight into the
performances for multi-dimensional pseudospectral solvers, since the FFTs for
the extra dimensions will be performed locally.

In Figure 2, each arrow represents a 1D FFT. For a vector of length n,
this is a log2 n-stage computation involving a rather complex but structured
communication pattern. A number of different FFT algorithms are available,
for a review see, for example, [7]. In the experiments presented here, we use an
in-place radix-2 Gentleman-Sande version of the FFT, and an in-place radix-2
Cooley-Tukey version for the inverse transforms. This allows for a convolution
algorithm where no bit-reversal permutations are required. This is important,
since the bit-reversal permutation introduces a lot of communication, which
affects the performance considerably. Also, the FFTs should be performed in
situ. If workspace is used, the maximal number of grid points is reduced leading
to a less accurate solution of the Schrödinger equation.

3 A self-optimizing cc-NUMA architecture

The Sun Orange system [5] is a prototype architecture developed to evaluate
a scalable alternative to symmetric multiprocessors (SMPs). The system can
be viewed as a cc-NUMA computer with self-optimizing features, built from
unusually large SMP nodes. Up to four nodes, each with up to 28 CPUs, can be
directly connected by a point-to-point network between the Orange Interfaces
(OI) in each node.

The experiments presented in this paper have been performed on the two-
node Orange system at the Department of Scientific Computing, Uppsala Uni-
versity. Each node has 16 processors (250 MHz UltraSPARC II with 4 Mbyte L2
cache) and 4 Gbyte memory. Logically, there is no difference between accessing
local and remote memory, even though the access time varies: 310 ns for local and
1700 ns for remote memory. Coherence between all the 32 caches is maintained
in hardware, which creates an illusion of a system with 8 Gbyte shared memory.
The processors are by now one generation old, but the modern self-optimization
features built into the system are not found in any current commercially avail-
able system. We regard the Orange system as a prototype for a kind of parallel
computer architecture of the future. Furthermore, it is reasonable to assume that
the relations between processor, memory and interconnect speeds in such future
systems will be similar to those of the Orange system, implying that the results
presented below will remain relevant.

On a cc-NUMA system, an application could be optimized by explicitly plac-
ing data in the node where it is most likely to be accessed. In order to ease the
burden on the programmer, different forms of optimization may be supported by
the system. For example, on SGI Origin systems, pages may be migrated to the
node where they are used by a page migration daemon. On the Orange system, a
similar software daemon also detects pages which have been placed in the wrong
node and migrates them to the correct node. However, the Orange daemon uses
other algorithms for detecting candidate pages for migration. Furthermore, the
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Orange system also detects which pages are used by threads in both nodes and
replicates them, hereby avoiding ping-pong effects. The cache coherence pro-
tocol maintains the coherence between replicated memory pages with a cache
line granularity. This is called Coherent Memory Replication (CMR), but the
technique is also sometimes referred to as Simple COMA (S-COMA) [4]. The
maximum number of replicated pages as well as other parameters in the page
migration and CMR algorithms may be altered by modifying system parameters.

4 Orange configurations

On the Orange system, allocation of data uses a first-touch policy. The allocate
statement reserves virtual address space, and the physical memory is allocated
on the node where the thread first touching the data resides.

The default thread scheduling policy is, if possible, to confine the threads
to a single node. Only if the number of threads is larger than the number of
processors in the first node are threads spawned on the other node. The threads
normally stay on the processor they are spawned on. Threads can be explicitly
bound to a specific SMP node using a system call. By employing the first-touch
policy and thread binding, it is possible to examine the performance effects of
where threads are spawned and where the data is initially placed. If both page
migration and CMR are disabled, the code will run in pure cc-NUMA mode.

The configurations in table 1 have been tested. Here, memory can be either
thread matched (TM) or single node (SN) allocated. In the thread matched allo-
cation, data is allocated on the node where each thread resides. Single node allo-
cation locates all data on one of the nodes. The threads can either be bound to a
specific node or be unbound, whereas the Orange system uses its default schedul-
ing policy. In the case of bound threads, the threads are evenly distributed be-
tween the two nodes. Different optimization strategies have been used; enabling
migration and replication (m/r), enabling migration (mig), enabling replication
(rep) and disabling both migration and replication.

Table 1. Orange configurations

Configuration 1 2 3 4 5 6 7 8 9
Allocation of memory SN SN TM SN TM SN TM SN SN

Bound threads - no no yes yes yes yes yes yes
Optimization off m/r m/r m/r m/r off off rep mig

Configuration 1 corresponds to a single SMP server, where the number of
threads is limited to 16 in our experiments. Configurations 2 and 3 represent the
default system configuration differing only in the memory allocation; either data
is initialized serially (Configuration 2) or data is initialized in parallel (Configu-
ration 3). Configurations 4-9 all have bound threads where the load is balanced
between the two nodes, but use different memory allocation and optimization
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strategies. Configurations 6 and 7 represent pure cc-NUMA systems, one with
an unfavorable (6) and one with optimal (7) memory allocation. Configurations
4, 6, 8 and 9 differ only in the self-optimization strategies that are enabled.

5 Parallelization of the PDE solvers

The parallel codes for the solvers are written in Fortran 90 using double pre-
cision data (complex data for the pseudospectral solver). The programs were
compiled and parallelized using the Sun Forte 6.2 early access 2 compiler em-
ploying OpenMP-directives. The experiments were performed on a dedicated
system, measuring wall-clock timings.

5.1 Parallelization of the finite difference solver

The kernel of the finite difference solver consists of three nested loops that tra-
verse the grid. At each grid point the operator is constructed and applied. The
loops are located within a parallel region and the outermost loop is parallelized
with an OpenMP-directive using static scheduling. This implies that the do-
main is divided into stripes, with each thread always updating the solution in
the same subdomain. Furthermore, since finite difference stencils are local op-
erators, the need for communication between different subdomains is limited to
the subdomain boundary points.

5.2 Parallelization of the finite volume solver

The kernel of the computations consists of matrix-vector products. The matrices
are constructed once in a serial section of the code. Consequently, we can only use
the single node allocation configurations. All of the matrix-vector products are
parallelized at loop-level within a single parallel region, using static scheduling
over the rows. The matrices are unstructured, and the workload varies between
the rows. However, the load imbalance is very small for large problems. Use
of dynamic scheduling only marginally improves the performance for the SMP
configuration 1. If the self-optimizing features are enabled, dynamic scheduling
makes it impossible for the software daemon to recognize pages for migration
and replication since the data access pattern changes between iterations. The
communication is irregular and depends on the numbering of the nodes. No
effort is made to renumber the nodes in a more favorable way.

5.3 Parallelization of the pseudospectral solver

The FFTs in the pseudospectral solver kernel are first performed for the columns
in the matrix and then for the rows. Cache utilization becomes extremely poor
for large problems if the algorithm is applied directly to the rows. Instead, a more
efficient implementation is employed, where the matrix is transposed in parallel
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Fig. 3. The n×n matrix z consists of the blocks z1, z2, z3 and z4. If the data is evenly
distributed between the two SMP nodes, the z2 and z3 blocks will travel across the
Orange interface when the matrix transpose is applied.

before applying the FFTs. The algorithm is parallelized using OpenMP by di-
viding the columns of the matrix between the threads. The FFTs are computed
internally in each thread.

On a two-node system with evenly distributed data, the transpose operation
leads to an exchange of data located in the upper right matrix block and the
lower left matrix block between the nodes, see Figure 3. Because of the matrix
transposes the pseudospectral solver has the densest communication requirement
of the three PDE solvers.

6 Impact of migration and replication

The impact of migration and replication on performance for the three solvers is
summarized in Figures 4, 5 and 6. In order to show the behavior over time, iter-
ation time is plotted versus iteration number. The codes were executed using 24
threads and run long enough to reach a steady-state iteration time. The problem
sizes were chosen to yield steady state iteration times of the same magnitude for
the three solvers.

The finite difference and pseudospectral solvers show similar iteration times
for the thread matched memory allocation configurations 3, 5 and 7. These
configurations achieve a steady-state iteration time after only the first iteration.
The memory has optimal placement from the onset. Balanced distribution of
the threads between the nodes does not appear to influence the iteration time
significantly. The bus utilization on a single SMP can therefore be expected to
be low.

All configurations with single node memory allocation and enabled Orange
optimizations - Configurations 2, 4, 8 and 9 - show decreasing iteration time
during the first iterations. During that time, memory is either migrated or repli-
cated in order to reach a more beneficial placement on the nodes. The finite
difference solver takes the longest time to reach a steady-state due to its large
problem size. Configuration 6, representing a pure cc-NUMA system, introduces
many more remote accesses due to a disadvantageous memory placement and
exhibits significantly worse performance.
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Using all available processors on a single node for computation leads to large
variations in iteration times, probably because activities of other processes exe-
cuted by the operating system stall the computation. This is most apparent in
Configuration 2.

For the finite difference solver, Configuration 4 takes approximately 50 per-
cent longer than Configuration 2 to reach steady-state. This is due to the fact
that for Configuration 2, only 8 of the 24 threads run in the node where data is
not initially placed, whereas for Configuration 4 there are 12 threads running in
each node. Since each thread uses a fixed amount of data, there will be 50 percent
more memory pages that have to migrate in configuration 4 than in Configu-
ration 2. This accounts for the increase in time needed to reach a steady-state
iteration time.

Subfigures 4(b), 5(b) and 6(b) shows the different optimization strategies for
the PDE solvers. It is apparent that Configuration 8, which implements pure
memory replication, is the quickest to reach a steady-state iteration time for
the finite difference and finite volume solvers. The pseudospectral solver has a
more complex communication scheme and the effect here is less pronounced.
This phenomenon is described in [9] and is due to the implementation of the
migration and replication techniques. When a page is to be migrated from one
node to another, a whole page (8192 bytes) must be copied. If the page is instead
replicated, the replication takes place on a cache-line (64 bytes) basis, thereby
preventing unnecessary copying. Another advantage with replication compared
to migration is that it lets the optimization daemon (see section 3) work more
efficiently. Since the daemon is only allowed to run intermittently, it will be able
to mark more pages for replication if it does not have to copy pages too. On the
other hand, using replication is more memory consuming. Instead of migrating
a page from one node to another thereby using the same amount of memory,
replicating the page will require twice as much memory.

In Table 2 the number of migrated and replicated pages are presented for the
different optimization strategies after the configurations have reached steady-
state iteration times. The finite difference and finite volume solvers primarily
migrate pages in Configuration 4 where both migration and replication are en-
abled. The pseudospectral solver invokes comparably more replication. For the
pseudospectral solver the number of replicated pages continues to grow also af-
ter a steady-state iteration time has been reached. All data in the bottom right
corner of the matrix in Figure 3 is well suited for migration, whereas the data in
the top right corner and bottom left corner have a more complex behavior and
the Orange system employs both migration and replication.

7 Speedup

Figure 7 presents measurements of the speedup for the three different solvers. We
show the speedup of the time per iteration when steady-state has been reached,
i.e., after a large number of iterations (c.f. Figures 4, 5 and 6).
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Fig. 4. Iteration times for the finite difference solver



10 Holmgren, Nordén, Rantakokko, Wallin

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

1.1

Iteration number

Ite
ra

tio
n 

tim
e 

(s
ec

)

Configuration 2
Configuration 4

(a) Configurations 2 and 4

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

1.1

Iteration number

Ite
ra

tio
n 

tim
e 

(s
ec

)

Configuration 4
Configuration 6
Configuration 8
Configuration 9

(b) Configurations 4,6,8 and 9

Fig. 5. Iteration times for the finite volume solver
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Fig. 6. Iteration times for the pseudospectral solver
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Table 2. Iteration time, number of migrated and replicated pages for the PDE solvers.

Configuration Iter Time # Migrs # Repls

4 1.249 79179 149
8 1.267 N/A 79325
9 1.264 79327 N/A

(a) Finite difference solver

Configuration Iter Time # Migrs # Repls

4 0.562 50087 401
8 0.552 N/A 10418
9 0.649 49860 N/A

(b) Finite volume solver

Configuration Iter Time # Migrs # Repls

4 1.06 6495 1794
8 1.04 N/A 8422
9 1.12 7455 N/A

(c) Pseudospectral solver

The finite difference solver shows an almost perfect speedup except for Con-
figuration 6, where data is allocated on one node and replication/migration is
disabled. Large amounts of data must then be communicated over the Orange
interface in each iteration, since it resides on the remote node. With optimal data
placement (thread matched allocation or steady-state of migration and replica-
tion) only boundary values between subdomains have to be communicated. This
yields a very high ratio of computations per communication resulting in linear
speedup for configurations 1-5 and 7.

In the pseudospectral solver we use global transposes of the data resulting in
a lot of data movements. The single node SMP (configuration 1) and the Orange
configurations using the standard scheduling policy (2,3) show very good scaling
up to 14 threads. This is because all threads are scheduled to the same node and
no explicit data movements are necessary. Above 16 threads we get scheduling on
both nodes and communication over the Orange interconnect. This explains the
drop in the performance in Subfigure 7(c). For the balanced configurations (4-7),
there is a more even growth in speedup as the number of threads is increased. The
amount of communication caused by remote accesses is constant, which should
result in a smooth speedup. For configuration 6 we have the largest amount of
remote accesses, resulting in poor speedup.
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Fig. 7. Speedup curves for the PDE solvers

The unstructured finite volume solver has very irregular data dependencies
making it difficult to optimize for loop-level parallelism. We get a lot of remote
memory accesses when running on two nodes but also a high number of cache
misses within the nodes. The speedup results are similar to the pseudospectral
solver, but somewhat lower. We get the best performance running on a single
SMP node. When scheduling threads on two nodes the performance drops due
to the high number of remote memory accesses.

Problem size influences the speedup behavior depending on the amount of
communication needed in each PDE solver. The communication/computation
ratio decreases for larger problems, leading to improved speedup.
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8 Conclusions

We have evaluated the performance of three different numerical kernels, rep-
resenting three types of numerical methods for solving PDEs; finite difference
methods, finite volume (element) methods, and spectral methods, on a self-
optimizing cc-NUMA architecture. The codes were written in Fortran 90 and
parallelized with OpenMP. We have experimented with different settings of data
placement, thread binding, and page migration/replication.

For the finite difference method it is easiest to get good scaling because of the
structured data and nearest neighbor dependencies. For large enough problems
all methods will scale well. To get good scaling on a NUMA system, data place-
ment is very important. This was discussed at SC2000 [1, 8]. On the Sun Orange
system data distribution can be achieved with thread matched allocation, i.e.
data is allocated on the node where the thread first touching the data is resid-
ing, or by letting a software daemon detect pages that are placed on the wrong
node and migrate or replicate them. The experiments show that migration and
replication of pages gives performance equal to the case where the pages were
placed optimally from the beginning.

For the finite volume solver the time to migrate and replicate the pages is
negligible compared to total time to solve the problem. The iteration time has
levelled out, i.e. the migration and replication process has reached steady-state,
within 100 iterations while the solver needs about 15000 iterations to compute
the solution. Thread matched allocation is very difficult to achieve in the finite
volume solver as the initialization and solver phases use completely different data
access patterns. Without extensive restructuring of the code, data would be un-
favorably distributed between the nodes. Also, data distribution directives would
not help as it is impossible to know in advance the optimal page placements,
unless the code is parallelized in MPI like fashion with different nodes respon-
sible for different domains. Again, this would require extensive restructuring of
the code.

A common feature of all three kernels is that they repeatedly access the same
data set in an iterative numerical scheme. Many identical iterations allow the self-
optimizing features to migrate and replicate pages in an optimal way. For PDE
solvers where adaptive mesh refinement is employed, the sizes of the grids and the
data partitioning changes during execution. For such solvers, different advanced
load-balancing and re-partitioning software techniques have been developed, see
for example [11]. A topic for future research is to examine the performance
of self-optimizing systems also for problems with dynamically changing data
structures. If good performance is achieved also here, this would greatly simplify
the implementation of adaptive PDE solvers.
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