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Abstract. Today, most software distributed shared memory systems
(SW-DSMs) lack industry standard programming interfaces which limit
their applicability to a small set of shared-memory applications. In order
to gain general acceptance, SW-DSMs should support the same look-and-
feel of shared memory as hardware DSMs. This paper presents a runtime
system concept that enables unmodified POSIX (Pthreads) binaries to
run transparently on clustered hardware. The key idea is to extend the
single process model of multi-threading to a multi-process model where
threads are distributed to processes executing in remote nodes. The dis-
tributed threads execute in a global shared address space made coherent
by a fine-grain SW-DSM layer. We also present THROOM, a proof-of-
concept implementation that runs unmodified Pthread binaries on a vir-
tual cluster modeled as standard UNIX processes. THROOM runs on top
of the DSZOOM fine-grain SW-DSM system with limited OS support.

1 Introduction

Clusters built from high-volume compute nodes, such as workstations, PCs, and
small symmetric multiprocessors (SMPs), provide powerful platforms for ex-
ecuting large-scale parallel applications. Software distributed shared memory
(SW-DSM) systems can create the illusion of a single shared memory across the
entire cluster using a software run-time layer, attached between the application
and the hardware. In spite of several successful implementation efforts [1], [2],
[3], [4], [5], SW-DSM systems are still not widely used today. In most cases,
this is due to the relatively poor and unpredictable performance demonstrated
by the SW-DSM implementations. However, some recent SW-DSM systems have
shown that this performance gap can be narrowed by removing the asynchronous
protocol overhead [5], [6], and demonstrate a performance overhead of only 30-
40 percent in comparison to hardware DSMs (HW-DSM) [5]. One obstacle for
SW-DSMs is the fact that they often require special constructs and/or impose
special programming restrictions in order to operate properly. Some SW-DSM
systems further alienate themselves from HW-DSMs by relying heavily on very
weak memory models in order to hide some of the false sharing created by their
page-based coherence strategies. This often leads to large performance variations
when comparing the performance of the same applications run on HW-DSMs.



We believe that, SW-DSMs should support the same look-and-feel of shared
memory as the HW-DSMs. This includes support for POSIX [7] threads run-
ning on some standard memory model and a performance footprint similar to
that of HW-DSMs, i.e., the performance gap should remain approximately the
same for most applications. Our goal is that binaries that run on HW-DSMs
could be run on SW-DSMs, without modifications.

In contrast to a HW-DSM system, where the whole address space of all
processes are kept coherent by hardware, most SW-DSMs only keep coherence
for specified segments in the user-level part of the virtual address space. This
segment, which we call GIMEM, is mapped shared across the DSM nodes using
the interconnect hardware. Furthermore, the text (program code), data and stack
segments of the UNIX process abstraction are private to the parent process and
its children on each node of the cluster. This creates a SW-DSM programming
model where special constructs are needed to separate shared data, which must
be allocated in G_LMEM, from private data, which is allocated in the data and
stack segments of the UNIX process at program loading. This is often done
by creating a separate heap space in GIMEM with an associated primitive for
doing allocation. In a standard multi-threaded world, there exist only one process
and one address space which is shared among all threads. There is no distinction
between shared and private data. Consider the following example: An application
allocates a shared global array for its threads to operate on. This is often done by
a single thread in an initialization phase. In a typical SW-DSM system such as
TreadMarks [3], a special malloc()-type call has to be implemented to allocate
the memory for the shared array inside the GCMEM. Also, the pointer variable
holding the address, which is allocated in the static data segment of the process,
has to be propagated to all remote nodes. This is often done by introducing a
special propagation primitive.

In this paper, we present THROOM which is a runtime system concept that
creates the illusion of a single process shared memory abstraction on a cluster.
In essence, we want to make the static data and heap segments globally acces-
sible by threads executing in remote nodes without introducing special DSM
constructs in the application code. In the light of the example above, the ap-
plication should use a standard malloc() call and the pointer variable should
be replicated automatically. The rest of this paper is organized as follows: First,
the THROOM concept is presented. Second, we give a brief presentation of the
SW-DSM used. We also specify the requirements of THROOM on the SW-DSM.
Third, we present a proof-of-concept implementation of THROOM on a single
system image cluster and finally we discuss the performance of this implemen-
tation as well as the steps needed to take THROOM to a real cluster.

2 The THROOM concept

In many implementations of SW-DSMs, the different nodes of the cluster all
run some daemon process to maintain the G_MEM mappings and to deal with
requests for coherency actions. In this paper we use the term user node to refer



to the cluster node in which the user executes the binary (the user process). All
other nodes are called remote nodes and their daemon processes will be called
shadow processes. In execution, THROOM consists of one process per node of
the cluster.

The fundamental idea of THROOM is to distribute threads from the user pro-
cess to shadow processes executing on remote nodes running different instances
of a standard UNIX OS kernel. As discussed earlier, such systems exists, but they
require non-standard programming models. To support a standard model such
as POSIX, it is required that the whole address space of the user process can
be accessed by all of the distributed threads. To accomplish this, we can simply
place the text, data and stack segments inside a G_MEM-type segment made co-
herent by a SW-DSM. This will create the illusion of a large scale shared memory
multiprocessor built out of standard software and hardware components.

3 DSZOOM - a Fine-Grained SW-DSM

Our prototype implementation is based on the sequentially consistent DSZOOM
SW-DSM [5]. Each DSZOOM node can either be a uniprocessor, a SMP, or
a CC-NUMA cluster. The node’s hardware keeps coherence among its caches
and its memory. The different cluster nodes run different kernel instances and
do not share memory with each other in a hardware-coherent way. DSZOOM
assumes a cluster interconnect with an inexpensive user-level mechanism to ac-
cess memory in other nodes, similar to the remote put/get semantics found in
the cluster version of the Scalable Coherent Interface (SCI), or the emerging
InfiniBand standard that supports RDMA READ/WRITE as well as the atomic oper-
ations CmpSwap and FetchAdd [8].! Another example is the Sun Fire (TM) Link
interconnect hardware [9].

While traditional page-based SW-DSMs rely on TLB traps to detect co-
herence “violations”, fine-grained SW-DSMs like Shasta [10], Blizzard-S [11],
Sirocco-S [12] and DSZOOM [5] insert the coherence checks in-line. In DSZOOM,
this is done by replacing each load and store that may reference shared data of
the binary with a code snippet (short sequence of machine code). In terms of
THROOM, the only requirement on the SW-DSM system is that it uses binary
instrumentation. THROOM will also inherit the memory consistency model of
the SW-DSM system.

4 Implementing THROOM

This section discuss how we can implement the THROOM concept using stan-
dard software components and the DSZOOM SW-DSM.

! Atomic operations are needed to support a blocking directory protocol [5].



4.1 Achieving transparency

The most important aspect of THROOM is that it is totally transparent to
the application code, no recompilation is allowed. To achieve this, we use a
technique called library interposition or library pre-loading [13], which allow us
to change the default behavior of a shared library call without recompiling the
binary. Many operating systems implement the core system libraries such as
libc, libpthread and 1ibm as shared libraries. Using inter-positioning, we can
catch a call, to any shared library and redirect it to our own implementations.
In practice, this is done by redefining a symbol in a separate shared library to
be pre-loaded at runtime. When an application calls the function represented
by the symbol, the runtime linker searches its path for a match. Pre-loading
simply means that we can insert an alternate implementation before the standard
implementation in the search path of the linker. Pre-loading also allow us to reuse
the native implementation. Original arguments can be modified in the interposer
before the call to the native implementation is made.?

4.2 Distributing Threads

To distribute threads, the pthread_create() call is redefined in a pre-loaded
library. The interposed implementation, first schedules the thread for execution
in a remote shadow process. Second, the chosen shadow process is told to create a
new thread, by calling the native pthread create () from within the interposing
library. The new distributed thread will start to execute in the shadow process,
with arguments pointing to the software context of its original user process.

4.3 Creating a Global Shared Address Space

A minimal requirement for a distributed thread to execute correctly in a shadow
process is that it must share the whole address space of the user process. To ac-
complish this, the malloc() call is redefined in a pre-loaded library to allocate
memory from G_MEM instead of the original data segment of the user pro-
cess. This will make all dynamically allocated data accessible from the shadow
processes. Code and static data are made globally accessible by copying the seg-
ments containing code and static data from the user process to the G_MEM. The
application code is then modified, using binary instrumentation, to access the
G_MEM copy instead of the original segments. This will make the application
execute entirely in the global shared memory segment. Hence, no special pro-
gramming constructs are needed to propagate writes to static data. The whole
process is also transparent in the sense that a user does not need access to the
application source code, as binary instrumentation modifies the binary itself.
All references to the G_MEM must also be made coherent as the hardware
only support remote reads and writes. This is taken care of by a fine-grain SW-
DSM. If the SW-DSM use binary instrumentation to insert snippets for access

2 To our knowledge, Linux, Solaris, HP-UX, IRIX and Tru64 all support library pre-
loading.



control, we can simply add instructions needed for the static data access diversion
to these snippets. In all cases, a maximum of four instructions were added to the
existing snippets of DSZOOM. To lower the overheads associated with binary
instrumentation, the present implementation does not instrument accesses to the
stack. Hence stacks are considered thread private. Although this is not in full
compliance with the POSIX model of multi-threading, it is sufficient to support
a large set of pthread applications.

4.4 Cluster-Enabled Library Calls

Most applications use system calls and/or calls to standard shared libraries such
as libc. If the arguments refer to static data, the accesses must be modified
to use the GIMEM in order for memory operations to be coherent across the
cluster. This can be done in at least two ways. We either instrument all library
code or we overload the library calls to copy any changes from the user process
original data segments to the G_IMEM copies at each library call. Remember that
un-instrumented code referencing static data of the application will operate in
the original data segments of the user process. Hence, copying is needed to make
any modifications visible to other nodes.

Instrumenting all library code is in principle, the best way to cluster-enable
library calls. However, our instrumentation tool, EEL [14], was not able to instru-
ment all of the libraries. Instead, we had to use the library interposition method
for our prototype implementation. An obvious disadvantage of this method is
that we have to redefine a large amount of library calls, especially if we want
complete POSIX support. Another disadvantage is the runtime overhead asso-
ciated with data copying, especially for I/O operations. A better solution would
be to generate the coherence actions on the original arguments before the call
is made in the application binary, see Scales et. al. [1]. This requires a very
sophisticated instrumentation tool, which is outside the scope of this work.

5 Implementation Details

We have implemented the THROOM system on a 2-node Sun WildFire prototype
SMP cluster [15], [16]. The cluster is running a single-system image version of
Solaris 2.6 and the hardware is configured as a standard CC-NUMA architecture.
Although, this system already supports a global shared address space, we can
still use it to emulate a future THROOM architecture.

The runtime system is implemented as a shared library. A user simply sets
the LD_PRELOAD environment variable to the path of the THROOM runtime li-
brary, and then executes the instrumented binary. As the system is a single
system image we can use standard Inter Process Communication (IPC) primi-
tives to emulate a real distributed cluster. The DSZOOM address space is set up
during initialization using the .init section. This makes the whole initialization
transparent. Control is then given to the application. The user process issues



a fork(2) call to create a shadow process, which will inherit its parents map-
pings by the copy-on-write semantics of Solaris. The two processes are bound
to the two nodes using the WildFire first-touch memory initialization and the
pset_bind () call. The home process then reads its own /proc file system to
locate the .text, .data, and .bss segments and copies them to the G_MEM.

The shadow process waits on a process shared POSIX conditional variable
to create remote threads for execution in the G_IMEM. Parameters are passed
through a shared memory mapping separated from the G_MEM. Since the re-
mote thread is created in another process, thread IDs are no longer unique. To
fix this, the remote node ID is copied into the most significant eight bits of
the thread type, which in the Solaris 2.6 implementation is an unsigned integer.
Similar techniques are used for other pthread calls. Also, the synchronization
primitives of the application were overloaded using pre-loading to pre-prepared
PROCESS_SHARED POSIX primitives to allow for multi-process synchronization.
More details on the implementation are available in Lof et al. [17].

6 Performance Study

First a set a test pthread programs were run to verify the correctness of the im-
plementation. To produce a set of pthread programs to be used as a comparison
to DSZOOM, ten SPLASH-2 applications [18] were compiled using the GCC
v2.95.2 compiler without optimization (-00)® and a standard Pthread PAR-
MACS macro implementation (c.m4.pthreads.condvar_barrier) was employed.
No modifications was made to the PARMACS run-time system or the appli-
cations. To exclude the initialization time for the THROOM runtime system,
timings are started at the beginning of the parallel phase. All timings have
been performed on the 2-node Sun WildFire [15] configured as a traditional CC-
NUMA architecture. Each node has 16 UltraSPARCII processors running at 250
MHz. The access time to node-local memory is about 330ns. Remote memory is
accessed in about 1800ns. In Table 1, we see that more instructions are replaced
in the case of THROOM since all references to static data have to be instru-
mented. This large difference in replacement ratio compared to DSZOOM is
explained by the fact that DSZOOM can exploit the PARMACS programming
model and use program slicing to remove accesses to static data that are not
shared. Figure 1 and 2 shows execution times in seconds for 8- and 16-processor
runs for the following THROOM configurations:

THROOM_RR THROOM runtime system using library pre-loading. Round-
robin scheduling of threads between the two nodes. All references to static
data are instrumented.

DSZOOM Used as reference. Aggressive slicing and snippet optimizations. Op-
timized for a two-node fork-exec native PARMACS environment, see [5].

3 The code is compiled without optimization to eliminate any delay slots, which EEL
cannot handle correctly.



Program Problem size, Iterations Replaced Loads (%)|Replaced Stores (%)
FFT 1 048 576 points (48.1 MByte) 44.6(19.0) 32.8(16.5)
LU-C 1024x1024, block 16 (8.0 MByte) 48.3(15.5) 23.0(9.4)
LU-NC  |1024x1024, block 16 (8.0 MByte) 49.2(16.7) 27.7(11.1)
RADIX 4194 304 items (36.5 MByte) 54.4(15.6) 31.4(11.6)
Barnes 16 384 bodies (8.1 MByte) 56.6(23.8) 55.4(31.1)
Ocean-C 514x514 (57.5 MByte) 50.6(27.0) 31.2(23.9)
Ocean-NC 258x258 (22.9 MByte) 51.0(11.6) 39.0(28.0)
Radiosity room (29.4 MByte) 41.1(26.3) 35.1(27.1)
Water-NSQ| 2197 mol, 2 steps (2.0 Mbyte) 50.4(13.4) 38.0(16.2)
Water-SQ | 2197 mol, 2 steps (1.5 Mbyte) 48.5(15.7) 32.5(13.9)

Table 1. Problem sizes and replacement ratios for the 10 SPLASH-2 applications
studied. Instrumented loads and stores are showed as a percentage of the total amount
of load or store instructions. The number in parenthesis shows the replacement ratio
for the DSZOOM SW-DSM without THROOM.

CC-NUMA Uses the same runtime system as DSZOOM but without any in-
strumentations. Coherence is kept by the WildFire hardware [5]

A study of Figures 1 and 2 reveals that the present implementation is slower than
a state-of-the-art SW-DSM such as DSZOOM. The average runtime overhead
compared to DSZOOM for THROOM_RR is 65% on 8 CPUs and 78% on 16
CPUs. In order to put these numbers into the context of total SW overhead
compared to a HW-DSM, the average slowdown comparing the CC-NUMA and
the DSZOOM cases is only 26%. The most significant contribution to the high
overhead when comparing DSZOOM to THROOM is the increased number of
instrumentations needed to support the POSIX thread model. Another source
of overhead is the inefficient implementation of locks and barriers. This can be
observed by comparing the performance of Barnes, Ocean-C, Ocean-NC and
Radiosity from Figures 1 and 2. The performance of these four applications
drops when increasing the number of threads as they spend a significant amount
of time executing in synchronization primitives. The DSZOOM runtime system
uses its own implementations of spin-locks and barriers which are more scalable.

7 Related work

To our knowledge, no SW-DSM system has yet been built that enables transpar-
ent execution of an unmodified POSIX binary. The Shasta system [1], [2] come
closest to our work and this system has showed that it is possible to run an Ora-
cle database system on a cluster using a fine-grain SW-DSM. Shasta has solved
the OS functionality issues in a similar way as is done in THROOM although
they support a larger set of system calls and process distribution. THROOM
differs from Shasta in that it supports sharing of static data. THROOM also
supports thread distribution. Shasta motivates the lack of multi-threading sup-
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Fig. 1. Runtime performance of the THROOM runtime system. Two nodes with 4
CPUs each.

port by claiming that the overhead associated with access checks lead to lower
performance [1].

Another system announced recently is the CableS system [19] built on the
GeNIMA page-based DSM [6]. This system support a large set of system calls,
but they have not been able to achieve binary transparency. Some source code
modifications must be made and the code must be recompiled for the system
to operate. Another work related to THROOM is the OpenMP interface to the
TreadMarks page-based DSM [20] [3], where a compiler front-end translates the
OpenMP pragmas into TreadMark fork-join style primitives. The DSM-Threads
system [21] provide a page-based DSM interface similar to the Pthreads standard
without binary transparency.

8 Conclusions

We have showed that it is possible to extend a single process address space to a
multi-process model. Even though the current THROOM implementation relies
on some of the WildFire’s single system image properties, we are convinced
that the THROOM concept can be implemented on a real cluster. In a pure
distributed setting, additional issues need to be addressed. One way of initializing
the system could be to use a standard MPI runtime system for process creation
and handshaking. The address space mappings must also be set up using the
RDMA features of the interconnect hardware. Also, synchronization needs to be
handled more efficiently (see Radovié et. al. [22]), and we need to create more
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Fig. 2. Runtime performance of the THROOM runtime system. Two nodes with 8
CPUs each.

complete and more efficient support for I/O and other library calls. For complete
POSIX compliance, we also need to address the problem of threads sharing data
on the stack.
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