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Abstract

The behavior of the memory hierarchy is key to high performance
in today’s GHz microprocessors. The cache level closest to the pro-
cessor is limited in size and associativity in order to match the short
cycle time of the CPU. Even though only data objects reused soon
again will benefit from the small cache, all accessed data objects are
normally allocated in the cache.

In this paper we demonstrate how an “optimal” selective alloca-
tion algorithms, based on knowledge about the future, can drastically
increase the effectiveness of a cache. The effectiveness is further en-
hanced if the allocation candidates are temporarily held in a small
staging cache before making the allocation decision. We also present
an implementable selective allocation algorithm based on knowledge
about the past (RASCAL) which measures re-use distance in the new
time unit Cache Allocation Ticks, CAT. CAT is shown to be a fairly
accurate and application-independent way of detecting good allocation
candidates.

0.1 Introduction

Cache systems are designed to minimize the average access time for mem-
ory references. Uniprocessor cache misses can be classified into the three
categories: conflict, compulsory and capacity misses [Hil87]. The amount
of conflict misses can be reduced by a more associative cache, or by the
introduction of a victim cache [Jou90]. Larger cache lines and a number of
prefetching algorithms have been proposed to reduce compulsory misses,
while the conventional approach for reducing capacity misses is simply to
increase the size of the cache - a brute force approach often enabled by
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a manufacturing process shrink. However, at the lower levels of the cache
hierarchy, a larger cache may not be feasible, since the cache size can be
limited by the speed requirements of the CPU. The access time of the L1
is often tied to the pipeline architecture such that a larger and slower L1
cache would effectively slow down the CPU pipeline.

The introduction of the VIPT, Virtually Indexed Physically Tagged,
scheme [WBL89], that removes the TLB lookup from the critical path, also
limits the cache size. Aliasing problems arise if the L1 cache size is larger
than the page size.! Sometimes this is circumvented by a more associative
cache, but there is also a limit to the degree of associativity achievable
in the fast L1. Agarwal et al. predict that due to advances in chip tech-
nology the CPU performance will be bound by communication constraints
rather than by capacity limitations [AHKBOQO]. They predict the number of
SRAM bits reachable in one CPU cycle to decrease over time — yet another
negative impact for the L1 cache size. Chip Multiprocessors (CMP) with
several CPUs, each with its own L1 cache, sharing the same die is another
reason to keep the L1 caches small.

We conclude that the first-level caches are likely to remain small relative
to the active working set of most applications and that selective cache
allocation should be studied. By a more selective L1 allocation, the data
objects well suited for the L1 cache will reside longer in the L1 cache. This
will increase the effective cache size of the L1 cache and remove some of
the capacity misses.

The contributions of this paper is three-fold:

o We suggest streaming the data through a small staging cache before
deciding about the L1 allocation and demonstrate its effect on an
optimal allocation algorithm.

o We suggest a new time-stamp based allocation algorithm based on
the new time unit cache allocation ticks, CAT.

o We compare three different implementation options for selective cache
allocation.

The rest of this paper is outlined as follows. First, we discuss different
selective allocation schemes and discuss their advantages and drawbacks.
Secondly, we evaluate the ”optimal” allocation algorithm and show how
a small staging cache can drastically improve its effectiveness. We then
propose the new timestamp based algorithm, RASCAL. Finally we propose
a feasible implementation of the algorithm and compare it’s performance
to some of the other algorithms presented.

!Some computer vendors employ restrictions on the virtual-to-physical mapping that
relax this requirement somewhat.
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0.2 Related work

The importance of cache allocation decisions have already been partly ad-
dressed in some CPU architectures by the introduction of dedicated load
and store instructions hinting where in the memory hierarchy an accessed
datum should be installed. One example is the UltraSPARC’s VIS instruc-
tion set, which has block load and block store instructions that bypass the
cache hierarchy. These instructions can for example be used in a bcopy
loop to avoid polluting the caches with copy data, which are unlikely to be
reused soon again. The UltraSPARC III CPU also has a special prefetch
once instruction that installs the data in a fully associative 2 KB prefetch
cache accessed in parallel with the L1 cache. That way, the larger L1 will
not get polluted from prefetched data that are likely to be used only once.
The instruction prefetch many is used to prefetch data that should be in-
stalled in the normal L1 data cache. Another approach to selective caching
has been taken in the implementation of the HP PA7200 CPU [KCZ+94],
which has a small parallel assist cache in addition to a large, one-cycle
latency off-chip cache. All cache lines are initially allocated in the assist
cache and, upon replacement, allocated in the off-chip cache, unless a cer-
tain spatial only hint was specified in the instruction fetching the data. If
so, the data will bypass the off-chip cache. While the allocation decision
could be controlled by static compiler analysis, such analysis can sometimes
be hard. We therefore believe that there is a need for a hardware algorithm,
which dynamically can identify the data objects worthy of allocation in the
L1 cache.

Several approaches for efficient dynamic management of the L1 data
cache have been proposed lately. In the algorithms, allocation decisions are
based either on the address of the instruction accessing the data, or on the
data address. Most of the schemes propose a statically partitioned cache
consisting of several sub-caches, where each sub cache is tailored for a cer-
tain category of cache blocks [GAV95][MMT96][RD96] [RTT+98][SG99].
Cache blocks are allocated in different sub-caches based on their type of
reuse in terms of spatial and temporal locality. Tomasko et al. also pro-
posed a statically partitioned cache [MT97], and allocates scalar and array
data in different sub-caches. Srinivasan et al. takes a different approach
where the cache is statically partitioned into critical/non-critical sub caches
[SJLWO1]. Critical loads are here defined as loads that must complete early
in order not to degrade the pipeline performance. The drawback of using
a statically partitioned cache for different categories of data is that it may
perform worse than a conventional cache if the access pattern of a program
doesn’t suit the partitioning of the cache.

Several cache bypass schemes have also been proposed where some cache
blocks are not allocated in the cache upon a cache miss [TFMP95][JHI7|[McF92].
The cache allocation algorithms introduced by Tyson et al. [TFMP95] and
Johnson and Hwu [JH97] are based on access frequency and prevent fre-



quently accessed cache blocks from being replaced by less frequently used
cache blocks.

We present an address-based run-time algorithm, the RASCAL algo-
rithm, in Section 0.5.3. The distinguishing feature of our proposal is that
we stream cache blocks through a small staging cache before making the
L1 allocation decision. The algorithm does not explicitly make any distinc-
tion between cache blocks of different reuse categories or access frequencies
nor does it statically divide the cache into different sub-caches for different
categories. Instead we monitor each allocation and adaptively make allo-
cation decisions based on the duration between recent cache allocations.
The model most similar to our proposal is the MAT model introduced by
Johnson and Hwu [JH97][Joh98][JH99]. The MAT model is discussed in
detail in section 0.5.1.

0.3 Evaluation methodology

All evaluations are performed using the Simics full-system simulator simu-
lating a Sun SPARC machine running Solaris 7 [MDG*98]. Since SIMICS
has a modest slowdown rate we were able to study applications from
SPLASH2 and SPEC CPU2000 with (close to) realistic problem size. We
have restricted our evaluation in this paper to data references only. All
caches are write-around and assume a perfect write buffer. A cache block
size of 64 byte is used unless otherwise stated. Since this paper focuses
on reducing misses in small caches, we have opted to isolate our study to
the cache performance of the first-level cache. The SPLASH-2 applications
were run to completion using the problem sizes suggested by Woo et al.
[WOT*95]. The SPEC CPU2000 benchmarks were run with the reduced
input data sets suggested by KleinOsowski et al. [KFMLOO].

In order to get an upper bound for our allocation algorithm, we have
first studied an optimal exclusion/allocation algorithm [McF92] based on
future knowledge. The basic idea is that, if the cache line singled out by the
replacement algorithm will be referenced sooner than the new cache line,
the new cache line will not get allocated in the cache. Note that we do not
change the replacement algorithm and will only compare the new cache
block with the victim that was singled out by the existing replacement
algorithm, i.e., the optimal allocation algorithm we are using is not the
same as optimal replacement algorithm suggested by others [Bel66, SA93].
While the optimal allocation algorithm cannot feasibly be implemented, it
represents the optimal allocation strategy and initially convinced us that
this area is indeed worth exploring. This algorithm will be referred to as
the optimal algorithm.
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Figure 1. Comparative miss ratio reduction data for the OPT L0+L1 and OPT
L1 allocation algorithms compared to a conventional cache (2-way 32 KB). Here,
the LO is a 4-way associative 2 KB cache.
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Figure 2. The baseline architecture.

0.4 Staging Cache LO

We have observed that a large fraction, often a majority of, the objects al-
located in an L1 cache has temporal properties ill suited for the L1 cache.
Some of these objects are never accessed before being replaced, while oth-
ers have an intense, but short-lived, reuse pattern, e.g., objects with only
spatial locality and read-modify-write objects with a load/store pair in a
short time distance. These objects are reused shortly after the allocation
but are not touched again before replacement and will spend most of their
L1 tenure unused (which is later illustrated by Fig 8). Neither of these
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object types make efficient use of the L1 cache. It’s the objects with a long-
lived temporal locality; the ones reused over and over again during a long
time interval, that make the best use of the L1-cache. We label these three
classes of cache lines non-temporal (NT), short-lived temporal (ST), and
long-lived temporal (LT) locality.

Figure 1 shows the performance of the optimal algorithm, OPT L1, using
the metric miss ratio reduction, which is defined as (1 - MissRatioXCache /
MissRatioConventionalCache). Where the studied caches and the Conven-
tional cache they are compared to have the same size and organization. The
optimal algorithm will effectively avoid allocation of NT objects. However,
it will happily allocate the ST objects.

In order to neither allocate the NT nor the ST objects the L1 cache,
all cache blocks can be streamed through a small staging cache, called L0,
before the L1 allocation decision is made. On a cache lookup, the LO is
accessed in parallel with, and has the same access time as, the L1 cache.
On a cache miss, the cache block is allocated in LO. The L0 victims are,
based on the selection algorithm, either allocated in the L1 or bypassed.
Figure 2 shows the organization of the LO and L1 cache. By delaying the
allocation decision until after the L0 cache, most of the NT and ST objects
have become inactive and will not get allocated in the L1. The graph in
Figure 1 shows that adding the L0 cache significantly improves the effect
of the optimal algorithm.

The potential performance gain of selective allocation is further shown
in Figure 3, comparing three options for improving a 2-way, 32 KB cache:
doubling the cache size, doubling the associativity, and optimal alloca-
tion decision in combination with small staging cache LO. For all of the
applications, optimal allocation with L0 performs better than twice the as-
sociativity (a 4-way LRU cache of the same size), and for ten of the fourteen
applications the optimal algorithm performs comparably with a cache twice
the size, while maintaining the same degree of associativity. We conclude
that a selective allocation in combination with a small staging cache can
have a huge impact on the miss rate of a small 2-way cache. Next, we will
study different practical algorithms for implementing selective allocation.

0.5 Selective Allocation

0.5.1 The MAT model

The MAT model by Johnson and Hwu bases its allocation decision on ac-
cess frequency [JH97][Joh98][JH99]. The MAT model monitors accesses per
macro block, which is defined as a contiguous block of memory small enough
that cache blocks belonging to the same macro block are likely to display
the same usage pattern. Each macro block has a hit counter associated with
it, which is incremented upon a hit to a cache block belonging to the macro
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Figure 3. Miss ratio reduction compared to a conventional cache (2-way 32 kbyte).

block. The hit counters are stored in a cache structure called the Memory
Address Table, MAT, which stores access frequency information for some
of the macro blocks. Upon a cache miss the macro block hit counter of the
victim selected by the replacement algorithm is decremented and compared
to the new cache block. If the victim has the highest macro block counter
value the cache block generating the miss will not be allocated in the main
cache but instead in a separate smaller cache called the bypass buffer.

Since the first MAT publication[JH97], the MAT model has been en-
hanced by adding the notion of a decrementing counter, decr_ctr, per macro
block in the MAT [Joh98][JH99]. The decrementing counter of a macro
block is incremented by one on every conflict for a cache location held by
the macro block and cleared to zero upon a cache hit to the macro block.
Upon a conflict, the access counter is decremented by the value of decr_ctr
plus one instead of just decrementing by one as in the original MAT model.
The MAT models require quite complex hardware circuitry since on every
cache hit a counter must be incremented through a read-modify-write oper-
ation. It also requires, as previously mentioned, a separate cache structure
holding the access and decrementing counters.

0.5.2 The AAA algorithm

This algorithm is based on the existence of a staging cache L0, as shown in
Figure 2. The algorithm audits each cache block during its tenure in the L1.
The audition result is kept in the L2 cache and will allow for allocation into
L1 for as long as the cache block “performs well”. We call this the Audition-
based Allocation Algorithm, AAA. The algorithm uses an allocation history
bit per cache block in the L1 cache. When a cache block is accessed in the
L1 cache the allocation history bit is set. The allocation history bit value of
the last L1 tenure is stored in L2 as meta data and follows the cache line
into the L0 from the L2. Cache blocks that are evicted from the LO cache
with their allocation history bit cleared are bypassed, while cache blocks
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with the bit set are allocated in the L2 with their allocation history bit set
to zero. In this study we have assumed that storing meta data in memory
is expensive and have opted to “forget” the last audition result upon L2
eviction. Cache blocks that are allocated directly from memory get their
allocation history bit set in the L0, which will allow for a new L1 audition.

While the advantage of the AAA algorithm is its simplicity and low
implementation cost, an obvious problem with this scheme is that the al-
gorithm has no way of detecting and changing its decision if a cache block
was wrongfully classified as a bypass type. This may cause severe perfor-
mance penalty from repeated bypasses of cache blocks that would benefit
from allocation in the L1 cache. This problem is somewhat eased since
whenever a cache block generates an L2 miss the cache block is given a
new audition.

0.5.3 RASCAL- timestamp-based allocation

The Runtime Adaptive Cache ALlocation, RASCAL, algorithm is also
based on the existence of a staging cache LO and has some meta data
stored together with the cache block. Each cache block has a timestamp
storing its last time of allocation decision® stored together with the alloca-
tion history bit in the meta data. A cache block with a cleared allocation
history bit will still be allocated in L1 if the elapsed time since the last L0
eviction is short enough. We call the elapsed time the reuse distance. If the
reuse distance is shorter than the expected survival time3 in the L1 cache,
we concludes that the previous allocation decision was either an incorrect
bypass decision, or that the cache block was prematurely evicted due to
a conflict, and that the cache block should indeed be allocated in the L1.
This makes up for the problem identified for the AAA algorithm. However,
there are two practical problems to be solved for such an algorithm: long
timestamps are expensive to store as meta data and the threshold for a
short enough reuse distance must be determined.

The problem is that the expected survival time in a cache varies for
different applications, as can be seen in Figure 4. It shows the distribution
of cache survival time, measured in number of memory references, for each
replaced cache line in a conventional 2-way 32 KB cache. In other words,
how long time did each cache line survive untouched before replacement? As
can be seen in Figure 4 there is not a generally applicable upper limit where
the cache survival time converges across the applications and subsequently
no universal reuse distance threshold to be used in our algorithm.

2The time of the last eviction from L0 See Fig 2.
3Defined as the elapsed time between a cache block’s last hit and it’s replacement.
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Figure 4. Distribution of survival time in a cache for a conventional 32 kbyte 2-w
cache with 64 byte cache blocks measured in number of references.

Using CAT time

If we measure reuse distance in the time unit cache allocation ticks (CAT),
i.e., a time unit incremented each time a cache line is allocated in the
cache, the applications share a similar behavior in terms of upper bound
for the survival time, as we can see in Figure 5. In the CAT time system
the survival time of a cache block is less than twice the number of blocks
in the cache, i.e., 1024 in our example, for approximately 90% of the cache
blocks over all the applications. We’ll use this value as the reuse threshold
in RASCAL. If a cache block has a reuse distance larger than the reuse
threshold, we can conclude that it is unlikely that the cache block would
have survived if allocated. We also decide not to allocate the cache block
in L1 upon L0 eviction since we expect that the next reuse distance of the
cache block will be similar to its previous reuse distance.

The intuitive explanation to why survival time measured in CAT time,
instead of wall clock time, is more application independent is helped by
thinking about the average lifetime for a cache block in a cache. The life-
time* of a cache block is on average B CAT, where B is the number of cache
blocks that can reside in the cache®. This holds since all the B objects in
the cache age one CAT unit each time a cache object is replaced and since

4Lifetime is defined as the time from allocation to replacement.
5This further assumes that the entire cache contains valid data and does therefore
not hold for cold start-up and multiprocessors.
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Figure 5. Distribution of cache survival time? for a conventional 32 kbyte 2-way
cache with 64 byte cache blocks measured in cache allocation ticks (CAT).

exactly one object is inserted and replaced in each time unit. In fact, the
average lifetime is independent of the cache organization. Since the average
lifetime B CAT, extends to all cache organizations and since the average
survival time by definition is always less or equal to the average lifetime.
The average survival time is always less or equal to B.

The CAT time in RASCAL is implemented by a single counter in the L1
cache which is incremented for each L1 allocation. The value of the CAT
time at LO eviction is written into the cache block’s meta data in L1, if
allocated, or in L2 if bypassed. The value does not change during the cache
block’s tenure in L1 and L2 and will remain the same until its next eviction
from LO. At this point in time, its value will be compared to the current
CAT time in order to make its next allocation decision.

Allocation history counter

We have found that using a 3-bit allocation history counter provides more
stable results than using a single allocation history bit. A cache block with
a history counter set to zero is bypassed while cache blocks with positive
history counters are allocated. When a cache block is reused within the
reuse threshold or hit during its L1 tenure, the allocation history counter is
set to 7. If a cache block with a non-zero history counter is evicted without
the hit-bit set, the history counter is decremented. A cache block generating
an L2 miss is allocated in L1.
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CAT simulation parameters

The CAT counter is implemented by a 5-bit CAT counter. We have found
that using 5 bits generates a tolerable amount of false detections®. The

reusethreshold

SThe CAT is incremented every replacement. Since we are using 5

timestamp bits it will spin around every w x 25

to some false detection.

replacement, which will lead
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Figure 8. Fraction of cache blocks never touched before replacement from L1. For
all but one application more than half of the replaced objects are never touched in
an L1 using an always allocate scheme. RASCAL allocation reduces that number
by about two thirds.

RASCAL algorithm therefore requires a total of 8 bits per cache block in
L2. Note that the RASCAL CAT time stamp of the cache block is only
accessed at the time of eviction from the L0 cache, which should be off the
critical path. The reuse history bit is set on a cache hit and the reuse history
counter is set to 7 on a cache hit and decremented on LO eviction. None
of these operation should add to the critical path of an LRU cache. The
MAT model will however need one associative lookup to find the counter
and a counter increment for each cache hit. While it will be more costly to
achieve this without adding to the hit time of the cache, we still think it is
doable and have not added any extra latency for the MAT hit time.

Figure 8 shows how the RASCAL allocation reduces the fraction of cache
lines never touched before replacement from the L1 cache compared to a
system which always allocates L0 victims in the L1.

0.6 Experimental Results

Figure 7 and 8 shows the miss rate reduction for the evaluated allocation
schemes. The configuration used in the simulations presented in Figure 7
is the base configuration used in[JH99]. The MAT model was implemented
with an infinite macro block table, instead of a MAT cache, an 8-bit access
counter and a 4-bit decrementing counter in the MAT decr_ctr model. The
comparison is made between caches of the same size and organization and
with identical LO and bypass buffer. The presented RASCAL and AAA
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128 byte cacheline Conventional RASCAL
Memory Memory Overhead Reduction

Application Overhead [CPI] 1-w | 2-w | 4-w
FFT 0.240 9% 2% 1%
RADIOSITY 1.662 4% 2% 2%
VOLREND 0,705 93% 1420 6%
RADIX 0,225 6% 3% 320
LU_NC 1,149 59% 2% 0%
CHOLESKY 0,288 36% 620 3%
OCEAN_C 0.863 3% 126 1%
WATER_N 0,082 42% 3% 126
WATER_S 0.059 66% 9% 1%6
LU_C 0,095 55% 13% 026
OCEAN_NC 0,223 14% 6% 1%
BARNES 0,175 14°%%6 126 126
RAYTRACE 0,137 24% 826 4%
EQUAKE_B 0,138 30% 4% 2%
VPR_PLACE_M 0.243 77% 67% 41%
VPR_ROUTE_ M 0,435 28% 17% 11%
AMMP_B 3.231 0% 0% 0%o
MCF_L 3.300 8% 1% 1%

Table 1. Memory System overhead in terms of CPI.

algorithms were evaluated with a 1 MB 4-way L2. The RASCAL algorithm
requires a total of 8 bits per cache block in the L2 cache, which corresponds
to less than 2 percent SRAM overhead.”

As can be seen in Figure 7 the performance of the AAA algorithm is very
good for some applications while extremely poor for other applications. The
MAT model shows some improvement for the 16 KB direct-mapped cache
but for the 2-way associative 32 KB case the performance is worsened. As
can be seen in table 2, 3 and 4 it is a general trend that the effective-
ness of the MAT model is decreasing with more associative L1 caches. We
believe that the reason for this is the effectiveness of the LRU replace-
ment algorithm, which in itself makes sure that the least frequently used
data is evicted first. Thereby reducing the effect of less frequently used
data evicting highly used data. The enhanced MAT model, MAT Decr_ctr,
shows an improved performance compared to the original MAT model, but
some applications still shows a miss ratio increase compared to a conven-
tional cache. The RASCAL algorithm shows a strictly positive miss rate
improvement over a conventional cache although for some applications the
improvement is quite modest. In order to get an idea of how the overall
performance is affected by the RASCAL algorithm. We have computed
the memory system overhead in terms of a highly simplified CPI model,
where the CPI memory overhead is defined as ld_fractionx L1_miss_ratiox
(L2_hit_ratiox L2_hit_penalty+ L2_-miss_ratio x L2_miss_penalty), and mea-
sured how the memory system overhead is affected by the RASCAL
algorithm. We have assumed an in-order superscalar CPU issuing on aver-
age two instructions per cycle, an L.2 miss penalty of 150 cycles and an 1.2
hit penalty of 15 cycles.

7 Assuming a cache block size of 64 byte.



xiv

The memory overhead study also includes five SPEC CPU2000 bench-
marks. As can be seen in Table 1 the memory overhead reduction for a
direct-mapped cache is substantial for a majority of the applications, but
decreases for more associative caches. The same observation can be made
in the Table 2, 3, and 4 in the Appendix, where the miss ratio reduction
for the RASCAL algorithm and the MAT model is presented with varying
cache block sizes and associativity for a 16KB L1. Table 2, 3, and 4 also
contains the absolute miss rates for the applications. By comparing Table
2, 3, and 4 one can observe that both RASCAL and MAT show a larger
miss rate reduction when the cache block size is increased. This is due to
the increase in capacity misses, which is targeted by the algorithms. The
two SPEC benchmarks VPC_ROUTE_M and VPC_PLACE_M show the
largest cut in memory overhead of all the applications.

0.7 Future Work

This paper describes our initial work with the runtime adaptive selective
cache allocation algorithm, RASCAL. This field is largely unexplored to
date. We believe that new algorithms can improve its performance further
by more aggressive bypassing schemes. We plan on continuing this work by
studying dynamic threshold-adjustment algorithms. In our study, different
applications benefited from different threshold settings. We would further
like to combine this scheme, which is targeted at removing capacity misses,
with schemes that are targeted at conflict misses, such as a victim cache.
We also intend to extend our evaluation with more benchmarks with larger
working sets, where there is potentially an even bigger need for selective
allocation.

0.8 Conclusion

We have demonstrated that a fourth cache property, allocation policy, is
a potential cache enhancement scheme as cache size, associativity and re-
placement strategy. Using an optimal allocation policy, a 2-way 32 KB
cache was shown to outperform a cache with twice the associativity and
perform comparably to a double sized cache for many applications. We
have also proposed a practical way to detect cache lines that would benefit
from caching based on their past reuse history measured in the new time
unit ”cache allocation ticks” (CAT). We have also proposed a practical
low-cost implementation of the RASCAL algorithm, which has shown a
stable performance improvement across all the studied benchmarks.
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Timestamp-Based Selective

Cache Allocation

32 byte cache block
Miss ratio | Miss ratio reduction | Miss ratio | Miss ratio reduction | Miss ratio | _Miss ratio reduction
w 2w aw

CONV_| RASCAL | MAT CONV__| RASCAL | MAT CONV__ | RASCAL | MAT
FFT 0,0424 13% 1% 0,0341 6% % 0,0317 5% 0%
RADIOSITY 0,2462 1% 1% 0,2004 8% 3% 01779 5% -3%
VOLREND 0,0849 93% 74% 0,0069 21% 16% 0,0054 8% 5%
RADIX 0,0383 16% 17% 0,0316 12% 7% 0,0284 9% 0%
LU_NC 0,2403 51% 50% 0,181 1% 3% 0,172 0% 1%
CHOLESKY 0,0856 9% 13% 0,0735 7% 1% 0,0670 4% 7%
OCEAN_C 0,1449 2% 2% 0,1360 1% 7% 0,1391 4% 2%
WATER_N 0,0168 20% 28% 0,0157 1% 21% 0,0155 0% 12%
WATER_S 0,0086 61% 46% 0,0032 7% 8% 0,0031 2% 6%
Lu_c 0,0310 63% 65% 0,0003 13% 14% 0,0076 1% 1%
OCEAN_NC 0,0914 7% 4% 0,0853 5% 3% 0,0023 12% 1%
BARNES 0,0365 15% 23% 0,0340 14% 28% 0,0347 17% 36%
RAYTRACE 0,0288 28% 25% 0,0207 12% 14% 0,0184 8% 1%
EQUAKE_B 0,0177 31% 33% 0,0119 4% 8% 00115 3% 7%
VPR_PLACE_M 0,0624 89% 80% 0,0126 67% a7% 0,0058 37% 26%
VPR_ROUTE_M 0,0787 22% 19% 0,0622 9% 6% 0,0581 5% 2%
AMMP_B 0,5125 1% 2% 0,5074 0% 2% 0,5064 0% 2%
|mcF_L 0,4004 5% 7% 0,3796 2% 2% 0,3763 1% 2%

Table 2. Absolute
for RASCAL and

miss rates for a
MAT varied over

block size and 2kbyte L0 and bypass buffer.

64 byte cache block
Miss ratio | _Miss ratio reduction | Miss ratio | Miss ratio reduction | Miss ratio | _Miss ratio reduction
-w 2-w 4-w
CONV RASCAL | __MAT CONV RASCAL | MAT CONV__| RASCAL | MAT
FFT 0,0292 19% 14% 0,0223 8% 4% 0,0208 7% 1%
RADIOSITY 0,1981 13% 1% 0,1591 12% 2% 0,1424 14% 2%
VOLREND 0,0955 94% 81% 0,0069 25% 21% 0,0053 1% 1%
RADIX 0,0410 13% 18% 0,0348 9% 10% 0,0322 9% 7%
LU_NC 0,2108 63% 60% 0,0785 2% 4% 00773 0% 3%
CHOLESKY 0,0573 26% 26% 0,0401 8% 9% 0,0364 5% 4%
OCEAN_C 0,0773 4% 6% 0,0710 2% -13% 0,0725 4% 9%
WATER_N 0,0149 31% 29% 0,0106 1% 6% 00104 1% 2%
WATER_S 0,0087 70% 54% 0,0025 1% 10% 0,0023 2% 5%
Lu_c 0,0297 1% 73% 0,0059 22% 18% 0,0043 1% 9%
OCEAN_NC 0,0730 12% 12% 0,0649 2% 5% 0,0648 2% 5%
BARNES 0,0345 12% 20% 0,0324 4% 20% 0,0336 4% 24%
RAYTRACE 0,0236 33% 26% 0,0161 15% 14% 0.0140 9% 1%
EQUAKE_B 0,0173 46% 42% 0,0095 6% 10% 0,0090 3% 9%
VPR_PLACE_M 0,0692 86% 79% 0,0183 75% 62% 0,0066 49% 35%
VPR_ROUTE_M 0,0833 28% 23% 0,0611 13% 9% 0,0542 7% 2%
AMMP_B 0,5184 2% 2% 0,5130 0% 1% 05108 0% 1%
[MCF_L 0,3233 5% 7% 0,3050 2% 3% 0,3020 2% 2%

xvii

conventional cache and miss ratio reduction
different associativities using a 32 byte cache

Table 3. Absolute miss rates for a conventional cache and miss ratio reduction
for RASCAL and MAT varied over different associativities using a 64 byte cache
block size and 2kbyte L0 and bypass buffer.

128 byte cache block
Miss ratio | Miss ratio reduction | Miss ratio | Miss ratio reduction | Miss ratio | _Miss ratio reduction
w 2w aw
CONV_| RASCAL | MAT CONV__| RASCAL | MAT CONV_ | RASCAL | MAT
FFT 0,0231 32% 28% 0,0153 9% 3% 0,0144 7% 2%
RADIOSITY 0,1495 14% 13% 0,1202 10% 9% 01154 10% 13%
VOLREND 0,1509 97% 94% 0,0061 29% 22% 0,0047 15% 13%
RADIX 0,0443 1% 19% 0,0386 5% 12% 0,0371 5% 10%
LU_NC 0,1962 71% 68% 0,0591 2% 4% 0,0578 0% 3%
CHOLESKY 0,0477 51% 44% 0,0228 1% 1% 0,0203 6% 7%
OCEAN_C 0,0437 1% 0% 0,0376 3% -9% 0,0381 4% -6%
WATER_N 0,0160 49% 42% 0,0080 3% 3% 0,0077 1% 1%
WATER_S 0,011 80% 65% 0,0022 19% 14% 0,0018 3% 3%
Lu_c 0,0312 71% 7% 0,0045 39% 33% 0,0025 2% 1%
OCEAN_NC 0,0681 25% 22% 0,0577 13% 10% 0,0513 2% 0%
BARNES 0,0302 17% 18% 0,0254 2% 8% 0,0256 1% 7%
RAYTRACE 0,0222 41% 33% 0,0138 16% 16% 0,0119 10% 14%
EQUAKE_B 0,0160 60% 50% 0,0069 13% 13% 0,0063 7% 9%
VPR_PLACE_M 0,0753 82% 74% 0,0277 79% 72% 0,0096 62% 51%
VPR_ROUTE_M 0,0970 30% 25% 0,0695 19% 15% 0,0585 13% 7%
AMMP_B 0,5171 1% 2% 0,5130 0% 1% 05114 0% 0%
|mcF_L 0,2739 5% 7% 0,2578 1% 3% 0,2566 2% 3%

Table 4. Absolute miss rates for a conventional cache and miss ratio reduction for
RASCAL and MAT varied over different associativities using a 128 byte cache
block size and 2kbyte L0 and bypass buffer.



