
IT Master theses
UPTEC F 00 093

DSZOOM – Low Latency Software–
Based Shared Memory

ZORAN RADOVIĆ

Supervisor: Professor Erik Hagersten

Sponsors: Sun Microsystems, PSCI

UPPSALA UNIVERSITY
Department of Information Technology

� ��������� 	
���

������������ ��������
��! "�#	%$&�!'(��) �+*,�! "��)
� ��- �. ��

BY

ZORAN RADOVIĆ

December 2000

DEPARTMENT OF COMPUTER SYSTEMS

INFORMATION TECHNOLOGY

UPPSALA UNIVERSITY

UPPSALA

SWEDEN

Dissertation for the degree of Master of Science in Technology
at Uppsala University 2000

DSZOOM – Low Latency Software–Based Shared Memory

Zoran Radović
zoranr@it.uu.se

Department of Computer Systems
Information Technology

Uppsala University
Box 337

SE-751 05 Uppsala
Sweden

http://www.it.uu.se/

c
�

Zoran Radović 2000
ISSN 1401-5757

Printed by the Department of Information Technology, Uppsala University, Sweden

1

ABSTRACT

Software-implementations of shared memory are still far behind the performance
of hardware-based shared memory and are not viable options for most fine-grain
shared-memory applications. The major source for their inefficiency comes from
the cost of interrupt-based asynchronous protocol processing, not from the actual
network latency. As the raw hardware latency of inter-node communication de-
creases, the asynchronous overhead in the communication becomes more domi-
nant. Elaborate schemes, involving dedicated hardware and/or dedicated protocol
processors, have been suggested to cut the overhead.

This thesis describes how all the asynchronous overhead can be completely re-
moved by running the entire coherence protocol in the requesting processor. This
not only removes the asynchronous overhead, but also makes use of a processor
that otherwise most likely would be stalled. The technique is applicable to both
page-based and fine-grain software shared memory systems.

The proof-of-concept implementation presented in this thesis—DSZOOM—is a
fine-grain software-based shared memory. It demonstrates a protocol-handling
overhead below a microsecond for all the actions involved in a remote load op-
eration, to be compared to the fastest implementation to date of around ten micro-
seconds. The all-software protocol is implemented assuming only some basic low-
level primitives in the cluster interconnect. The implementation is thread-safe and
allows all processors in a node to simultaneously perform remote operations.
Based on a remote atomic and simple remote put/get operations the requesting
processor can take the role of the directory agent, traditionally assumed by a re-
mote protocol agent in the home node in other implementations.

2

ACKNOWLEDGEMENTS

Many people have been extremely helpful and supportive during the development
time of this thesis.

First of all, I would like to thank professor Erik Hagersten for introducing me to
this fascinating world of high performance computing and computer architecture;
and, of course, for giving me this great opportunity to be one of the coworkers in
the newly formed Uppsala Architecture Research Team (UART) at the Depart-
ment of Computer Systems, Uppsala University, Sweden. Erik has been enormous
inspiration and support.

I would also like to thank Glenn Ammons, Computer Sciences Department, Uni-
versity of Wisconsin, for his excellent support, encouragement, and quick EEL
updates during the whole DSZOOM implementation time. Many thanks goes to
Sverker Holmgren and Henrik Löf from the Department of Scientific Computing,
Uppsala University, for allowing/helping me to run the CPU-time-consuming
benchmarks on their Sun Enterprise E6000 SMP server.1

Finally, I would like to thank my family for their endless patience and understand-
ing.

Zoran Radović
Uppsala, december 2000

1 Well, in fact, it is a Sun-WildFire prototype SMP cluster consisting of two unmodified Sun En-
terprise E6000 machines running a slightly modified version of Solaris 2.6 operating system.
Erik’s design… [HK99]

3

CONTENTS

1 Introduction.. 4

2 Basic Idea... 7

2.1 Cluster Networks with Put/Get Semantics ... 7

2.2 DSZOOM Node Model .. 8

2.3 DSZOOM Blocking Directory Protocol Overview.................................. 8

2.4 Protocol Details .. 9

3 Proof-of-Concept Implementation... 12

3.1 SMP/PARMACS Programming Model.. 12

3.2 PARMACZ: Setting up Memory-Channel Communication 13

3.3 Zeel: Inserting Cache-Coherence Protocol Code into Binaries.............. 15

3.3.1 EEL Basics .. 16

3.3.2 Zeel Details ... 18

3.3.3 Modeling the Network Delays .. 19

4 Performance Study... 20

4.1 Experimental Setup .. 20

4.2 Benchmarks .. 20

4.3 DSZOOM Performance Overview... 22

5 Related Work ... 25

6 Conclusions.. 26

7 Future Work ... 27

References ... 28

Appendix A ... 34

Appendix B ... 37

4

1 Introduction
Clusters of symmetric multiprocessors (SMPs) usually provide a powerful plat-
form for executing parallel applications. To allow for shared-memory applications
to run on such clusters, software distributed shared memory (SDSM) systems
support the illusion of shared memory across the cluster via a software run-time
layer between the application and the hardware. This approach can potentially
provide a cost-effective alternative to hardware shared memory systems for exe-
cuting certain classes of workloads (commercial and/or scientific). SDSM tech-
nology can also be used to connect several large hardware-coherent DSM systems
and thereby extend their upper scalability limit.

Most SDSM systems keep coherence between page-sized coherence units [L88,
LH89]. The normal per-page access privilege of the memory-management unit
offers a cheap access control mechanism for these SDSMs. The large page-size
coherence units created extra false sharing in the earlier SDSM systems and
caused frequent transfer of large pages between the nodes. In order to avoid most
of the false sharing, weaker memory models have been used to allow many update
actions to be lumped to a specific point in time, such as the lazy release consis-
tency (LRC) protocol [K95].

Fine-grain SDSMs with a more traditional cache-line-sized coherence unit have
also been implemented. Here, the access control check is either done by altering
of the error check code (ECC) [SFH+96] or by inline code snippets [SGT96]. The
small cache line size reduces the false sharing for these systems, but the explicit
access-control check adds extra latency for each remote load or store operation to
global data. The most efficient access check reported to date is three extra instruc-
tions adding three extra cycles for each load to global data [SFH+98].

Today’s implementations of SDSM systems suffer from quite long remote laten-
cies. Thus, their scalability has never reached acceptable levels for general SMP
shared-memory applications. This is especially important for the fine-grain SDSM
systems. The coherence protocol is often implemented as communicating agents
running in the different nodes sending requests and replies to each other, as illus-
trated in Figure 1. Each agent is responsible for accessing its local memory and
for keeping a directory structure for “its part” of the shared address space. The
agent where the directory structure for a specific coherence unit resides is called
its home node. The interrupt cost for asynchronous protocol processing is the sin-
gle largest component of the slow remote latency, not the actual wire delay in the
network or the software actually implementing the protocol. To our knowledge,
the shortest SDSM read latency to date is that of Shasta [SGA97]. The 15-
microsecond roundtrip read latency is roughly divided into 5 microseconds, of

5

“real” communication and 10 microseconds of interrupt and agent overhead
[G00]. Most other SDSM implementations have substantially larger interrupt
overheads, and latencies closer to 100 microseconds have been reported.

CPUs

Mem
Prot.
agent

CPUs

Mem
Prot.
agent

Figure 1: Protocol agent communication in traditional SDSM systems. The interrupt cost for asyn-
chronous protocol processing is the single largest component of the slow remote latency.

This thesis suggests a new efficient approach to implement a global coherence
protocol. While other work has proposed elaborate schemes for cutting down on
the overhead associated with interrupting and/or polling caused by the asynchro-
nous communication between the agents, e.g., [MFH+96, BLS99], DSZOOM has
completely eliminated the protocol-agent interactions. Instead, the entire coher-
ence protocol is implemented in the protocol handler running in the requesting
processor, as shown in Figure 2. Rather than relying on a “directory agent,” lo-
cated in the home node, as the synchronization point for the coherence of a cache
line, we use a remote atomic fetch-and-set operation to allow for protocol handlers
running in any node, not just the home node, to temporarily acquire atomic access
to the directory structure of the cache line. We believe that the solution presented
here would be beneficial both for page-sized and fine-grain SDSMs, even though
we will concentrate on fine-grain SDSMs in this thesis.

CPUs

Mem

Protocol

CPUs

Mem

f&s

Protocol

DIR

Figure 2: Our proposal. Coherence protocol is implemented in the protocol handler running in the
requesting processor.

We have implemented the DSZOOM systema proof-of-concept implementa-
tioninside one Sun Enterprise E6000 SMP server. We use an unmodified ver-
sion of EEL [LS95] to instrument the benchmark binaries used in our study and to
implement fine-grain SDSM between “virtual nodes,” modeled as processes in-
side one SMP. SPARC’s non-cacheable Block Load and Block Store instructions
are used to model the remote put/get instructions between the different address

6

spaces of a network. We have measured the actual protocol overhead to be less
than a microsecond for a remote load. Latency loops have been inserted into our
protocol in order to model the latency of realistic networks, such as the SCI-
CLUSTER (described later in the thesis) or the emerging InfiniBand standard.
We have also modeled latencies of more traditional interrupt-driven SDSM im-
plementations. A total of eight completely unmodified SPLASH-2 programs
[WOT+95] that have been developed for hardware SMP multiprocessors using
well-known PARMACS macros are studied.

The remainder of this thesis is organized as follows. Section 2 presents the basic
idea and a couple of assumptions about the cluster interconnect for this thesis. The
proof-of-concept implementation is described in Section 3 together with a short
introduction to the SMP/PARMACS programming model. Section 4 presents the
results of our performance study of the DSZOOM system and the description of
the experimental environment. Related work is shortly discussed in Section 5.
Section 6 presents the conclusions, and finally, in Section 7, the future work is
presented.

7

2 Basic Idea
This section will give a brief introduction to the basic idea for this thesis, and a
couple of assumptions about cluster interconnect used later on in the Proof-of-
Concept Implementation section.

2.1 Cluster Networks with Put/Get Semantics

Put/Get cluster semantics is one of the simpler hardware solutions to cluster net-
working. One of the earliest implementation of put/get clustering architectures is
the Scalable Coherence Interface (SCI) implementation by Dolphin.2 This usage
of a subset of the SCI standard protocol is referred to as SCI-CLUSTER in this
thesis. Unlike hardware coherent interfaces, which need to be connected to the
memory bus of a node, the SCI-CLUSTER is connected to an I/O bus, e.g., PCI or
SBUS.

SCI-CLUSTER is widely used as the high-performance cluster interconnect by
Sun Microsystems for large commercial and technical systems. A flavor of SCI-
CLUSTER, SCX Channel [S95], is also used as CRAY’s I/O-interconnect.

SCI-CLUSTER supports communication between cluster-nodes through put-and-
get operations directly into remote nodes’ memory, typically transferring a 64-byte
data unit. The different cluster nodes run different kernel instances and do not
share memory with each other in a coherent way; in other words, no invalidation
messages are sent between the nodes to maintain coherence when replicated data
are altered in one node. This removes the needs for the complicated coherence
scheme of SCI, built on double-linked lists of sharing pointers and allows it to be
connected to the I/O bus rather than the memory bus.

A cluster node can map remote memory into its I/O space. The remote memory
can be accessed using ordinary load-and-store operations. In order to prevent a
“wild node” from destroying crucial parts of other node’s memories, the incoming
transactions are sent through a network MMU (IOMMU). Each kernel needs to set
up an appropriate IOMMU mapping to the remotely accessible part of its memory
before the other nodes may access its memory. Given the correct initialization of
the IOMMU, user-level accesses to remote memory with cache-line granularity
have been enabled.

Typically, cluster communication is done through message-passing semantics
implemented using a collection of put/get primitives to remote memory. This has
allowed for low-latency implementations of MPI between workstations or servers.

2 SCI is better known for its implementation of coherent shared memory than its non-coherent
internode communication. In this thesis we only refer to its usage as a cluster interconnect.

8

A ping-pong round-trip latency of 5 microseconds, including MPI protocol over-
head, has been demonstrated on a SCI network with a 2 microsecond raw read
latency.

DSZOOM assumes a network with put/get semantics, similar to that of SCI-
CLUSTER; accessible from user code with a round-trip read latency of about 2
microseconds.3 The remote load-and-store operation are triggered by cache-line-
sized load-and-store instructions issued by any processor to the I/O space, e.g., the
Block Load and Block Store instructions of the Sun Microsystems UltraSPARC
implementations. We further assume support for two new remote-access opera-
tions not currently supported by the SCI-CLUSTER: the half-word-wide put16
and fetch-and-set16. The fetch-and-set16 operation is launched by a “normal”
half-word load operation and the put16 is launched by a half-word store to the
remotely mapped I/O space. The network interface detects the half-word load and
converts it into a fetch-and-set. The fetch-and-set16 operation will return the 16
bits of data that was stored in the remote memory and also atomically set the most
significant byte of the data in the same remote memory.

The emerging InfiniBand interconnect proposal also has an efficient way to
access remote memory without the involvement of a remote node using RDMA-
RD and RDMA-WR [IB00]. It also includes support for remote atomic operations
like compare-and-swap and fetch-and-increment.

2.2 DSZOOM Node Model

Each DSZOOM node consists of an SMP multiprocessor, e.g., the Sun Enterprise
E6000 SMP with up to 30 CPUs or the Pentium Pro Quad with up to four
CPUs. The SMP hardware keeps coherence among the caches and the memory
within each SMP node. The SCI-CLUSTER or InfiniBand-like interconnect, as
described above, connects the nodes. We further assume that the write order be-
tween any two endpoints in the network is preserved.

2.3 DSZOOM Blocking Directory Protocol Overview

The coherence protocol could easily be designed based on the original directory-
based proposal [CF78] if it was not for the race conditions. However, the race
conditions, caused by multiple simultaneous requests for the same cache line in
combination with an unordered network, greatly complicate the protocol imple-
mentation. Blocking directory coherence protocols have been suggested to sim-
plify the design and verification of hardware DSMs [HK99]. Typically, the direc-
tory blocks new requests to a particular cache line until all previous coherence
activity to that cache line has ceased. This eliminates all the race conditions since

3 We see no reason why this latency could not easily be cut in half using today’s technology, and
see this as a conservative number.

9

there only can be one cache line at a time that changes the directory state. The
requesting node sends a completion signal to mark the completion of an ongoing
activity.

The DSZOOM protocol is implemented in a distributed version of a blocking di-
rectory protocol. A processor that has detected the need for global coherence
activity will first acquire a lock associated with the cache line before starting the
coherence activity. A remote fetch-and-set16 operation to the corresponding direc-
tory entry in the home node will bring the directory entry to the processor and also
atomically acquire the cache line’s “lock” by setting the most significant byte
(MSB) of the cache entry to all ones. If the MSB byte of the directory entry re-
turned is already set, the cache line is “busy” by some other coherence activity.
The fetch-and-set16 operation is repeated until the most significant byte is zero.4

Now, the processor has acquired the exclusive right to perform coherence activi-
ties on the cache line and has also retrieved the necessary information in the direc-
tory entry using a single, 2-microseconds, operation. The processor now has the
same information as, and can assume the role of, the “directory agent” in the
home node of a more traditional SDSM implementation. Once the coherence ac-
tivity is completed, the lock is released and the directory is updated by a single
put16 transaction. No memory barrier is needed after the put16 operation since
any other processor will wait for the most significant byte of the directory entry to
become zero before the directory entry can be used again. Thus, the latency of the
remote write will not be visible to the processor.

To summarize, we have enabled the requesting processor to momentarily assume
the role of a traditional “directory agent,” including access to the directory data, at
the cost of one remote latency and the transfer of two small network packages.
This has the advantage of removing the need for asynchronous interrupts in for-
eign nodes and also allows us to execute the protocol in the requesting processor
that most likely would be idle waiting for the data. A further advantage is that the
protocol execution is divided between all the processors in the node, not just one
processor at a time as suggested in other proposals, e.g., [MFH+96].

2.4 Protocol Details

The SMP hardware keeps the coherence within the node, on top of which the
global SDSM protocol has been added. The SDSM state must be explicitly repre-
sented by data structures in the node. All the coherence activities and state names
discussed in this thesis apply to the SDSM protocol.

4 A random back-off scheme can be used to avoid a livelock situation, but has not been employed
in DSZOOM yet.

10

The DSZOOM directory supports a MSI5 protocol and has eight presence bits per
cache line, i.e., can support up to eight SMP nodes. Figure 3 shows the example of
the memory map for every process that is executed in the home node (NODE_ID
= 0) together with the directory entry for one particular cache line. By convention,
all cache lines in state INVALID store the “magic” data value BADBEEF,6 as in-
dependently suggested by [SFH+96, SGT96]. This value is checked for after each
load to quickly determine if some global coherence activity is needed.7

Each node has 2 bytes of MTAG associated with each group of eight cache lines,
divided into one lock byte and eight write-enable bits. Before each global store
operation, the MTAG byte is locked by a local atomic operation, similar to the
directory lock above. If the write-enable bit is set, the cache line is in state
MODIFIED and the lock byte is cleared again directly after the store has been
issued (assuming total store ordering (TSO), or processor consistency). A cleared
MTAG bit indicates that the cache line is in either state INVALID or SHARED
why some global coherence is needed (exemplified later in the thesis).

NODE_G_MEM

DIR_ENTRY

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

NODE_ID = 0
0 0 0 0 0 0 0 10 0 0 0 1 1 0 1LOCK LOCK

Shared cache line

Invalid cache line

After MEM_STOREBefore MEM_STORE

ORIGINAL_MEM_STORE

One DIR_ENTRY
per cache line (64byte)

Presence bits

Figure 3: MSI protocol in “action.” This figure assumes a four-node configuration.

MODIFIED cache lines in remote nodes are exclusively read and invalidated by
initially locking the remote MTAG (fetch-and-set16) and a (prefetch) get data is
issued back-to-back. After it has been determined that the MTAG has been locked,

5 Modified-Shared-Invalid (MSI) is a classical three-state cache coherence protocol. More details
about the MSI protocols can be found in many computer architecture textbooks, e.g., [CSG99].
6 In this implementation the BADBEEF “magic” value is equal to a constant binary notation bit-
pattern: 01010101…
7 If the case the BADBEEF value was the intended data value, some unnecessary global activities
have been created. This has proven to be a very rare event in all our studied applications.

11

BADBEEF is written to the remote data location using a put operation directly
after which the MTAG is released by issuing a remote put16 (back-to-back) with
the corresponding write-enable bit cleared the lock byte and set to zero.

The synchronization primitives of PARMACS macros are implemented directly
using fetch-and-set16 operations rather than on top of the SDSM coherent mem-
ory.

12

3 Proof-of-Concept Implementation
This section describes our proof-of-concept implementation inside one SMP
server. Because of the obvious reasons/assumptions described in the previous sec-
tions, we are currently unable to make a DSZOOM implementation on a real clus-
ter interconnect. Instead, we logically divided one SMP into several “imaginary”
SMPs, and rely on the DSZOOM protocol to keep the coherence between the
imaginary SMPs. To make this kind of implementation more realistic we model
the network delays for our virtual cluster as well by inserting some extra “dummy-
loops” into the coherence protocol code routines. Our approach for the proof-of-
concept implementation is illustrated in Figure 4. The unmodified SMP applica-
tion is compiled with a standard gcc compiler and an m4 macro preprocessor us-
ing the modified/extended PARMACS macros (called PARMACZ in this
implementation). The resulting file, the “(Un)executable,” is than passed to our
binary modification toolZeel. Zeel will insert the cache coherence protocol code
into binaries by statically analyzing and modifying executables. Finally, the
Zecutable (the executable running inside the virtual SMP cluster) is produced and
can be used as if it was executed inside one SMP.

SMP
Application

PARMACZ
Macros

m4 + gcc

Zecutable

(Un)executable

Zeel

Figure 4: Our approach for the proof-of-concept implementation of a DSZOOM system. The
Zecutable is an internal name for the executable running inside the virtual SMP cluster.

3.1 SMP/PARMACS Programming Model

One simple SMP application written with PARMACS macros is shown in Figure
5. These macros were developed at the Argonne National Laboratory. The original
specification for PARMACS macros can be found in [BBD+87, LO87]. There are
many different PARMACS macro implementations, implemented for the different
programming models and for the different computer architectures, based on sev-
eral execution and synchronization models, from classical Unix processes to mul-

13

tithreaded systems. Thus, example application in Figure 5, or any other PAR-
MACS application for that matter, can easily be ported to many parallel computer
architectures. Ideally, any modification/extension of any of the PARMACS mac-
ros should be reflected to all different PARMACS implementations as well. In this
thesis, the target machines for the proof-of-concept implementation of a
DSZOOM system are the Sun Enterprise SMP servers running Solaris 2.6 operat-
ing system, and therefore many of the macro modifications/extensions will only
be valid for that type of architecture. One of the reasons why the SMP/PARMACS
programming model is used in this thesis is that all of the popular SPLASH-2 ap-
plications from the benchmark suite are implemented with that relatively simple
and portable model.

MAIN_ENV
#define DEFAULT_P 4

struct G_Mem {
int id;
BARDEC(bar)
LOCKDEC(idlock)

} *Global;

int *counter;

main(int argc, char *argv[])
{

int i, MyNum = 0;

MAIN_INITENV(,67108864)

Global = (struct G_Mem *)
G_MALLOC(sizeof(struct G_Mem));

Global->id = 0;
BARINIT(Global->bar)
LOCKINIT(Global->idlock)

counter = (int *) G_MALLOC(sizeof(int));
*counter = 0;

for (i = 0; i < P-1; i++) {
CREATE(SlaveStart)

}
SlaveStart();
WAIT_FOR_END(P-1);
MAIN_END

}

void OneSolve(int MyNum)
{
int i;

/* barrier to ensure all initialization is done */
BARRIER(Global->bar, P);
for (i = 0; i < 1000; i++) {

LOCK(Global->idlock);
counter += 1;
UNLOCK(Global->idlock);

}
}

void SlaveStart()
{
int MyNum;

LOCK(Global->idlock)
MyNum = Global->id;
Global->id++;

UNLOCK(Global->idlock)
OneSolve(MyNum);

}

Figure 5: Simple SMP/PARMACS application.

Short description of a PARMACS macros used in a SPLASH-2 benchmark suite
can be found in Appendix A.

3.2 PARMACZ: Setting up the Memory-Mapped Communication

Modified/Extended PARMACS macros (called PARMACZ in this implementa-
tion) are responsible for, among many other things, setting up the memory-
mapped communication between the processes inside one SMP. Address space
layout and attachment of the shared memory objects for every process running in
the home node (NODE_ID = 0) is shown in Figure 6. Shared memory objects
with shared memory identifiers A, B, C, and D represents the physical
shared/global memory of every node in the cluster. Shared memory identifier E,
which is attached to the G_NODE_DATA area, contains the shared directory

14

structure for the virtual SMP cluster and the global DSZOOM run-time system
data. Local DSZOOM data for every process (e.g., NODE_ID) is stored in a pri-
vately mapped L_NODE_DATA area in a current implementation.

The main problem with spawning processes is that they are very expensive to cre-
ate and destroy, and context switches (which involve changing the address space)
also have a high cost. Nowadays, multithreaded operating systems and microker-
nels offer threads as a lightweight method to exploit parallelism. DSZOOM run-
time system is currently implemented only with a fork-exec model, as shown in
Figure 7. It should be possible to use some other lightweight method (e.g.,
POSIX-threads, Solaris-threads, or LWP-processes) inside one node at least, to
better exploit parallelism in this type of systems.

The reason why we only use fork-exec model in this implementation is that it is
quite easy to collect different type of statistics on “per-thread” basis, and that we
currently do not run applications with huge number of threads, i.e., maximum
number of threads is the number of CPUs in a system.

shmid = D

shmid = C

shmid = B

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

0x80000000

STACK

0x40000000

TEXT & DATA

HEAP

L_NODE_DATA

G_NODE_DATA

0xA0000000

0x20000000

shmid = A

shmid = E

Physical Memory

NODE_G_MEM

shmat

shmat

shmat

shmat

shmat

shmat

shmget

shmget

shmget

shmget

shmget

Figure 6: Address space layout and attachment of the shared memory objects for home node,
NODE_ID = 0. This figure assumes that virtual SMP cluster consists of four nodes.

More information about modifications/extensions of the original PARMACS im-
plementation can be found in Appendix A together with some brief description of
the PARMACS macros used in the SPLASH-2 benchmark suite.

15

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK(s)

TEXT & DATA

HEAP

NODE_ID = 0

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK(s)

TEXT & DATA

HEAP

NODE_ID = 0

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 1

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 1

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 2

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 2

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 3

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 3

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK(s)

TEXT & DATA

HEAP

NODE_ID = 0

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK(s)

TEXT & DATA

HEAP

NODE_ID = 0

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK(s)

TEXT & DATA

HEAP

NODE_ID = 0

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK(s)

TEXT & DATA

HEAP

NODE_ID = 0

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK(s)

TEXT & DATA

HEAP

NODE_ID = 0

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK(s)

TEXT & DATA

HEAP

NODE_ID = 0

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 1

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 1

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 1

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 1

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 1

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 1

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 2

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 2

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 2

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 2

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 2

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 2

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 3

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 3

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 3

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 3

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 3

G_NODE_DATA

NODE_G_MEM

NODE_0_G_MEM

NODE_1_G_MEM

NODE_2_G_MEM

NODE_3_G_MEM

STACK

TEXT & DATA

HEAP

NODE_ID = 3

G_NODE_DATA

Figure 7: Four-Node virtual SMP Cluster example, with total of 16 CPUs. Fork-exec model is used
here to exploit parallelism. Different type of counters are easily implemented and used on “per-

thread” basis.

3.3 Zeel: Inserting Cache-Coherence Protocol Code into Binaries

There are at least three different ways of inserting cache-coherence protocol code
into benchmark binaries. The most classical way of doing this is to make a com-
piler modification to perform that particular task, e.g., create a compiler backend
that is capable of exchanging all relevant loads and stores with corresponding
code snippets for those loads and stores. Dynamic code instrumentation (e.g.,
JiTI: a Robust Just in Time Instrumentation Technique, [RB00]) is another tech-
nique that also is capable of performing this task. The third alternative, the static
binary instrumentation, is a technique usually described as a low-cost, medium-
effort approach of inserting sequences of machine instructions into a program in
executable or object format. Many tools have been written in the past that uses
this technique for various purposes. All these tools work essentially in the same
way, performing a sequence of three phases (discussed more in [AF96]):

1. Analysis

a. Break code into functions and basic-blocks

b. Analyze control transfers (jumps, branches, calls)

c. Produce control flow graph (CFG)

16

2. Instrumentation

a. Insert, change, and/or remove code

3. Regeneration

a. Compute address translation

b. Produce translation table if necessary

c. Regenerate each basic-block, patching control transfers

d. Update symbol table and relocation information if necessary

There are several successful applications of binary modification systems around
(with both static and dynamic approaches); QPT [BL94] – a basic block counting
tool for SPARC machines, Pixie [S91], Mahler [WP87], Epoxy [W92], EEL
[LS95] – an executable-editing library, ATOM [SE94] and Alto [BD96] for Alpha
machines, ETCH [RVL+97] for Intel machines running Microsoft Windows NT
operating system, and Paradyn for multiple architectures [MCC+95, ZML99,
XMN99].

For our purposes, EELa C++ library for machine-independent executable edit-
ingseemed to be a good match, it was successfully used in several similar pro-
jects based on the UltraSPARC architecture, e.g., Blizzard-S [SFL+94] and Si-
rocco-S [SFH+98]. The source code is also freely available.

3.3.1 EEL Basics

EEL (Executable Editing Library) encapsulates the analysis (phase 2 in the previ-
ous subsection) and regeneration (phase 3 in the previous subsection) phases of
binary instrumentation, allowing the tool programmer to focus on only the instru-
mentation phase. EEL’s abstractions are similar to those found in compilers. The
library handles executables (statically and dynamically linked), as well as object
files. EEL presents the executable (or object file) to the programmer as a set of
routines, each consisting of a collection of basic-blocks. A basic-block consists of
a single sequence of straight-line instructions. Routines, basic-blocks, and instruc-
tions are some of the EEL abstractions (in form of C++ classes) that hide machine
and system specific details from the tool programmer. For example, there are op-
erations to obtain the registers that are read and written by an instruction. On the
other hand, machine specific details are available if required, such as for example
the binary opcode of an instruction.

EEL instrumentation is usually performed using snippets (another major EEL ab-
straction represented as a C++ class). A snippet is simply a sequence of binary

17

machine instructions. Snippets can be inserted between any8 instructions in basic-
blocks, or along control flow edges.

Most of the Zeel implementation, in particular code snippets, is performed with
the machine specific instructions (see Appendix B.1.2 and B.3.2 for examples
how to create code snippets with EEL). The code in Figure 8 shows how easy it is
to perform instrumentation on each routine in an executable.

int
main(int argc, char* argv[])
{

executable* e = exec_kit()->open(argv[1], NULL);
exec-read_contents();

routine* r;
e->read_contents();
e->routines()->sort(cmp_routine_by_start);
FOREACH_ROUTINE (r, e->routines())
{

instrument(r);

while (!e->hidden_routines()->is_empty())
{

r = e->hidden_routines()->first();
e->hidden_routines()->remove(r);
e->routines()->add(r);
instrument(r);

}
}

addr new_start = exec->start_address();
if (new_start != 0)
{

new_start = exec->edited_address(new_start);
}
exec->write_edited_executable(cat_string(argv[1], “.ins”),

new_start);
return (0);

}

Figure 8: Example of how to instrument every routine in an executable with EEL.

Initially, the set of routines in an executable are defined by the functions appear-
ing in the symbol table (if present), or by the entry point into the executable.
Then, EEL performs call graph analysis incrementally, on a per routine basis.
Analysis of a routine containing a call may expose the entry point of a new rou-
tine. The code in Figure 8 shows that after instrumenting a routine, the set of

8 There are some places where snippets cannot be inserted, as, e.g., after a control transfer instruc-
tion. Typically, delay slot instructions are difficult to replace/modified. In this thesis, only non-
optimized executables are instrumented with EEL, i.e., there are no delay slots what so ever.

18

hidden_routines is consulted, to see if any new routines were discovered. If
so, the new routines are added to the set of regular routines and then instrumented
as well.

More information about EEL details and how to use the library can be found in
[L97].

3.3.2 Zeel Details

Zeelour binary modification toolhas been developed with a version 4.0.1 of
the EEL library and has been compiled with a gcc version 2.8.1.9 In the current
implementation, Zeel does not need to instrument accesses to non-shared, i.e.,
private data, which includes all stack and static data. Table 1 shows which SPARC
instructions are instrumented with a Zeel tool. Every single instruction from the
table below is replaced with the corresponding cache coherence protocol code
snippet.

MEM_LOAD_
STORE

MEM_STOREMEM_LOAD

LDD

LDX

LDUW

LDUH

LDUB

LDSW

LDSH

LDSB

Load Integer

STD

STX

STQFSTWLDQF

STDFSTHLDDF

LDSTUBSTFSTBLDF

Load-Store
Unsigned Byte

Store Floating-
Point

Store Integer
Load Floating-

Point

MEM_LOAD_
STORE

MEM_STOREMEM_LOAD

LDD

LDX

LDUW

LDUH

LDUB

LDSW

LDSH

LDSB

Load Integer

STD

STX

STQFSTWLDQF

STDFSTHLDDF

LDSTUBSTFSTBLDF

Load-Store
Unsigned Byte

Store Floating-
Point

Store Integer
Load Floating-

Point

Table 1: SPARC instrumentation.

The purpose of the proof-of-concept DSZOOM implementation is to demonstrate
the implementation of a low-overhead global SDSM protocol, which is applicable
to both page-based SDSMs and fine-grain SDSMs. The actual implementation of
the low-level fine-grain instrumentation is still far from optimal. The code in
Figure 9 shows the code snippet replacing each global 32-bit load instruction,
lduw (usually only written as ld) to be more precise. See Appendix B.1.1 for a
corresponding C routine—DSZOOM_MSI2_mem_load—that contains the cache
coherence source code for global integer and/or floating-point loads. Examples of
more efficient instrumentation can be found in both the Shasta [SG97] and the
Sirocco-S [SFH+98]. For more details about the code instrumentation see Appen-

9 Currently, it is not possible to compile the EEL library with more modern gcc compilers.

19

dix B.1 (for examples of instrumenting global integer loads), B.2 (for examples of
instrumenting global floating-point loads), and B.3 (for examples of instrumenting
global integer and/or floating-point stores).

1: ld [%o1 + 64], %DEST_REG //original LD
2: sethi %hi(._start_FFT.EXE), %temp //prepare for jmpl
3: srl %DEST_REG, 24, %g5 //mask BADBEEF
4: cmp %g5, 0xAA //check if BADBEEF
5: bne hit: //if not, it is a hit
6: mov %DEST_REG, %g6 //prepare jmpl
7: jmpl %temp, %o7 //jump link to C routine
8: add %o1 + 64, %g5 //pass addr to C routine
9: mov %g6, %DEST_REG //move LD value from C

hit:

Figure 9: Replacing one load instruction, lduw to be more precise (partly-optimized). The %temp
register is allocated with EEL at the insertion point. The %g5 and %g6 registers are global SPARC

registers, currently not used or modified by any standard compiler.

3.3.3 Modeling the Network Delays

SDSM is run very efficiently in a single SMP node. In order to model a more real-
istic set-up with real network delay, the remote protocol implemented in C code
have extra latency loops inserted. A remote access has about 2 microseconds of
extra latency added.

We also wanted to compare our SDSM implementation to one with a more com-
mon, still short, remote latency caused by the extra protocol overhead. We have
used the shortest latency reported to date as our benchmark number: 15 microsec-
onds (Shasta [SG97, G00]). This is simply modeled as extra network delay. The
extra CPUs occupancy by the protocol agent in the remote end have not been
taken into account, nor have we modeled any contention effects from single
threaded agent in that scheme.

20

4 Performance Study

4.1 Experimental Setup

All experiments in this thesis are performed on Sun Enterprise E6000 SMP
server running version 2.6 of Solaris operating system. Server has 16 UltraSparcII
(250MHz) processors and 4GB of primary storage. Each processor has a 32kB L1
cache, and 4MB L2 cache respectively.

4.2 Benchmarks

The benchmarks we use in this study are well-known scientific workloads from
the SPLASH-2 benchmark suite [WOT+95]. We study a total of eight completely
unmodified SPLASH-2 applications from the original Stanford distribution, which
were originally developed for hardware multiprocessors. The applications are:

• Barnes-Hut – This application simulates the interaction of a system of
bodies (galaxies or particles, for example) in three dimensions over a
number of time steps, using the Barnes-Hut hierarchical N-body method.

• FFT – The FFT kernel is a complex 1-D version of the radix- n six-step
FFT algorithm described in [B90]. This kernel is optimized to minimize
interprocessor communication.

• LU – A classical method for blocked LU decomposition. It factors a dense
matrix into the product of a lower triangular and upper triangular matrix.
See [WSH94] for more details.

• CLU – Blocked LU decomposition with contiguous allocation of data.
More optimized version of LU.

• Radix – Integer Radix sort kernel.

• Radiosity – This program computes the equilibrium distribution of light in
a scene using the iterative hierarchical diffuse radiosity method [HSA91].

• Water-nsq – Water simulation without spatial data structure. This applica-
tion evaluates forces and potentials that occur over time in a system of wa-
ter molecules.

• Water-sp – Water simulation with spatial data structure. This application
solves the same problem as Water-nsq, but uses a more efficient algorithm.

The benchmarks were compiled with System V IPC version of the PARMACS
shared-memory macros used by Artiaga et al. [ANM+97, AMB+98]. The macro
library was modified in several ways, e.g., we use user-level synchronization

21

through test-and-set locks rather a System V IPC semaphore library calls. We also
began all measurements at the start of the parallel phase to avoid measuring fork-
system calls and DSZOOM run-time system initialization. The reason why we
cannot run the entire SPLASH-2 application suite is only because of the different
semantics for the System V fork-system call, and Solaris 2.6 fork-system call re-
spectively. Solaris 2.6 fork-system call semantics are copy-on-write (COW), and
five out of thirteen SPLASH-2 applications use global variables that are not allo-
cated with G_MALLOC PARMACS-macro. If any child process modifies one
global variable it will get its own copy of that particular variable and that change
will not be visible for any other process in the running system. Of coarse, it
should be possible to manually modify some of the SPLASH-2 programs to cor-
rectly declare and allocate every single global variable in the application to get rid
of this problem.

The data-set sizes and uniprocessor-execution times for the studied SPLASH-2
applications are presented in Table 2.

Program Problem Size
Non-Instrumented
Sequential Time

[s]

Barnes-Hut 16,384 bodies (32.8 MB) 36.91

FFT 1,048,576 points (48.1 MB) 15.72

LU 1024×1024, block 16 (8.0 MB) 86.07

CLU 1024×1024, block 16 (8.0 MB) 74.38

Radiosity Test (29.4 MB) 8.79

Radix 4,194,304 items (36.5 MB) 29.18

Water-nsq 2197 molecules, 2 steps (2.0 MB) 86.73

Water-sp 2197 molecules, 2 steps (1.5 MB) 23.08

Table 2: Data-set sizes and sequential-execution times for the studied SPLASH-2 applications.

22

4.3 DSZOOM Performance Overview

Sequential-execution times for the instrumented SPLASH-2 programs are shown
in Table 3. Efficiency overhead is between 1.42 and 1.93 for all of the studied
applications, i.e., instrumented code takes between 42% and 93% longer time to
execute the programs.

Program
%
LD

%
ST

Instrumented
Sequential Time

[s]

Efficiency
Overhead

Barnes-Hut 52.1 51.9 65.59 1.78

FFT 40.5 23.5 22.96 1.46

LU 38.8 17.1 154.33 1.79

CLU 40.2 14.8 142.03 1.91

Radiosity 41.4 35.2 14.66 1.67

Radix 46.1 17.3 41.31 1.42

Water-nsq 45.0 32.5 166.21 1.92

Water-sp 43.7 27.7 44.54 1.93

Table 3: Sequential-execution times for instrumented SPLASH-2 applications with an efficiency
overhead shown in the last column. Second and third columns show percentage of instrumented

loads, and stores respectively. Both loads and stores are instrumented.

Table 4 shows the sequential-execution times if only global loads are instru-
mented. Note that the range check overhead is included for non-global (i.e., lo-
cal/heap loads) loads. For integer intensive applications, e.g., Radix integer sort,
the estimated cost is quite small, only 14 nanoseconds in this case. Floating-Point
intensive applications/kernels has much larger cost, as expected, because BAD-
BEEF-tests for floating-point loads are much more expensive. See Appendix B.1
and B.2 for more details about BADBEEF-test implementations.

Program # Global Loads
Instrumented

Sequential Time
Loads [s]

Efficiency
Overhead

Estimated
Cost [ns]

Barnes-Hut 134,674,212 61.82 1.67 185

FFT 62,785,566 16.86 1.07 18

LU 741,587,877 119.28 1.39 45

CLU 744,920,712 100.07 1.35 34

Radiosity 50,794,436 14.04 1.60 103

Radix 554,534,181 36.94 1.27 14

Water-nsq 528,036,759 162.83 1.88 144

Water-sp 139,133,720 42.56 1.84 140

Table 4: Instrumenting only loads. Number of global loads is shown in the second column. Last
column shows the estimated cost per load (in nanoseconds).

23

Table 5 shows the sequential-execution times if only global stores are instru-
mented. Note that the range check overhead is included for non-global (i.e., lo-
cal/heap stores) stores. As expected, in the current implementation, the stores are
generally more expensive then the loads because there are no speculative and/or
optimistic tests (compare with the BADBEEF-tests for different type of global
loads). See Appendix B.3 for details about how store snippets are currently im-
plemented.

Program # Global Stores
Instrumented

Sequential Time
Stores [s]

Efficiency
Overhead

Estimated
Cost [ns]

Barnes-Hut 3,131,395 40.20 1.09 1051

FFT 58,591,241 21.76 1.38 103

LU 360,012,816 128.86 1.50 119

CLU 360,021,011 107.13 1.44 91

Radiosity 2,268,365 9.14 1.04 154

Radix 293,703,383 33.65 1.15 15

Water-nsq 3,203,727 91.59 1.06 1517

Water-sp 3,068,968 25.01 1.08 629

Table 5: Instrumenting only stores. Number of global stores is shown in the second column. Last
column shows the estimated cost per load (in nanoseconds).

Table 6 shows the results of our performance study for the three different configu-
rations; (i) 8 CPU runs on SMP server, (ii) DSZOOM 2×4 (i.e., 2 nodes, 4 CPUs
per node) with 3 microseconds network delay, and (iii) DSZOOM 2×4 with 15
microseconds network delay. Note that speedups for DSZOOM system are calcu-
lated relatively the DSZOOM execution times from Table 3.

Program
SMP

8 CPU Runs
[time/speedup]

DSZOOM 2×4
(3 µs delay)

[time/speedup]

DSZOOM 2×4
(15 µs delay)

[time/speedup]

Barnes-Hut 5.11/7.2 8.95/7.3 9.65/6.8

FFT 2.45/6.4 3.65/6.3 6.02/3.8

LU 13.91/6.2 23.12/6.7 24.07/6.4

CLU 15.21/4.9 19.65/7.2 20.97/6.8

Radiosity 1.17/7.5 1.98/7.4 2.58/5.7

Radix 4.26/6.8 5.98/6.9 8.28/5.0

Water-nsq 11.95/7.3 23.11/7.2 25.06/6.6

Water-sp 3.82/6.0 6.52/6.8 7.57/5.9

Table 6: Execution times/Speedups for SMP server with 8 CPU runs, DSZOOM 2×4 (3 µs network
delay), and DSZOOM 2×4 (15 µs network delay). NOTE: speedups for DSZOOM systems are

calculated relatively the DSZOOM execution times from Table 3.

24

Figure 10 shows a graphical representation of the execution times for all configu-
rations in this study.

0

5

10

15

20

25

30

Barnes-Hut FFT LU CLU Radiosity Radix Water-nsq Water-sp

E
xe

cu
ti

on
T

im
e

[s
]

SMP 8 CPU Runs

DSZOOM 2x4 (3 microseconds)

DSZOOM 2x4 (15 microseconds)

Figure 10: Execution times for the studied SPLASH-2 applications.

FFT and Radix are two of the applications that perform very well on the
DSZOOM system compared with more traditional SDSM systems.

25

5 Related Work
Many different SDSM implementations have been proposed over the years (in
alphabetical order): Blizzard-S [SFL+94], Brazos [SB97], Cashemere-2L
[SDH+97, DGK+99], CRL [JKW95], CVM [K96], GeNIMA [BLS99], Ivy [L88,
LH89], MGS [YKA96], Munin [BCZ90, CBZ91], Shasta [SGT96, SGA97, SG97,
SG97:2, DGK+99], Sirocco-S [SFH+98], SoftFLASH [ENC+96], and TreadMarks
[KCD+94]. Most of them suffer from synchronous interrupt protocol processing.
We see the work presented in this thesis as a complement to these activities and
believe that most of these implementations would benefit from a more efficient
protocol implementation.

The GeNIMA proposal is closest to our work. GeNIMA paper proposes a protocol
and network solution to avoid some of the asynchronous overhead. A processor
starting a synchronous communication event, e.g., the requesting processor initiat-
ing some coherence actions, checks for incoming messages at the same time. This
avoids some of the asynchronous overhead in the home node, but will also add
some extra delay while waiting for a synchronous event to happen in the node.
The protocol is still implemented as communicating protocol agents.

26

6 Conclusions
We have demonstrated how asynchronous protocol processing can be completely
avoided at the cost of some extra remote transactions – trading bandwidth for effi-
ciency. The entire protocol processing for remote SDSM load operation on our
DSZOOM implementation has been measured to be below 800 nanoseconds on a
400MHz UltraSparcII SMP system (Sun Enterprise E450 with 4GB of main
memory). We believe that the total round-trip SDSM latency can be kept below
three microseconds once the raw latency of a modern interconnects has been
added. We demonstrate a substantial improvement in speedup for many of the
SPLASH applications when we compare a modeled three microsecond SDSM
system with the current state-of-the-art 15-microsecond.

The protocol technique described in this thesis is applicable to the emerging In-
finiBand I/O interconnect proposal. We believe a protocol, such as the one we
describe, could speed up many of the existing SDSM implementations on such
interconnect.

27

7 Future Work
We plan to continue with this work in several different directions. First, cache-
coherence protocol code optimizations are quite straightforward to implement and
will give direct impact on the performance of the DSZOOM system. More de-
tailed performance study, e.g., collecting the statistics per instruction type, is also
straightforward to perform and will hopefully give us more information to be able
to better understand the system and the behavior of the studied applications.

Second, we plan to port a DSZOOM to a real cluster interconnect with remote
load/store semantics and remote fetch-and-set capabilities (e.g., to begin with, we
could at least easily and more accurately model up to four-node configuration on
the Sun-WildFire [HK99] prototype SMP cluster by binding the processes to
nodes).

Third, instead of modeling the network delays by inserting the extra loops into
cache coherence protocol routines, more accurate simulations could be produced
with full system- and instruction-level simulators, e.g., simics [MDG+98] and/or
SimOS [RHW+95]. That kind of simulators could also be used to more accurately
model the contention effects from single threaded agents in the SDSM systems.
Thus, we could make comparisons between DSZOOM and some other SDSM
systems fairer.

Finally, to make this kind of system more usable it is desirable to make a POSIX-
threads implementation as well because, currently, most of the commercial work-
loads are implemented with that popular programming model.

28

REFERENCES

[AF96] Arpaci, R. and M. Fähndrich. RevEELing Solaris. IRAM project,
University of California of Berkley, May 1996. Available from:
http://www.cs.wisc.edu/~remzi/papers.html.

[AMB+98] Artiaga, E., X. Mortorell, Y. Becerra, and N. Navarro. Experiences
on Implementing PARMACS Macros to Run the SPLASH-2 Suite on
Multiprocessors. In Proceedings of the 6th Euromicro Workshop on
Parallel and Distributed Processing, January 1998.

[ANM+97] Artiaga, E., N. Navarro, X. Mortorell, and Y. Becerra. Implement-
ing PARMACS Macros for Shared Memory Multiprocessor Envi-
ronments. Technical Report UPC-DAC-1997-07, Polytechnic Uni-
versity of Catalunya, Department of Computer Architecture, Janu-
ary 1997.

[B90] Bailey, D. H. FFT’s in External or Hierarchical Memory. Journal of
Supercomputing, 4(1):23–35, March 1990.

[BBD+87] Boyle, J., R. Butler, T. Disz, B. Glickfeld, E. Lusk, R. Overbeek, J.
Patterson, and R. Stevens. Portable Programs for Parallel Proces-
sors. Holt, Rinehart and Winston, 1987.

[BCZ90] Bennett, J. K., J. B. Carter, and W. Zwaenepoel. Munin: Distributed
Shared Memory Based on Type-Specific Memory Coherence. In
Proceedings of the Conference on Principles and Practice of Paral-
lel Programming, 1990.

[BD96] Bosschere, K. and S. Debray. Alto: A Link-Time Optimizer for the
DEC Alpha. Technical Report TR 96-15, Computer Science De-
partment, University of Arizona, 1996.

[BL94] Ball, L. and J. R. Larus. Optimally Profiling and Tracing Pro-
grams. ACM Transactions on Programming Languages and Sys-
tems, 16(4):1319–1360, July 1994.

[BLS99] Bilas, A., C. Liao, and J. P. Singh. Using Network Interface Support
to Avoid Asynchronous Protocol Processing in Shared Virtual
Memory Systems. In Proceedings of 26th International Symposium
on Computer Architecture, May 1999.

29

[CBZ91] Carter, J. B., J. K. Bennett, and W. Zwaenepoel. Implementation
and Performance of Munin. In Proceedings of the 13th ACM Sym-
posium on Operating System Principles, pages 152–164, October
1991.

[CF78] Censier, L. M. and P. Feautrier. A New Solution to Coherence Prob-
lems in Multicache Systems. IEEE Transactions on Computers, C-
27(12):1112–1118, December 1978.

[CSG99] Culler, D. E., J. P. Singh, and A. Gupta. Parallel Computer Archi-
tecture A Hardware/Software Approach. Morgan Kaufmann Pub-
lishers, 1st edition, 1999.

[DGK+99] Dwarkadas, S., K. Gharachorloo, L. Kontothanassis, D. J. Scales,
M. L. Scott, and R. Stets. Comparative Evaluation of Fine- and
Coarse-Grain Approaches for Software Distributed Shared Mem-
ory. In Proceedings of the 5th International Symposium on High-
Performance Computer Architecture, pages 260–269, January
1999.

[ENC+96] Erlichson, A., N. Nuckolls, G. Chesson, and J. Hennesssy. Soft-
FLASH: Analyzing the Performance of Clustered Distributed Vir-
tual Shared Memory. In Proceedings of the 7th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, pages 210–220, October 1996.

[G00] Gharachorloo, K. Personal Communication, October 2000.

[HK99] Hagersten, E. and M. Koster. WildFire: A Scalable Path for SMPs.
In Proceedings of the 5th IEEE Symposium on High-Performance
Computer Architecture, pages 172–181, February 1999.

[HSA91] Hanrahan, P., D. Salzman, and L. Aupperle. A Rapid Hierarchical
Radiosity Algorithm. In Proceedings of SIGGRAPH 1991.

[IB00] InfiniBand Architecture Specification, Release 1.0. InfiniBand(SM)
Trade Association, October 24, 2000. Available from:
http://www.infinibandta.org.

[JKW95] Johnson, K. L., M. F. Kaashoek, and D. A. Wallach. CRL: High-
Performance All-Software Distributed Shared Memory. Operating
Systems Review, 29(5):213–228, December 1995.

[K95] Keleher, P. Lazy Release Consistency for Distributed Shared Mem-
ory. Ph.D. thesis, Rice University, January 1995.

[K96] Keleher, P. The Relative Importance of Concurrent Writers and
Weak Consistency Models. In Proceedings of the 16th International
Conference on Distributed Computing Systems, May 1996.

30

[KCD+94] Keleher, P., A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. Tread-
Marks: Distributed Shared Memory on Standard Workstations and
Operating Systems. In Proceedings of the 1994 Winter USENIX
Conference, pages 115–132, January 1994.

[L88] Li, K. IVY: A Shared Virtual Memory System for Parallel Comput-
ing. In Proceedings of the International Conference on Parallel
Processing, pages 94–101, 1988.

[L97] Larus, J. R. EEL Guts: Using the EEL Executable Editing Library.
Computer Sciences Department, University of Wisconsin-Madison,
1997. Available together with the EEL software distribution.

[LH89] Li, K. and P. Hudak. Memory Coherence in Shared Virtual Memory
Systems. ACM Transactions on Computer Systems, 7(4):321–359,
November 1989.

[LO87] Lusk, E. L. and R. A. Overbeek. Use of Monitors in FORTRAN: A
Tutorial on the Barrier, Self-Scheduling DO-Loop and Askfor
Monitors. Technical Report ANL-84-51, Revision 1, Argonne Na-
tional Laboratory, June 1987.

[LS95] Larus, J. R. and E. Schnarr. EEL: Machine-Independent Executable
Editing. In Proceedings of the SIGPLAN ’95 Conference on Pro-
gramming Language Design and Implementation, pages 291–300,
June 1995.

[MCC+95] Miller, B., M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K.
Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn
Parallel Performance Tools. IEEE Computer, 28(11):37–44, No-
vember 1995. Special issue on performance evaluation tools for
parallel and distributed computer systems.

[MDG+98] Magnusson, P. S., F. Dahlgren, H. Grahn, M. Karlsson, F. Larsson,
F. Lundholm, A. Moestedt, J. Nilsson, P. Stenström, and B. Werner.
SimICS/sun4m: A Virtual Workstation. In USENIX Annual Techni-
cal Conference, June 1998.

[MFH+96] Mukherjee, S. S., B. Falsafi, M. D. Hill, and D. A. Wood. Coherent
Network Interfaces for Fine-Grain Communication. In Proceedings
of the 23rd Annual International Symposium on Computer Archi-
tecture, pages 247–258, April 1996.

[RB00] Ronsse, M. and K. De Bosschere. JiTI: a Robust Just in Time In-
strumentation Technique. In Proceedings of the Workshop on Bi-
nary Translation, October 2000.

31

[RHW+95] Rosenblum, M., S. A. Herrod, E. Witchel, and A. Gupta. Complete
Computer Simulation: The SimOS Approach. In IEEE Parallel and
Distributed Technology, Fall 1995.

[RVL+97] Romer, T., G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, and
B. Bershad. Instrumentation and Optimization of Win32/Intel
Executables Using Etch. In Proceedings of the USENIX Windows
NT Workshop, pages 1–7, August 1997.

[S91] Smith, M. D. Tracing with Pixie. Memo from Center for Integrated
Systems, Stanford University, April 1991.

[S95] Scott, S. The SCX Channel: A New, Supercomputer-Class System
Interconnect. In Proceedings of the Hot Interconnects III, 1995.

[SB97] Speight, E. and J. K. Bennett. Brazos: A Third Generation DSM
System. In Proceedings of the 1st USENIX Windows NT Sympo-
sium, August 1997.

[SDH+97] Stets, R., S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanas-
sis, S. Parthasarathy, and M. Scott. Cashmere-2L: Software Coher-
ent Shared Memory on a Clustered Remote-Write Network. In Pro-
ceedings of the 16th ACM Symposium on Operating System Prin-
ciples, October 1997.

[SE94] Srivastava, A. and A. Eustace. ATOM: A System for Building Cus-
tomized Program Analysis Tools. In Proceedings of the SIGPLAN
’94 Conference on Programming Language Design and Implemen-
tation, pages 196–205, June 1994.

[SFH+96] Schoinas, I., B. Falsafi, M. D. Hill, J. R. Larus, C. E. Lucas, S. S.
Mukherjee, S. K. Reinhardt, E. Schnarr, and D. A. Wood. Imple-
menting Fine-Grain Distributed Shared Memory On Commodity
SMP Workstations. Technical Report 1307, Computer Sciences De-
partment, University of Wisconsin–Madison, March 1996.

[SFH+98] Schoinas, I., B. Falsafi, M. Hill, J. R. Larus, and D. A. Wood. Si-
rocco: Cost-Effective Fine-Grain Distributed Shared Memory. In
Proceedings of 6th International Conference on Parallel Architec-
tures and Compilation Techniques, October 1998.

[SFL+94] Schoinas, I., B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus,
and D. A. Wood. Fine-Grain Access Control for Distributed Shared
Memory. In Proceedings of 6th International Conference on Archi-
tectural Support for Programming Languages and Operating Sys-
tems, pages 297–307, October 1994.

32

[SG97] Scales, D. J. and K. Gharachorloo. Design and Performance of the
Shasta Distributed Shared Memory Protocol. In Proceedings of the
11th ACM International Conference on Supercomputing, July
1997. Extended version available as technical report 97/2, Western
Research Laboratory, Digital Equipment Corporation, February
1997.

[SG97:2] Scales, D. J. and K. Gharachorloo. Towards Transparent and Effi-
cient Software Distributed Shared Memory. In Proceedings of the
16th ACM Symposium on Operating System Principles, October
1997.

[SGA97] Scales, D. J., K. Gharachorloo, and A. Aggarwal. Fine-Grain Soft-
ware Distributed Shared Memory on SMP Clusters. Technical Re-
port 97/3, Western Research Laboratory, Digital Equipment Corpo-
ration, February 1997.

[SGT96] Scales, D. J., K. Gharachorloo, and C. A. Thekkath. Shasta: A Low-
Overhead Software-Only Approach to Fine-Grain Shared Memory.
In Proceedings of the Seventh International Conference on Archi-
tectural Support for Programming Languages and Operating Sys-
tems, pages 174–185, October 1996.

[WG94] Weaver, D. L. and T. Germond. The SPARC Architecture Manual,
Version 9. PTR Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[WOT+95] Woo, S. C., M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations. In Proceedings of the 22nd International Symposium
on Computer Architecture, pages 24–36, June 1995.

[W92] Wall, D. W. Systems for Late Code Modification. Technical Report
92/3, Western Research Laboratory, Digital Equipment Corpora-
tion, May 1992.

[WSH94] Woo, S. C., J. P. Singh, and J. L. Hennessy. The Performance Ad-
vantages of Integrating Block Data Transfer in Cache-Coherent
Multiprocessors. In Proceedings of the 6th International Confer-
ence on Architectural Support for Programming Languages, pages
219–229, October 1994.

[WP87] Wall, D. W. and M. L. Powell. The Mahler Experience: Using an
Intermediate Language as the Machine Description. In Proceedings
of the 2nd International Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 100–104,
October 1987.

33

[XMN99] Xu, Z., B. Miller, and O. Naim. Dynamic Instrumentation of
Threaded Applications. In Proceedings of the 7th ACM SIGPLAN
Symposium on Principles and Practices of Parallel Programming,
May 1999.

[YKA96] Yeung, D., J. Kubiatowicz, and A. Agarwal. MGS: A Multigrain
Shared Memory System. In Proceedings of the 23rd International
Symposium of Computer Architecture, pages 44–45, May 1996.

[ZML99] Zandy, V., B. Miller, and M. Livny. Process Hijacking. In Proceed-
ings of the 8th IEEE International Symposium on High Perform-
ance Distributed Computing, August 1999.

34

APPENDIX A

The PARMACS macros used in the SPLASH-2 applications are shown in Table 7
together with the short descriptions. More detailed information about these macros
can be found in [AMN+97, LO87].

Macro Description

MAIN_ENV
EXTERN_ENV

Variables and symbol definitions for the PARMACS envi-
ronment.

MAIN_INITENV
MAIN_END

Initialization and termination of the PARMACS environment.

CLOCK Get current time.
CREATE
WAIT_FOR_END

Create a new process, starting in the specified routine. Wait
for children processes to finish

G_MALLOC
G_FREE

Allocate and deallocate shared memory.

LOCKDEC
LOCKINIT
LOCK
UNLOCK

Declaration, initialization and usage of binary semaphores.

ALOCKDEC
ALOCKINIT
ALOCK
AULOCK

Declaration, initialization and usage of arrays of binary sema-
phores. Note that they not provide atomic operations on
several semaphores in the array simultaneously.

BARDEC
BARINIT
BARRIER

Declaration, initialization and usage of barriers.

GSDEC
GSINIT
GETSUB

Global subscripts management for self-scheduled loops. Each
call to GETSUB returns a unique subscript from 0 to the
maximum value specified. At the end of the loop, -1 is re-
turned and each process waits for the others.

PAUSEDEC
PAUSEINIT
SETPAUSE
CLEARPAUSE
WAITPAUSE
PAUSE
EVENT

Operations for synchronization via event. PAUSEDEC de-
clares an array of events. Each event can be set or cleared
using SETPAUSE and CLEARPAUSE. The rest of the opera-
tions block processes waiting for a certain event to be set or
cleared. PAUSE and EVENT reset the event when the caller
is awakened.

Table 7: PARMACS macros used in the SPLASH-2 applications. From [AMB+98].

35

The benchmarks in our study were compiled with System V IPC version of the
PARMACS shared-memory macros used by Artiaga et al. [ANM+97, AMB+98].
The macro library was modified in several ways, e.g., we use user-level synchro-
nization through test-and-set (or to be more specific, a “fake” version of the fetch-
and-set16 as described in the Basic Idea section) locks rather then System V IPC
semaphore library calls. We also began all measurements at the start of the parallel
phase to avoid measuring fork-system calls and DSZOOM run-time system
initialization.

One typical implementation of the test-and-set spin-lock for the SPARC architec-
ture using load-store unsigned byte (LDSTUB) instruction is shown in Figure 11.
The LDSTUB copies a byte from memory into destination register, and then re-
writes the addressed byte in memory to all ones. Typically, a nonzero value for the
lock represents the locked condition, while a zero value means that the lock is
free. Code busy waits by doing loads to avoid generating expensive stores to a
potentially shared location. The reason to insert membar #StoreStore in
UnLockWithLDSTUB is to make sure that pending stores are completed before
the store that frees the lock. In DSZOOM implementation we do not use memory
barriers at all because we rely on the global store order in the system. Note that
this type of locking mechanism can only be used locally, not remotely. For remote
locking we must rely on the fetch-and-set16 operation as described in the Basic
Idea section.

LockWithLDSTUB(lock)

retry:
ldstub [lock], %l0
tst %l0
be out
nop

loop:
ldub [lock], %l0
tst %l0
bne loop
nop
ba,a retry

out:
membar #LoadLoad | #LoadStore

UnLockWithLDSTUB(lock)
membar #StoreStore ! RMO and PSO only
membar #LoadStore ! RMO only
stub %g0, [lock]

Figure 11: Lock and Unlock using LDSTUB. From [WG94], page 327.

Modifications/Extensions of the original PARMACS macros that are usually used
for the SMP-programming are summarized in Table 8.

36

Macro Modifications/Extensions

MAIN_ENV
EXTERN_ENV

Variables and symbol definitions for the DSZOOM run-time
system are added, e.g., TOTAL_NODES, DIR_ENTRY struc-
ture, …

MAIN_INITENV
MAIN_END

Initialization and termination of the DSZOOM run-time sys-
tem is added. All shared memory objects are created, at-
tached, and initialized in the master process. Presence bits for
every directory entry are set to 000000012, thus, it is only
master process that allocate and initialize the global memory
until the first occurrence of a CREATE macro is reached.

CLOCK None.
CREATE
WAIT_FOR_END

CREATE macro distribute processes to virtual nodes by set-
ting the NODE_ID values in the L_NODE_DATA area. It
will also, still sequentially, make a copy of a home nodes’
memory to all other nodes in a system using the ordinary
memcpy system call. Every directory entry is set to
111111112 before the start of a parallel execution, i.e., all
cache lines are in the state SHARED.

G_MALLOC
G_FREE

G_MALLOC macro will start memory allocation at
0x80000000 with a cache line size alignment (64bytes).
G_FREE macro is not implemented.

LOCKDEC
LOCKINIT
LOCK
UNLOCK

The user-level synchronization through test-and-set locks is
used instead of a System V IPC semaphore library calls.
Otherwise unchanged.

ALOCKDEC
ALOCKINIT
ALOCK
AULOCK

The user-level synchronization through test-and-set locks is
used instead of a System V IPC semaphore library calls.
Otherwise unchanged.

BARDEC
BARINIT
BARRIER

The user-level synchronization through test-and-set locks is
used instead of a System V IPC semaphore library calls.
Otherwise unchanged.

GSDEC
GSINIT
GETSUB

The user-level synchronization through test-and-set locks is
used instead of a System V IPC semaphore library calls.
Otherwise unchanged.

PAUSEDEC
PAUSEINIT
SETPAUSE
CLEARPAUSE
WAITPAUSE
PAUSE
EVENT

The user-level synchronization through test-and-set locks is
used instead of a System V IPC semaphore library calls.
Otherwise unchanged.

Table 8: Modifications/Extensions to the original PARMACS implementation.

37

APPENDIX B

B.1 Instrumentation of the Global Integer Loads

Global integer load instructions are replaced with the following non-optimized
code snippet (original integer load is typed in bold):

2c24c: a2 02 00 09 add %o0, %o1, %l1
2c250: d0 02 00 09 ld [%o0 + %o1], %o0
2c254: 8c 10 20 ff mov 255, %g6
2c258: 8c 09 80 08 and %g6, %o0, %g6
2c25c: 80 a1 a0 aa cmp %g6, 0xAA
2c260: 12 80 00 0a bne 0x2c288
2c264: 0d 02 00 00 sethi %hi(0x8000000), %g6
2c268: 8b 34 60 1a srl %l1, 26, %g5
2c26c: 80 a1 60 20 cmp %g5, 32
2c270: 12 80 00 06 bne 0x2c288
2c274: 8c 11 a1 40 or %g6, 320, %g6
2c278: 9f c1 a0 00 jmpl %g6, %o7
2c27c: 8a 14 60 00 or %l1, 0, %g5
2c280: d0 04 60 00 ld [%l1], %o0
2c284: cc 31 60 00 sth %g6, [%g5]
2c288: ...

In the example above, the EEL library reserves the %l1 register at the insertion
point and uses it as a temp-register, to temporarily store the address for this par-
ticular global integer load. BADBEEF-Test is performed between the line 2c25416

and 2c26016. Range-Check is carried out between the line 2c26816 and 2c27016. At
the line 2c27816, the jmpl instruction will jump to a cache coherence routine
written in C, DSZOOM_MSI2_mem_load, shown in Appendix B.1.1. Finally, the
line 2c28416 will unlock the directory entry and, at the same time, write back the
current presence bits for that particular cache line. Appendix B.1.2 contains the
EEL source code for a snippet generation.

B.1.1 DSZOOM_MSI2_mem_load

This is the cache coherence routine written in C that is called from the code snip-
pets for global integer or floating-point loads in case when the global cache co-
herency action is needed. The routine below is compiled with the following gcc
options (see gcc manual for descriptions):

–r –O0 –mno-epilogue –Wa,-xarch=v8plus –mno-app-regs

void
DSZOOM_MSI2_mem_load(void)
{
register unsigned int reg_i0 asm("i0");
register unsigned int reg_i1 asm("i1");
register unsigned int reg_i2 asm("i2");

38

register unsigned int reg_i3 asm("i3");
register unsigned int reg_i4 asm("i4");
register unsigned int reg_i5 asm("i5");
register unsigned int reg_i6 asm("i6");
register unsigned int reg_i7 asm("i7");

register unsigned int reg_g5 asm("g5");
register unsigned int reg_g6 asm("g6");
register unsigned int reg_g7 asm("g7");

register unsigned char lock;
register unsigned char node_id;
register unsigned char my_mask;
register unsigned char bits;
register unsigned int cache_line_nmbr;
register int i;

struct DSZOOM_node_data *NODE_DATA;
register struct DIR_ENTRY *DIR;

#ifdef PROFILE_FLAG
struct DSZOOM_counters *NODE_COUNTER;
unsigned long tick_start;
unsigned long tick_end;
unsigned long tick_total;
double time;

GetTicks(tick_start);
#endif /* PROFILE_FLAG */

lock = 0;

NODE_DATA = (struct DSZOOM_node_data *) L_NODE_DATA_START_ADDR;
DIR = (struct DIR_ENTRY *) DIR_START_ADDR;

node_id = NODE_DATA->node_id;
cache_line_nmbr = (reg_g5 - NODE_G_MEM_START_ADDR) / CACHE_LINE_SIZE;
my_mask = 1 << node_id;
DIR += cache_line_nmbr;

// Lock directory entry
//---------------------

#ifdef NETWORK_DELAY
if (node_id != HOME_NODE) {
register int i;
for (i = 0; i < LOOP_DELAY; i++) ;

}
#endif /* NETWORK_DELAY */
while (1) {
asm("ldstub %1,%0" : "=r" (lock) : "m" (DIR->lock));
if (lock == 0) break;
while (DIR->lock);

}

bits = DIR->presence_bits;

// Where is the data?
// If not in my node:
if (!(bits & my_mask)) {

// Get cache line from another node (64byte)
// Put local data (64byte)
for (i = 0; i < TOTAL_NODES; i++) {
if (bits & (1 << i)) {

#ifdef NETWORK_DELAY
if (node_id != HOME_NODE) {
register int i;
for (i = 0; i < LOOP_DELAY; i++) ;

}

39

#endif /* NETWORK_DELAY */

memcpy((void *)(NODE_G_MEM_START_ADDR +
cache_line_nmbr * CACHE_LINE_SIZE),

(void *)(G_BIG_MEM_START_ADDR +
i * NODE_G_MEM_MAX_SIZE +
cache_line_nmbr * CACHE_LINE_SIZE),

CACHE_LINE_SIZE);

break;
}

}
}

#ifdef PROFILE_FLAG
GetTicks(tick_end);
tick_total = tick_end - tick_start;
time = tick_total/CPU_FREQ;

NODE_COUNTER = (struct DSZOOM_counters *) COUNTERS_START_ADDR;
NODE_COUNTER->mem_load[NODE_DATA->proc_id]++;

if (tick_total < NODE_COUNTER->mem_load_min_ticks[NODE_DATA->proc_id])
NODE_COUNTER->mem_load_min_ticks[NODE_DATA->proc_id] = tick_total;

if (tick_total > NODE_COUNTER->mem_load_max_ticks[NODE_DATA->proc_id])
NODE_COUNTER->mem_load_max_ticks[NODE_DATA->proc_id] = tick_total;

NODE_COUNTER->mem_load_tot_ticks[NODE_DATA->proc_id] += tick_total;
#endif /* PROFILE_FLAG */

// Return DIR->lock addr via %g5
reg_g5 = (unsigned int) &DIR->lock;
// Return DIR_ENTRY via %g6
reg_g6 = (unsigned int) bits | my_mask;

#ifdef NETWORK_DELAY
if (node_id != HOME_NODE) {
register int i;
for (i = 0; i < LOOP_DELAY; i++) ;

}
#endif /* NETWORK_DELAY */
}

B.1.2 DSZOOM_MSI2_load_snippet

This is how the code snippets for both global integer and global floating-point
loads can be generated with EEL library:

code_snippet*
DSZOOM_MSI2_load_snippet(executable* exec,

const instruction* inst,
routine* r,
addr pc)

{
const int max_inst = 100;
mach_inst* code = new mach_inst[max_inst];
int_reg_set* alloc = new int_reg_set;
mach_inst mi = *inst->bits();

int_reg_set* free_regs = new int_reg_set;
int_reg_set* reserved_regs = new int_reg_set;

const int_reg_set* int_regs;

int_reg reg;

40

int_reg TEMP_REG, ORIG_ADDR;

int label;

free_regs->add(REG_L0);
free_regs->add(REG_L1);
free_regs->add(REG_L2);
free_regs->add(REG_L3);
free_regs->add(REG_L4);
free_regs->add(REG_L5);
free_regs->add(REG_L6);
free_regs->add(REG_L7);

int_regs = inst->reads();
FOREACH_REG(reg, int_regs)
{
reserved_regs->add(reg);

}

int_regs = inst->writes();
FOREACH_REG(reg, int_regs)
{
reserved_regs->add(reg);

}

reg = inst->result_reg(r, pc);
if (reg != NO_REG)
{
reserved_regs->add(reg);

}

reserved_regs->add(REG_G5);
reserved_regs->add(REG_G6);
reserved_regs->add(REG_G7);
reserved_regs->add(REG_O7);

free_regs->remove(reserved_regs);

TEMP_REG = free_regs->first();
free_regs->remove(TEMP_REG);

ORIG_ADDR = free_regs->first();
free_regs->remove(ORIG_ADDR);

label = 0;

switch (inst_category(inst->bits())) {

case MEM_LOAD_INT:

//test_bad_beef:
if (IS_IMM(mi))
{
code[label] = ADD | OP2;
code[label] = SET_RD(code[label], ORIG_ADDR);
code[label] = SET_RS1(code[label], RS1(mi));
code[label] = SET_IMM_BIT(code[label], IMM_BIT);
code[label] = SET_IMM(code[label], (mi & IMM_MASK));
label++;

}
else {
code[label++] = make_2arg_inst(ADD | OP2, RS1(mi), RS2(mi), ORIG_ADDR);

}

code[label++] = mi;

code[label++] = make_imm_inst(OR | OP2, REG_G0, 0xff, REG_G6);

code[label++] = make_2arg_inst(AND | OP2, REG_G6, RD(mi), REG_G6);

41

code[label++] = make_imm_inst(SUBcc | OP2, REG_G6, BADBEEF_1BYTE, REG_G0);

code[label] = BNE | ICC;
code[label] = SET_BR_ADDR(code[label], 10); // goto end:
label++;

code[label++] = make_sethi(REG_G6,
DSZOOM_MSI2_mem_load_routine_start_addr);

//range_check:
code[label++] = make_imm_inst(SRL | OP2, ORIG_ADDR, RANGE_CHECK_RIGHT_SHIFT,

REG_G5);

code[label++] = make_imm_inst(SUBcc | OP2, REG_G5, RANGE_CHECK_BITS,
REG_G0);

code[label] = BNE | ICC;
code[label] = SET_BR_ADDR(code[label], 6); // goto end:
label++;

code[label++] = make_imm_inst(OR | OP2,
REG_G6,
DSZOOM_MSI2_mem_load_routine_start_addr &
IMM_MASK,
REG_G6);

//jmpl_DSZOOM_MSI2_mem_load:
code[label++] = make_imm_inst(JMPL | OP2, REG_G6, 0, REG_O7);

code[label++] = make_move(ORIG_ADDR, REG_G5);

code[label] = OP3 | (mi & OP3_MASK);
code[label] = SET_RD(code[label], RD(mi));
code[label] = SET_RS1(code[label], ORIG_ADDR);
code[label] = SET_IMM_BIT(code[label], IMM_BIT);
code[label] = SET_IMM(code[label], 0x0);
label++;

//unlock_dir_entry:
code[label++] = make_imm_inst(STH | OP3, REG_G5, 0, REG_G6);

//end:

alloc->add(ORIG_ADDR);
break;

case MEM_LOAD_F_P:

//test_bad_beef:
if (IS_IMM(mi))
{
code[label] = ADD | OP2;
code[label] = SET_RD(code[label], REG_G5);
code[label] = SET_RS1(code[label], RS1(mi));
code[label] = SET_IMM_BIT(code[label], IMM_BIT);
code[label] = SET_IMM(code[label], (mi & IMM_MASK));
label++;

}
else {
code[label++] = make_2arg_inst(ADD | OP2, RS1(mi), RS2(mi), REG_G5);

}

code[label++] = mi;

code[label++] = make_imm_inst(STF | OP3, REG_FP, -4, RD(mi));

code[label++] = make_imm_inst(LDUB | OP3, REG_FP, -4, REG_G6);

code[label++] = make_imm_inst(SUBcc | OP2, REG_G6, BADBEEF_1BYTE, REG_G0);

42

code[label] = BNE | ICC;
code[label] = SET_BR_ADDR(code[label], 10); // goto end:
label++;

code[label++] = make_sethi(TEMP_REG, DSZOOM_MSI2_mem_load_routine_start_addr);

//range_check:
code[label++] = make_imm_inst(SRL | OP2, REG_G5, RANGE_CHECK_RIGHT_SHIFT,

REG_G6);

code[label++] = make_imm_inst(SUBcc | OP2, REG_G6, RANGE_CHECK_BITS,
REG_G0);

code[label] = BNE | ICC;
code[label] = SET_BR_ADDR(code[label], 6); // goto end:
label++;

code[label++] = make_imm_inst(OR | OP2,
TEMP_REG,
ZSDSM_MSI2_mem_load_routine_start_addr &
IMM_MASK,
TEMP_REG);

//jmpl_DSZOOM_MSI2_mem_load:
code[label++] = make_imm_inst(JMPL | OP2, TEMP_REG, 0, REG_O7);

code[label++] = NOP;

code[label++] = mi;

//unlock_dir_entry:
code[label++] = make_imm_inst(STH | OP3, REG_G5, 0, REG_G6);

//end:

alloc->add(TEMP_REG);
break;

default:
break;

}

code_snippet* s = new code_snippet(code,
label * sizeof(mach_inst),
alloc,
reserved_regs);

delete[] code;
return (s);

}

B.2 Instrumentation of the Global Floating-Point Loads

Global floating-point load instructions are replaced with the following non-
optimized code snippet (original floating-point load is typed in bold):

30f80: 8a 02 22 08 add %o0, 0x208, %g5
30f84: c9 1a 22 08 ldd [%o0 + 520], %f4
30f88: c9 27 bf fc st %f4, [%fp - 4]
30f8c: cc 0f bf fc ldub [%fp - 4], %g6
30f90: 80 a1 a0 aa cmp %g6, 0xAA
30f94: 12 80 00 0a bne 0x30fbc
30f98: 21 02 00 00 sethi %hi(0x8000000), %l0
30f9c: 8d 31 60 1a srl %g5, 26, %g6
30fa0: 80 a1 a0 20 cmp %g6, 32
30fa4: 12 80 00 06 bne 0x30fbc
30fa8: a0 14 21 40 or %l0, 320, %l0

43

30fac: 9f c4 20 00 jmpl %l0, %o7
30fb0: 01 00 00 00 nop
30fb4: c9 1a 22 08 ldd [%o0 + 520], %f4
30fb8: cc 31 60 00 sth %g6, [%g5]
30fbc: ...

In the example above, the %g5 register will temporarily store the address for this
particular global floating-point load. BADBEEF-Test is performed between the
line 30f8816 and 30f9416. Range-Check is carried out between the line 30f9c16 and
30fa416. At the line 30fac16, the jmpl instruction will jump to a cache coherence
routine written in C, DSZOOM_MSI2_mem_load, shown in Appendix B.1.1.
Finally, the line 30fb816 will unlock the directory entry and, at the same time,
write back the current presence bits for that particular cache line.

B.3 Instrumentation of the Global Stores

Global store instructions are replaced with the following non-optimized code
snippet (original store is typed in bold):

2c2a0: 8a 02 60 a8 add %o1, 168, %g5
2c2a4: 8d 31 60 1a srl %g5, 26, %g6
2c2a8: 80 a1 a0 20 cmp %g6, 32
2c2ac: 12 80 00 18 bne 0x2c30c
2c2b0: 21 02 00 00 sethi %hi(0x8000000), %l0
2c2b4: 0d 0f 00 00 sethi %hi(0x3c000000), %g6
2c2b8: 8b 31 60 06 srl %g5, 6, %g5
2c2bc: 8a 01 40 05 add %g5, %g5, %g5
2c2c0: 8c 01 80 05 add %g6, %g5, %g6
2c2c4: ca 69 a0 00 ldstub [%g6], %g5
2c2c8: 80 90 00 05 orcc %g0, %g5, %g0
2c2cc: 02 80 00 07 be 0x2c2e8
2c2d0: 01 00 00 00 nop
2c2d4: ca 09 a0 00 ldub [%g6], %g5
2c2d8: 80 90 00 05 orcc %g0, %g5, %g0
2c2dc: 12 bf ff fe bne 0x2c2d4
2c2e0: 01 00 00 00 nop
2c2e4: 30 bf ff f8 ba,a 0x2c2c4
2c2e8: ca 09 a0 01 ldub [%g6 + 1], %g5
2c2ec: 80 a1 40 07 cmp %g5, %g7
2c2f0: 02 80 00 04 be 0x2c300
2c2f4: a0 14 22 8c or %l0, 652, %l0
2c2f8: 9f c4 20 00 jmpl %l0, %o7
2c2fc: 8a 02 60 a8 add %o1, 168, %g5
2c300: d0 22 60 a8 st %o0, [%o1 + 168]
2c304: ce 31 a0 00 sth %g7, [%g6]
2c308: 30 80 00 02 ba,a 0x2c310
2c30c: d0 22 60 a8 st %o0, [%o1 + 168]
2c310: ...

In the example above, the range-check code is performed between the lines
2c2a016 and 2c2ac16. Locking the directory entry is performed between the lines
2c2b016 and 2c2e416. Lines 2c2e816 – 2c2f016 will check if the current cache line is
in the state MODIFIED (exclusive) or not (register %g7 contains the presence bits
mask for the current NODE_ID, e.g., if NODE_ID = 2, the bit-mask will be:
000001002). At the line 2c2f816, the jmpl instruction will jump to a cache coher-
ence routine written in C, DSZOOM_MSI2_mem_store, shown in Appendix
B.3.1. Finally, the line 2c30416 will unlock the directory entry and, at the same

44

time, write back the current presence bits for that particular cache line. Appendix
B.3.2 contains the EEL source code for a snippet generation. Note that the instru-
mentation overhead shown in an example above can be much smaller if the range-
check and locking mechanism are moved to the cache coherency routine instead.

B.3.1 DSZOOM_MSI2_mem_store

This is the cache coherence routine written in C that is called from the code snip-
pets for global stores in case when the global cache coherency action is needed.
The routine below is compiled with the following gcc options (see gcc manual for
descriptions):

–r –O0 –mno-epilogue –Wa,-xarch=v8plus –mno-app-regs

void
DSZOOM_MSI2_mem_store(void)
{
register unsigned int reg_i0 asm("i0");
register unsigned int reg_i1 asm("i1");
register unsigned int reg_i2 asm("i2");
register unsigned int reg_i3 asm("i3");
register unsigned int reg_i4 asm("i4");
register unsigned int reg_i5 asm("i5");
register unsigned int reg_i6 asm("i6");
register unsigned int reg_i7 asm("i7");

register unsigned int reg_g5 asm("g5");
register unsigned int reg_g6 asm("g6");
register unsigned int reg_g7 asm("g7");

register unsigned char node_id;
register unsigned char my_mask;
register unsigned char bits;
register unsigned int cache_line_nmbr;
register int i;

struct DSZOOM_node_data *NODE_DATA;
register struct DIR_ENTRY *DIR;

#ifdef PROFILE_FLAG
struct DSZOOM_counters *NODE_COUNTER;
unsigned long tick_start;
unsigned long tick_end;
unsigned long tick_total;
double time;

GetTicks(tick_start);
#endif /* PROFILE_FLAG */

NODE_DATA = (struct DSZOOM_node_data *) L_NODE_DATA_START_ADDR;
DIR = (struct DIR_ENTRY *) DIR_START_ADDR;

node_id = NODE_DATA->node_id;
cache_line_nmbr = (reg_g5 - NODE_G_MEM_START_ADDR) / CACHE_LINE_SIZE;
my_mask = 1 << node_id;
DIR += cache_line_nmbr;

bits = DIR->presence_bits;

#ifdef NETWORK_DELAY
if (node_id != HOME_NODE) {
register int i;
for (i = 0; i < LOOP_DELAY; i++) ;

}
#endif /* NETWORK_DELAY */

45

// Check if this node is the only node with the current cache line
if (!(bits ^ my_mask)) {
// Only this node has now the valid cache line
// DIR->presence_bits = my_mask;

#ifdef NETWORK_DELAY
if (node_id != HOME_NODE) {
register int i;
for (i = 0; i < LOOP_DELAY; i++) ;

}
#endif /* NETWORK_DELAY */

return;
}
else {

// Check if this node has the current cache line
if (!(bits & my_mask)) {
// This node has not the current cache line
// Get cache line from another node (64byte)
// Put local data (64byte)
for (i = 0; i < TOTAL_NODES; i++) {
if (bits & (1 << i)) {

#ifdef NETWORK_DELAY
if (node_id != HOME_NODE) {
register int i;
for (i = 0; i < LOOP_DELAY; i++) ;

}
#endif /* NETWORK_DELAY */

memcpy((void *)(NODE_G_MEM_START_ADDR +
cache_line_nmbr * CACHE_LINE_SIZE),

(void *)(G_BIG_MEM_START_ADDR +
i * NODE_G_MEM_MAX_SIZE +
cache_line_nmbr * CACHE_LINE_SIZE),

CACHE_LINE_SIZE);

break;
}

}
}

}

invalid_all:
for (i = 0; i < TOTAL_NODES; i++) {
if ((i != node_id) && (bits & (1 << i))) {
// Invalidate

#ifdef NETWORK_DELAY
if (node_id != HOME_NODE) {
register int i;
for (i = 0; i < LOOP_DELAY; i++) ;

}
#endif /* NETWORK_DELAY */

memset((void *)(G_BIG_MEM_START_ADDR +
i * NODE_G_MEM_MAX_SIZE +
cache_line_nmbr * CACHE_LINE_SIZE),

BADBEEF_1BYTE,
CACHE_LINE_SIZE);

}
}

#ifdef PROFILE_FLAG
GetTicks(tick_end);
tick_total = tick_end - tick_start;
time = tick_total/CPU_FREQ;

46

NODE_COUNTER = (struct DSZOOM_counters *) COUNTERS_START_ADDR;
NODE_COUNTER->mem_store[NODE_DATA->proc_id]++;

if (tick_total < NODE_COUNTER->mem_store_min_ticks[NODE_DATA->proc_id])
NODE_COUNTER->mem_store_min_ticks[NODE_DATA->proc_id] = tick_total;

if (tick_total > NODE_COUNTER->mem_store_max_ticks[NODE_DATA->proc_id])
NODE_COUNTER->mem_store_max_ticks[NODE_DATA->proc_id] = tick_total;

NODE_COUNTER->mem_store_tot_ticks[NODE_DATA->proc_id] += tick_total;
#endif /* PROFILE_FLAG */

// Only this node has now the valid cache line
// DIR->presence_bits = my_mask;

#ifdef NETWORK_DELAY
if (node_id != HOME_NODE) {
register int i;
for (i = 0; i < LOOP_DELAY; i++) ;

}
#endif /* NETWORK_DELAY */
}

B.3.2 DSZOOM_MSI2_store_snippet

This is how the code snippets for the global stores can be generated with EEL
library:

code_snippet*
DSZOOM_MSI2_store_snippet(executable* exec,

const instruction* inst,
routine* r,
addr pc)

{
const int max_inst = 100;
mach_inst* code = new mach_inst[max_inst];
int_reg_set* alloc = new int_reg_set;
mach_inst mi = *inst->bits();

int_reg_set* free_regs = new int_reg_set;
int_reg_set* reserved_regs = new int_reg_set;

const int_reg_set* int_regs;

int_reg reg;

int_reg TEMP_REG;

int label = 0;

free_regs->add(REG_L0);
free_regs->add(REG_L1);
free_regs->add(REG_L2);
free_regs->add(REG_L3);
free_regs->add(REG_L4);
free_regs->add(REG_L5);
free_regs->add(REG_L6);
free_regs->add(REG_L7);

int_regs = inst->reads();
FOREACH_REG(reg, int_regs)
{
reserved_regs->add(reg);

}

int_regs = inst->writes();
FOREACH_REG(reg, int_regs)

47

{
reserved_regs->add(reg);

}

reg = inst->result_reg(r, pc);
if (reg != NO_REG)
{
reserved_regs->add(reg);

}

reserved_regs->add(REG_G5);
reserved_regs->add(REG_G6);
reserved_regs->add(REG_G7);
reserved_regs->add(REG_O7);

free_regs->remove(reserved_regs);

TEMP_REG = free_regs->first();
free_regs->remove(TEMP_REG);

//range_check:
if (IS_IMM(mi))
{
code[label] = ADD | OP2;
code[label] = SET_RD(code[label], REG_G5);
code[label] = SET_RS1(code[label], RS1(mi));
code[label] = SET_IMM_BIT(code[label], IMM_BIT);
code[label] = SET_IMM(code[label], (mi & IMM_MASK));
label++;

}
else
{
code[label++] = make_2arg_inst(ADD | OP2, RS1(mi), RS2(mi), REG_G5);

}

code[label++] = make_imm_inst(SRL | OP2, REG_G5, RANGE_CHECK_RIGHT_SHIFT,
REG_G6);

code[label++] = make_imm_inst(SUBcc | OP2, REG_G6, RANGE_CHECK_BITS, REG_G0);

code[label] = BNE | ICC;
code[label] = SET_BR_ADDR(code[label], 24); // goto nomiss:
label++;

code[label++] = make_sethi(TEMP_REG, DSZOOM_MSI2_mem_store_routine_start_addr);

//spin_lock:
code[label++] = make_sethi(REG_G6, 0x3C000000);

code[label++] = make_imm_inst(SRL | OP2, REG_G5, 6, REG_G5);

code[label++] = make_2arg_inst(ADD | OP2, REG_G5, REG_G5, REG_G5);

code[label++] = make_2arg_inst(ADD | OP2, REG_G6, REG_G5, REG_G6);

//spin_lock_retry:
code[label++] = make_imm_inst(LDSTUB | OP3, REG_G6, 0, REG_G5);

code[label++] = make_2arg_inst(ORcc | OP2, REG_G0, REG_G5, REG_G0);

code[label] = BE | ICC;
code[label] = SET_BR_ADDR(code[label], 7); // goto spin_lock_out:
label++;

code[label++] = NOP;

//spin_lock_loop:
code[label++] = make_imm_inst(LDUB | OP3, REG_G6, 0, REG_G5);

code[label++] = make_2arg_inst(ORcc | OP2, REG_G0, REG_G5, REG_G0);

48

code[label] = BNE | ICC;
code[label] = SET_BR_ADDR(code[label], -2); // goto spin_lock_loop:
label++;

code[label++] = NOP;

code[label] = BA | ICC;
code[label] = SET_BR_ADDR(code[label], -8); // goto spin_lock_retry:
code[label] = SET_ANNUL_BIT(code[label], ANNUL_BIT);
label++;

//spin_lock_out:
//check_if_exclusive:
code[label++] = make_imm_inst(LDUB | OP3, REG_G6, 1, REG_G5);

code[label++] = make_2arg_inst(SUBcc | OP2, REG_G5, REG_G7, REG_G0);

code[label] = BE | ICC;
code[label] = SET_BR_ADDR(code[label], 4); // goto orig_store:
label++;

code[label++] = make_imm_inst(OR | OP2,
TEMP_REG,
ZSDSM_MSI2_mem_store_routine_start_addr &
IMM_MASK,
TEMP_REG);

//jmpl_DSZOOM_MSI2_mem_store:
code[label++] = make_imm_inst(JMPL | OP2, TEMP_REG, 0, REG_O7);

if (IS_IMM(mi))
{
code[label] = ADD | OP2;
code[label] = SET_RD(code[label], REG_G5);
code[label] = SET_RS1(code[label], RS1(mi));
code[label] = SET_IMM_BIT(code[label], IMM_BIT);
code[label] = SET_IMM(code[label], (mi & IMM_MASK));
label++;

}
else
{
code[label++] = make_2arg_inst(ADD | OP2, RS1(mi), RS2(mi), REG_G5);

}

//orig_store
code[label++] = mi;

//unlock_dir_entry:
code[label++] = make_imm_inst(STH | OP3, REG_G6, 0, REG_G7);

code[label] = BA | ICC;
code[label] = SET_BR_ADDR(code[label], 2); // goto end:
code[label] = SET_ANNUL_BIT(code[label], ANNUL_BIT);
label++;

//nomiss:
code[label++] = mi;

//end:

alloc->add(TEMP_REG);
code_snippet* s = new code_snippet(code,

label * sizeof(mach_inst),
alloc,
reserved_regs);

delete[] code;
return (s);

}

