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Abstract
Java-based middleware, and application servers

particular, are rapidly gaining importance as a new clas
of workload for commercial multiprocessor servers. SPE
has recognized this trend with its adoption o
SPECjbb2000 and the new SPECjAppServer20
(ECperf) as standard benchmarks. Middleware, by defin
tion, connects other tiers of server software. SPECjbb is
simple benchmark that combines middleware services
simple database server, and client drivers into a sing
Java program.ECperf more closely models commerc
middleware by using a commercial application server an
separate machines for the different tiers. Because it is
distributed benchmark, ECperf provides an opportuni
for architects to isolate the behavior of middleware.

In this paper, we present a detailed characterizatio
of the memory system behavior of ECperf and SPEC
using both commercial server hardware and Simics fu
system simulation. We find that the memory footprint a
primary working sets of these workloads are small com
pared to other commercial workloads (e.g., on-line tran
action processing), and that a large fraction of th
working sets are shared between processors. We obser
two key differences between ECperf and SPECjbb th
highlight the importance of isolating the behavior of th
middle tier. First, ECperf has a larger instruction foot-
print, resulting in much higher miss rates for intermediate
size instruction caches. Second, SPECjbb’s data set s
increases linearly as the benchmark scales up, wh
ECperf ’s remains roughly constant. This difference ca
lead to opposite conclusions on the design of multiproce
sor memory systems, such as the utility of moderate si
(i.e., 1 MB) shared caches in a chip multiprocessor.
This work is supported in part by the National Science Founda-
tion, with grants EIA-9971256, EIA-0205286, and CDA-
9623632, the PAMP research program supported by the Swedis
Foundation for Strategic Research, a Wisconsin Romnes Fellow
ship (Wood), and donations from Intel Corporation, IBM, and
Sun Microsystems.
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1.   Introduction
Architects have long considered On-Line Transactio

Processing (OLTP) and Decision Support Systems (DS
as important workloads for multiprocessor servers. T
recent shift toward 3-tier and N-tier computing models h
created a large and rapidly-growing market for Java-bas
middleware, especially application servers. Still, middle
ware workloads are not yet well understood, and there a
few accepted benchmarks that measure the performanc
middle-tier applications. This is due both to the rece
emergence of middleware as a mainstream workload a
to the fact that 3-tier workloads are by nature difficult t
install, tune and run.

We present a detailed characterization of two Jav
based middleware benchmarks, SPECjbb and ECp
(now SPECjAppServer2001 [17]), running on share
memory multiprocessors. ECperf more closely resemb
commercial middleware applications because it runs
top of a commercial application server and is deployed
a 3-tiered system. The distributed nature of ECperf al
facilitates monitoring the behavior of each tier indepe
dently. ECperf, however, is difficult to install and run. I
requires the coordination of several machines and seve
pieces of software. SPECjbb is also a Java middlewa
benchmark. It is an attractive alternative to ECpe
because although it models a 3-tiered system, it is a sin
Java program that can be run on any Java Virtual Mach
(JVM). SPECjbb includes many common features of
tiered systems in a single program running on a sing
machine.

The goal of this paper is to understand the memo
system behavior of these middleware benchmarks, to g
insight into the behavior of Java-based middleware, and
provide useful data and analysis to memory system
designers targeting middle-tier servers. We focus on m
range (up to 16 processor) shared-memory multiproc
sors because many application servers target these
tems. We also investigate whether or not the simp
SPECjbb benchmark behaves similarly enough to t
more complex ECperf to be considered representative
commercial middleware applications.
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We find that these Java-based middleware applica-
tions have moderate CPIs compared to previously-pub-
lished commercial workloads (between 2.0 and 2.8 for
ECperf). In particular, memory related stalls are low, with
misses to main memory accounting for as little as 15% of
the data stall time and 5% of total execution time. Con-
versely, sharing misses occur frequently in both work-
loads, accounting for over 60% of second-level cache
misses on larger systems. SPECjbb is similar to ECperf
in many ways, but there are important differences
between the two benchmarks. ECperf has a larger
instruction working set, but a lower data cache miss rate.
Furthermore, the memory footprint of ECperf remains
nearly constant as the benchmark scales up, whereas the
memory use of SPECjbb grows linearly with database
size. We show that this difference can lead to opposite
conclusions on some design decisions, like the utility of
shared level-two caches in a chip multiprocessor.

2.  Background
The emergence of the Internet and World Wide Web

has triggered a shift in enterprise computing from a two-
tiered, client-server architecture to a 3-tiered architecture
(see Figure 1), where a Web browser is now used univer-
sally as a database client. For databases, connection to
the Web allows users to access data without installing a
client program. For Web pages, databases provide
dynamic content and permanent storage. Software that
connects databases to Web pages is known as “middle-
ware.” Much of the middleware used today is written in
Java. Two of the most popular Java middleware architec-
tures are Java Servlets and Enterprise Java Beans (EJB).
The two are often used together, with Servlets imple-
menting the presentation logic and EJB providing the
business rules. Application servers host both Servlets and
EJB and provide them with communication with both
back-end databases and front-end web clients.

Recently, Web-connected database applications have
also been deployed in an “N-Tier” architecture in which
the presentation logic is separated from the business
rules. The presentation logic can be implemented by

stateless servers and is sometimes considered to b
first-tier application. N-Tiered architectures allow th
application server to focus entirely on the business log

2.1.  SPECjbb Overview
SPECjbb is a software benchmark designed to me

sure a system’s ability to run Java server application
Inspired by the On-Line Transaction Processing Benc
mark TPC-C, SPECjbb models a wholesale compa
with a variable number of warehouses. Beyond th
nomenclature and business model, however, there are
similarities between TPC-C and SPECjbb. TPC-C
intended to measure the performance of large-scale tra
action processing systems, particularly databases. In c
trast, SPECjbb was written to test the scalability an
performance of JVMs and multiprocessor servers that r
Java-based middleware. It emphasizes the middle-t
business logic that connects a back-end data store to a
of thin clients, and is implemented entirely in Java.

SPECjbb models a 3-tiered system, but to make t
benchmark portable and easy to run, it combines t
behavior of all 3 tiers into a single application (see Figu
2). Instead of using a commercial database engine l
most real 3-tiered systems, SPECjbb stores its data
memory as trees of Java objects [18].

The SPECjbb specification calls for running th
benchmark with a range of warehouse values. In an o
cial SPECjbb run, the benchmark is run repeatedly wi
an increasing number of warehouses until a maximu
throughput is reached. The benchmark is then run t
same number of times with warehouse values starting
the maximum and increasing to twice that value. Ther
fore, if the best throughput for a system comes with
warehouses, 2n runs are made. The benchmark scor
the average of runs from n to 2n warehouses. This lar
number of separate benchmark runs would take prohi
tively long in simulation. Therefore, in our simulation
experiments, we selected 3 values for the number
warehouses to represent the range of values that would
included in a publishable SPECjbb result for our har
ware configuration. In order to simply our monitoring
simulations, we report results from the steady state int

Browsers/
Thin Clients

Web Server

Databases

Middleware

Business
Logic

Tier 1 Tier 2 Tier 3

Internet

LAN/WANfirewall

Figure 1: 3-Tiered Systems

Benchmark Process

Business Logic Engine

Client Threads

Object
Trees

Figure 2: SPECjbb Overview
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val of SPECjbb running with the optimal number of
warehouses at each system size.

2.2.  ECperf Overview
ECperf is a middle-tier benchmark designed to test

the performance and scalability of a real 3-tier system.
ECperf models an on-line business using a “Just-In-
Time” manufacturing process (products are made only
after orders are placed and supplies are ordered only
when needed). It incorporates e-commerce, business-to-
business, and supply chain management transactions. The
presentation layer is implemented with Java Servlets, and
the business rules are built with EJB. The application is
divided into the following four domains, which manage
separate data and employ different business rules. The
Customer Domain models the actions of customers who
create, change and inquire about the status of orders. The
customer interactions are similar to On-Line Transaction
Processing (OLTP) transactions. The Manufacturing
Domain implements the “Just-In-Time” manufacturing
process. As orders are filled, the status of customer orders
and the supply of each part used to fill the order are
updated. The Supplier Domain models interactions with
external suppliers. The parts inventory is updated as pur-
chase orders are filled. Finally, the Corporate Domain
tracks customer, supplier and parts information.

The ECperf specification supplies the EJB compo-
nents that form the core of the application. These compo-
nents implement the application logic that controls the
interaction between orders, manufacturing and suppliers.
In particular, that interaction includes submitting various
queries and transactions to the database, and exchanging
XML documents with the Supplier Emulator.

Four separate agents participate in the ECperf bench-
mark, each of which is run on a separate machine or

group of machines. Each of these parts is represented
a box in Figure 3.

Application Server The application server, shown in the
center of Figure 3, hosts the ECperf Java Bean
Together, they form the middle tier of the system, whic
is the most important component to performance o
ECperf.

DatabaseThe next most important part of the system, i
terms of performance, is the database. Though ECp
does not overly stress the database, it does require
database to keep up with the application server and p
vide atomic transactions.

Supplier Emulator Suppliers are emulated by a collec
tion of Java Servlets hosted in a separate web contain

Driver The driver is a Java program that spawns seve
threads that model customers and manufacturers.

Each high-level action in ECperf, such as a custom
making a new order, or a manufacturer updating the s
tus of an existing order, is called a “Benchmark Busine
Operation,” or “BBop.” Performance on ECperf is mea
sured in terms of BBops/minute. Although performanc
on ECperf is measured in terms of throughput, the benc
mark specification requires that 90% of all transactio
are completed within a fixed time [9, 15]. In our exper
ments, however, we relaxed the response time requ
ment of ECperf and tuned our system to provide th
maximum throughput regardless of response time.

2.3.  Enterprise Java Beans
ECperf is implemented using Enterprise Java Bea

(EJB), a part of the Java 2 Enterprise Edition (J2EE) sta
dard. EJB are reusable Java components for server-s
applications. In other words, they are building blocks fo
web-service applications. They are not useful until the

Corp

Orders

Mfg

Supplier

EJB Container

Application Server

Driver

Supplier
Emulator

Emulator
Servlet

Database

Corp DB

Mfg DB

Orders DB

Java
Beans

Order Agents

Supplier DB

Mfg Agents

DTDs

System Under Test

Servlet Host

Supplier
Servlets

Orders &
Mfg

Servlets

Presentation Logic Business Rules

Figure 3: ECperf Setup
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are deployed on an application server. Inside the server,
an EJB “container” hosts the beans and provides impor-
tant services. In particular, EJB rely on their containers to
manage connections to the database, control access to
system resources, and manage transactions between com-
ponents. Often the container is also responsible for main-
taining the persistent state of the beans it hosts. The
application server controls the number of containers and
coordinates the distribution of client requests to the vari-
ous instances of each bean.

2.4.  Java Servlets
Servlets are Java classes that run inside a dynamic

web server. Servlets can communicate with a back-end
database through the Java DataBase Connectivity (JDBC)
API. Session information can be passed to Servlets either
through browser cookies or URL renaming.

2.5.   Java Application Servers
To host ECperf, we used a leading commercial Java-

based application server. That server can function both as
a framework for business rules (implemented in EJB) and
as a host for presentation logic, including Java Servlets.
As an EJB container, it provides required services such as
database connections and persistence management. It
also provides better performance and scalability than a
naïve implementation of the J2EE standard.

Three important performance features of our particu-
lar server are thread pooling, database connection pool-
ing, and object-level caching. The application server
creates a fixed number of threads and database connec-
tions, which are maintained as long as the server is run-
ning. The application server allocates idle threads or
connections out of these pools, rather than creating new
ones and later destroying them when they are no longer
needed. Database connections require a great deal of
effort to establish and are a limited resource on many
database systems. Connection pooling increases effi-
ciency, because many fewer connections are created and
opened. In addition, connection pooling allows the appli-
cation server to potentially handle more simultaneous cli-
ent sessions than the maximum number of open
connections allowed by the database at any time. Thread
pooling accomplishes the same conservation of resources
in the Operating System that database connection pooling
does in the database. Our experience tuning the applica-
tion server showed that configurations with too many
threads spend much more time in the kernel than those
that are well tuned. Object-level caching increases perfor-
mance in the application server because instances of
components (beans) are cached in memory, thereby
reducing database queries and memory allocations.

The application server used in this study is one of the
market leaders (we are not able to release the name due to
licensing restrictions). In all of our experiments, a single
instance of the application server hosted the entire middle

tier. Many commercial application servers, includin
ours, provide a clustering mechanism that links multip
server instances running on the same or differe
machines. The scaling data presented in section 4 d
not include this feature and only represents the scaling
a single application server instance, running in a sing
JVM.

3.  Methodology
We used a combination of monitoring experimen

on real hardware and detailed full-system simulation
measure the memory system behavior of our middlewa
workloads. The native hardware enabled us to perfo
our measurements on a complete run of the benchma
while our simulation study offered us the opportunity t
change the memory system parameters. On the na
hardware, we used the Solaris toolpsrsetto restrict the
application threads to only run on a subset of the proce
sors available on the machine. Thepsrsetmechanism also
prevents other processes from running on process
within the processor set. This technique enabled us
measure the scalability of the applications and to isola
them from interference by other applications running o
the host machine.

3.1.  Hardware Setup
We ran both SPECjbb and the application server

ECperf on a Sun Enterprise 6000 server. The E6000 i
bus-based snooping multiprocessor with 16 248-MH
UltraSPARC II processors with 1 MB L2 caches an
2 GB of main memory. The UltraSPARC II processor
are 4-wide and in-order issue. For ECperf, we ran t
database on an identical Sun E6000, and the supp
emulator and driver were each run on a 500MHz Ultra
PARC IIe Sun Netra. All the machines were connecte
by a 100-Mbit Ethernet link.

3.2.  Benchmark Tuning
Tuning Java server workloads is a complicated pr

cess because there are several layers of software to c
figure, including the operating system, the JVM, and th
application itself. Tuning 3-Tier Java applications is mor
complicated still, because the application server and da
base must be properly configured as well.

Operating System (Solaris 8)We optimized Solaris for
running large server programs by enabling Intima
Shared Memory (ISM), which increases the page si
from 8 KB to 4 MB and allows sharing of page table
entries between threads. This optimization great
increases the TLB reach, which would otherwise b
much smaller than the application server’s large heap.

JVM (HotSpot 1.3.1)We configured the JVM by testing
various thread synchronization and garbage collecti
settings. We found that the default thread synchronizati
method gave us the best throughput on ECperf a
4
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SPECjbb. In all cases, the heap size was set to the largest
value that our system could support, 1424 MB. We tuned
the garbage collection mechanism in the virtual machine
by increasing the size of the new generation to 400 MB.
A large new generation leads to fewer, but longer, partial
collections and better total throughput. Our multiproces-
sor simulations of SPECjbb were run with HotSpot 1.4.0.
In order to be as consistent as possible with both our uni-
processor simulations and the multiprocessor simulations
of ECPerf, we used the same heap and new generation
sizes in all of our experiments.

Application Server For ECperf, we tuned the applica-
tion server for each processor set size by running the
benchmark repeatedly with a wide range of values for the
size of the execution queue thread pool and the database
connection pool. For each processor count, the configura-
tion settings used were those that produced the best
throughput.

DatabaseECperf uses a small database, which fit
entirely in the buffer pool of our database server. We
found that the performance of ECperf was unaffected by
other database settings.

3.3.  Simulation Environment
We used the Simics full-system simulator [11] to

simulate ECperf and SPECjbb running on several differ-
ent system configurations. Simics is an execution-driven
simulator that models a SPARC V9 system accurately
enough to run unmodified Solaris 8. To determine the
cache behavior of the applications without communica-
tion, we configured Simics to model a 1-processor
E6000-like SPARC V9 system with 2GB of main mem-
ory running Solaris 8. To run ECperf, we simulated four
such machines connected by a simulated 100-Mbit Ether-
net link. The reported cache statistics for ECperf were
taken from the simulated machine that ran the application
server.

For these experiments we extended Simics with a
detailed memory system simulator [13]. The memory
system simulator allowed us to measure several cache
performance statistics on a variety of caches with differ-
ent sizes, associativities and block sizes. In order to eval-
uate the communication behavior of these workloads and
their suitability to a shared-cache memory system, we
also simulated multiprocessor configurations of each
workload. We were not able to simulate a multi-tiered
configuration of ECperf running on a multiprocessor.
Instead, we simulated a single 16-processor machine
where the application server was bound to 8 processors.
We then filtered out the memory requests from the other 8
processors, and fed only the requests from the application
server processors to our memory system simulator.

We use the methodology proposed by Alameldeen,
et al. [2] to account for the inherent variability of multi-
threaded commercial workloads. We present the means

and standard deviations (shown as error bars) for all m
sured and most simulated results.

4.  Scaling Results
Java-based middleware applications, like most com

mercial workloads, are throughput-oriented. Understan
ing how these applications scale up to both larg
multiprocessors and larger data sets is important for bo
hardware and software developers. In this section,
analyze how ECperf and SPECjbb scale on a Sun E60
system.

Despite our best efforts to tune these workloads, w
were unable to even come close to achieving line
speedup. Figure 4 shows that ECperf scales super-
early from 1 to 8 processors, but scales poorly beyond
processors. ECperf achieves a peak speedup of appr
mately 10 on 12 processors, then performance degra
for larger systems. SPECjbb scales up more gradua
leveling off after achieving a speedup of 7 on 10 proce
sors.

In the remainder of this section we present an ana
sis of the factors that contribute to the limitations on sca
ing. We find that both benchmarks experience significa
idle time (approximately 25%) for systems with 10 o
more processors, apparently due to contention for sha
software resources. Memory system stalls are the sec
major factor, causing the average cycles per instruction
increase by as much as 40%. Finally, although garba
collection does impact performance, on larger systems
accounts for only a fraction of the difference betwee
measured and linear speedup.

4.1.  Resource Contention
We used a variety of Solaris measurement tools

identify the bottlenecks in ECperf and SPECjbb. Figure
shows a breakdown of the time spent in various executi
modes as measured by the Solaris toolmpstat.The four
modes are running the operating system (system), ru

5 10 15
0

5

10

S
pe

ed
up

Processors

ECperf
Linear
SPECjbb

Figure 4: Throughput Scaling on a Sun E6000
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Figure 5 illustrates one important difference between
ECperf and SPECjbb. ECperf spends significant time in
the operating system, while SPECjbb spends essentially
none. This is not surprising, since SPECjbb emulates all
three tiers on a single machine, using memory-based
communication within a single JVM. Conversely, ECperf
uses separate machines for each tier, requiring communi-
cation via operating system-based networking code. For
ECperf, the system time increase from less than 5% for a
single-processor run, to nearly 30% for a 15-processor
system. We hypothesize, but have been unable to con-
firm, that the increase in system time arises from conten-
tion in the networking code.

Both workloads incur significant idle time for larger
system sizes, reaching 25% for 15 processors. Some of
this idle time is due to garbage collection. Like most cur-
rently available systems, the JVM we ran uses a single-
threaded garbage collector. That is, during collection
only 1 processor is active and all others wait idle. We
estimated the fraction of idle time due to garbage collec-

tion by multiplying the fraction of processors that are idl
during collection by the fraction of time spent performin
garbage collection. Figure 5 shows that the bulk of th
idle time is due to factors other than garbage collection

The increase in idle time with system size sugges
that there is contention for shared resources in the
benchmarks. The application server in ECperf shares
database connection pool between its many threads,
the object trees in SPECjbb are protected by locks, bo
of which could lead to contention in larger system
However, the fact that the idle time increases similarly fo
both benchmarks indicates that the contention could
within the JVM.

4.2.  Execution Time Breakdown
Idle time alone explains at most half the degradatio

in speedup (75% non-idle time times 15 processors
approximately 11, not the 8 we observe). To identif
other limits to scalability, we used the integrated counte
on the UltraSPARC II processors to measure and bre
down the average cycles per instruction (CPI) across
range of system sizes. While CPI is not a good indicat

0

20

40

60

80

100

E
xe

cu
tio

n 
T

im
e 

(%
)

User
System
I/O
Idle
GC Idle

1 2 4 6 8 10 12 14 15
ECperf

1 2 4 6 8 10 12 14 15
SPECjbb

Figure 5: Execution Mode Breakdown vs. Number of Processors
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of overall performance on multiprocessors—e.g., because
of the effect of the idle loop—it gives a useful indication
of where the time goes.

Figure 6 presents the CPI, broken down into instruc-
tion stalls, data stalls, and other (which includes instruc-
tion execution and all non-memory-system stalls). The
overall CPI ranges from 1.8 to 2.4 for SPECjbb and 2.0 to
2.8 for ECperf. These are moderate CPIs for commercial
workloads running on in-order processors. Barroso, et al.
report CPIs for Alpha 4100 systems of 1.3 to 1.9 for deci-
sion support database workloads and as high as 7 for a
TPC-B on-line transaction processing workload. The CPI
increases by roughly 40% and 33% for ECperf and
SPECjbb, respectively, as the number of processors
increase from 1 to 15. Assuming instruction path lengths
remain constant (see Section 4.4.), the increase in CPI
would account for most of the remaining performance
degradation.

Figure 6 also shows that data stall time is the main
contributor to the increase in CPI. On a single processor
run, data stall time accounts for only 15% and 12% for
ECperf and SPECjbb, respectively. However for a 15-
processor system, this increases to 35% and 25% for
ECperf and SPECjbb, respectively.

Figure 7 presents an approximate decomposition of
the data stall time. Because some factors are estimated
using frequency counts multiplied by published access
times, the total does not always exactly sum to one.
Approximately 60% of the data stall time is due to misses
in the L2 cache, with the bulk of the remainder being L2
hits. Conversely, store buffer stalls, the cycles spent wait-
ing for a full store buffer to be flushed, account for only
1% to 2% of the total execution time. Similarly, read-
after-write hazard stalls, which occur if a load is not sepa-
rated enough from a store, account for only 1% of the
time.

4.3.  Cache-to-Cache Transfer Ratio
Figure 7 also illustrates that cache-to-cache transf

represent a significant fraction of the data stall time f
multiprocessor systems. For larger multiprocesso
cache-to-cache transfers account for nearly 50% of t
total data stall time. Cache-to-cache transfers are
important factor because many multiprocessor syste
take longer to satisfy a miss from a processor’s cac
than from main memory. On the E6000, the latency of
cache-to-cache transfer is approximately 40% long
than the latency of an access to main memory [8]. F
NUMA memory systems, this penalty is typically much
higher—200-300% is not uncommon [7]—because of th
indirection required by directory-based protocols.

To dig deeper, we measured the cache-to-cac
transfer ratio for SPECjbb and ECperf by counting th
“snoop copyback” events reported incpustat. In the
UltraSPARC II processor, a snoop copyback event sig
fies that a processor has copied a cache line back to
memory bus in response to a request by another proc
sor.

Figure 8 shows that the fraction of L2 cache miss
that hit in another cache starts at 25% for two process
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Figure 7: Data Stall Time Breakdown vs. Number of Processors
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and increases rapidly to over 60% for fourteen proces-
sors. This is comparable to the highest ratios previously
published for other commercial workloads [3].

Figure 8 also shows cache-to-cache transfers occur
even for 1 processor. These transfers are possible because
the operating system runs on all 16 processors, even
when the application is restricted to a single processor.
Snoop copybacks occur when the processor running the
benchmark responds to a request from another processor
running in the operating system.

4.4.  Path Length
Comparing Figure 4 to Figure 6 reveals an apparent

contradiction. ECperf scales super-linearly as the system
size increases from 1 to 8 processors, even though the
average CPI increases over the same range. This surpris-
ing result occurs because the instructions executed per
BBop decreases even more dramatically over the same
range (not shown). The decrease in instruction count
more than compensates for the longer average execution
time per instruction. We hypothesize that this drop is due
to object-level caching in the application server. Con-
structive interference in the object cache allows one
thread to re-use objects fetched by another thread.

4.5. Garbage Collection Effects
Both workloads spend a considerable amount of time

doing garbage collection. To determine the impact of the
collection time on scalability, we compared the measured
speedup to the speedup with the garbage collection time
factored out. That is, we subtracted the garbage collection
time from the runtime of the benchmark and calculated
speedup in the usual way. The solid lines in Figure 9 rep-
resent the speedup of ECperf and SPECjbb as measured.
The dotted lines display the speedup of the benchmarks
with the garbage collection time factored out. The differ-

ence in throughput with and without the garbage colle
tion is small, but statistically significant for ECperf up to
6 processors. For SPECjbb and ECperf on larger syste
the difference is not statistically significant.

We originally hypothesized that the high percentag
of cache-to-cache transfers we observed in both SPEC
and ECperf was due to garbage collection. Our JV
(HotSpot 1.3.1) uses a generational copying collector a
is single-threaded. Therefore, during collection, all liv
new generation objects are copied by the collectio
thread regardless of which thread had created them a
regardless of their location in the cache of a particul
processor. For example, in a system that uses a sim
MSI invalidation protocol, any new generation data in th
M state cached at a processor that is not performing
collection will be read by the collector thread through
costly cache-to-cache transfer. This will result in the orig
inal copy of the data being invalidated. After the garbag
collection is performed, the previous owner of the bloc
will have to reacquire the block to access it. If the data
still residing in the garbage collector’s cache, that acce
will result in another costly cache-to-cache transfer.

Contrary to our hypothesis, the benchmark genera
almost no cache-to-cache transfers during garbage col
tion. We counted the number of snoop copyback even
every 100 ms during a run of SPECjbb. Figure 10 illus
trates this dramatic drop in the cache-to-cache trans
rate during the 3 garbage collections that occurred in o
measurement interval. The HotSpot 1.3.1 JVM has
option to trace the garbage collection in a program. W
used that output to verify that the decreases in the sno
copyback rate occurred during garbage collection pe
ods. Since our JVM uses a single-threaded garbage c
lector, only one processor is active during the collectio
That by itself would explain a drop, but Figure 10 show
that the cache-to-cache transfer rate drops to almost z
during the garbage collection periods. Even the sing
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Figure 9: Effect of Garbage Collection on
Throughput Scaling

10 20 30

Time (in s)

0.0

0.5

1.0

C
ac

he
-t

o-
C

ac
he

 T
an

sf
er

s/
s 

(N
or

m
al

iz
ed

)

Figure 10: Cache-to-Cache Transfers Per
Processor Per Second Over Time (Normalized)
8



we
-

w
are
t
a

tly
is
h
the
f

ar-
s a

nd
sor
s
so-
h
es)
is-
processor which is performing the collection causes
fewer cache-to-cache transfers.

4.6. Benchmark Scaling Differences
One of the most striking differences between

SPECjbb and ECperf is the effect that scaling the bench-
mark size has on memory behavior. Like most commer-
cial workload benchmarks, official measurements of
SPECjbb and ECperf require that the benchmark size
increase with input rate. In other words, faster systems
must access larger databases. In SPECjbb, the input rate
is set by the number of warehouses, which determines the
number of threads in the program in addition to the size
of the emulated database. ECperf has a similar scaling
factor, the Orders Injection Rate. However, because the
database and client drivers run on different machines,
increasing the Orders Injection Rate has much less
impact on the middle-tier memory behavior.

Figure 11 shows the average heap size immediately
after garbage collection in SPECjbb and ECperf. The size
of the heap after collection is an approximation of the
amount of live data. As the scale factor (i.e., warehouses)
increases, SPECjbb’s memory use increases linearly
through approximately 30. Beyond 30 warehouses, the
average live memory decreases because the generational
garbage collector begins compacting the older genera-
tions. This slower collection process results in dramatic
performance degradation (not shown). By contrast, the
memory use of ECperf increases up to an Orders Injec-
tion Rate of approximately 6, then remains roughly con-
stant through 40. This result suggests that using SPECjbb
could lead memory system designers to overestimate the
memory footprints of middleware applications on larger
systems.

5.  Cache Performance
The previous section showed that memory system

stalls were a significant detriment to scalability on the

Sun E6000. To understand this behavior more deeply,
used full-system simulation to evaluate a variety of mem
ory system configurations. Our simulation results sho
that whereas the scaling properties of these workloads
similar, the cache behavior of ECperf is quite differen
from that of SPECjbb. ECperf has a small data set and
low data-cache miss rate. SPECjbb puts significan
more pressure on the data cache, particularly when it
configured with a large number of warehouses. Althoug
ECperf has a smaller data cache miss rate than even
smallest configuration of SPECjbb, a higher fraction o
its total memory is shared between threads. Wider sh
ing and a smaller data working set make shared-cache
more effective design for that workload

5.1.  Cache Miss Rates
Figure 12 and Figure 13 present the instruction a

data cache miss rates, respectively, for a uniproces
system with a range of cache sizes. All configuration
assume split instruction and data caches, 4-way set as
ciativity and 64-byte blocks. We simulated SPECjbb wit
three different scaling factors (1, 10, and 25 warehous
to examine the impact of the larger memory sizes d
cussed in Section 4.6.
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Figure 11: Memory Use vs. Scale Factor
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These graphs demonstrate that both benchmarks
place at most moderate demand on typical level one (L1)
and level two (L2) caches. Typical L1 caches, falling in
the 16 KB–64 KB range, exhibit miss rates of 10–40
misses per 1000 instructions. For typical L2 cache sizes
of 1 MB and larger, the data miss rate falls to less than
two misses per 1000 instructions. Instruction misses are
even lower, falling well below one miss per 1000 instruc-
tions. The two benchmarks behave similarly, but do have
two notable differences. First, ECperf has a much higher
instruction cache miss rate for intermediate size caches
(e.g., 256 KB). Second, the data miss rate for SPECjbb
with one warehouse is roughly comparable to that for
ECperf, but it increases by as much as 30% as the data set
scales to 25 warehouses. This result is not surprising,
given that SPECjbb’s live data increases linearly with the
number of warehouses (see Figure 11).

5.2.  Communication Footprint
To provide insight into the communication behavior

of the workloads, we measured the footprint of the data
causing cache-to-cache transfers. As shown in Figure 14,
all of the cache-to-cache transfers observed in SPECjbb
came from 12% of the cache lines touched during the
measurement period, and over 70% came from the most
active 0.1% of cache lines. For both benchmarks, a sig-
nificant fraction of the communication is likely due to a
few highly contended locks. The single cache line with
the highest fraction of the cache-to-cache transfers
accounted for 20% of the total for SPECjbb and 14% for
ECperf. This resembles earlier findings for databases and
OLTP workloads [7]. In contrast to SPECjbb, however,
the most active 0.1% of cache lines in ECperf account for
only 56% of the cache-to-cache transfers. Furthermore,
the cache-to-cache transfers are spread over half of the
touched cache lines. A major contributor to this differ-
ence between ECperf and SPECjbb is SPECjbb’s emu-
lated database. The object trees that represent the

database are updated sparsely enough that they ra
result in cache-to-cache transfers. Figure 15 shows
cumulative distribution of cache-to-cache transfers vers
the amount of data transferred (on a semi-log plot). Th
graph shows that even though SPECjbb has a larger to
data set, ECperf has a larger communication footprint
an absolute, not just a percentage, basis.

5.3.  Shared Caches
The high cache-to-cache transfer rates of these wo

loads suggest that they might benefit from a shared-ca
memory system, which have become increasingly co
mon with the emergence of chip multiprocessors (CMP
[14]. Shared caches have two benefits. First, they elim
nate coherence misses between the processors sharin
same cache (private L1 caches will still cause coheren
misses, but these can be satisfied on-chip much fas
than conventional off-chip coherence misses). Seco
compulsory misses may be reduced through inter-proc
sor prefetching (i.e., constructive interference). The obv
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ous disadvantage of shared caches is the potential
increase in conflict and capacity misses.

To evaluate shared caches, we used Simics to model
an 8-processor SPARC V9 system with four different
memory hierarchies. In the base case, each processor has
a private 1 MB L2 cache, for a total of 8 caches. In the
other three cases, the eight processors share one, two, and
four 1 MB caches. The total size of all caches is the prod-
uct of the cache size (i.e., 1 MB) and the number of
caches.

Figure 16 shows the data miss rates for ECperf and
SPECjbb as the number of processors per cache
increases. For ECperf, the benefit of reducing coherence
misses more than makes up for the additional capacity
and conflict misses. ECperf has the lowest data miss rate
when all eight processors share a single cache, even
though the aggregate cache size is 1/8 the size in the base
case (i.e., private caches). Sharing had the opposite effect
on SPECjbb. Even though SPECjbb had a significant
fraction of cache-to-cache transfers, the larger data set
size (due to the emulated database) results in an increase
in overall miss rate for 1 MB shared L2 caches.

6.  Related Work
This paper extends previous work by examining

examples of an important emerging class of commercial
applications, Java-based middleware. Cain, et al. describe
the behavior of a Java Servlet implementation of TPC-W,
which models an online bookstore [5]. Though the Serv-
lets in their implementation are also Java-based middle-
ware, that workload is also quite different than ECperf,
since it does not maintain session information for client
connections in the middle tier. The Servlets share a pool
of database connections in that implementation like the
application server in ECperf. However, no application
data is exchanged between the Servlets.

Previous papers have presented the behavior of com-
mercial applications. Among the most notable are those
that describe the behavior of Database Management Sys-
tems (DBMS) running the TPC benchmarks, TPC-C and
TPC-H [1][3]. Ailamaki, et al. report that DBMS’s spend
much of their time handling level-1 instruction and level-
2 data misses [1]. Barroso, et al. report that the memory
system is a major factor in the performance of DBMS
workloads, and that OLTP workloads are particularly
sensitive to cache-to-cache transfer latency, especially in
the presence of large second level caches [3]. These stud-
ies demonstrate that the execution time of DBMS is
closely tied to the performance of the memory system.

Other studies have also examined Java workloads.
Luo and John present a characterization of VolanoMark
and SPECjbb2000 [10]. VolanoMark behaves quite dif-
ferently than ECperf or SPECjbb because of the high
number of threads it creates. In VolanoMark, the server
creates a new thread for each client connection. The
application server that we have used, in contrast, shares

threads between client connections. As a result, the m
dle tier of the ECperf benchmark spends much less tim
in the kernel than VolanoMark. SPECjbb also has a mu
lower kernel component than VolanoMark. Marden, et a
compare the memory system behavior of a PERL C
script and a Java Servlet [12]. Chow, et al. measure u
processor performance characteristics on transacti
from the ECperf benchmark [6]. They present correl
tions between both the mix of transaction types and sy
tem configuration to processor performance. Shuf, et
measure the cache performance of java benchmar
including pBOB (now SPECjbb). They find that eve
fairly large L2 caches do not significantly improve mem
ory system performance [16]. Their measurements, ho
ever, are limited to direct-mapped caches an
uniprocessors, while we consider multiprocessors with
way set-associative caches. They also find that TL
misses are a major performance issue. Although we d
not specifically measure TLB miss rates, we found th
using the intimate shared memory (ISM) feature o
Solaris, which increases the page size from 8 KB
4 MB, increased performance of ECperf by more tha
10%.

Barroso, et al. [4] and Olukotun, et al. [14] discus
the performance benefits of chip multiprocessors usi
shared caches. We extend their work by evaluating t
impact of shared caches on SPECjbb and ECperf.

7.  Conclusions
In this paper, we have presented a detailed charac

ization of two popular Java-based middleware benc
marks. ECperf is a complex, multi-tier benchmark tha
requires multiple machines, a commercial database s
tem, and a commercial application server. In contra
SPECjbb is a single application that is trivial to insta
and run. The distributed nature of ECperf makes th
installation and management of that benchmark more d
ficult, but it also provides an opportunity to isolate th
behavior of each tier individually.

We find that both workloads have low CPIs and low
memory stall times compared to other important com
mercial server applications (e.g., OLTP). Running on th
moderate size multiprocessors in our study, both wor
loads maintained small data working sets that fit well
the 1 MB second-level caches of our UltraSPARC II pro
cessors. More than half of all second-level cache miss
on our larger systems hit in the cache of another proc
sor.

SPECjbb closely approximates the memory behav
of ECperf except for two important differences. First, th
instruction working set of SPECjbb is much smaller tha
that of ECperf. Second, the data memory footprint
SPECjbb is larger than that of ECperf, especially as t
benchmark scales up for larger system sizes.

The difference in behavior could lead memory sy
tem designers toward different conclusions. For examp
11
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our simulation results demonstrate that ECperf is particu-
larly well suited to a shared-cache memory system even
when the total cache size is limited to 1 MB. In contrast,
the reduction in total cache capacity causes SPECjbb’s
performance to degrade.

This study compares two middleware benchmarks,
running on a specific combination of hardware, operating
system, Java virtual machine, application server, and
database system. Further study is needed to determine
how well these results apply to other Java middleware
and different versions of the underlying hardware and
software. However, we believe that as middleware
becomes better understood, it will prove increasingly
important to isolate its behavior from the effects of other
software layers.
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