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Abstract

Software-implementations of shared memory are still far behind the performance of hardware-
based shared memory implementations and are not viable options for most fine-grain shared-
memory applications. The major source for their inefficiency comes from the cost of interrupt-
based asynchronous protocol processing, not from the actual network latency. As the raw hard-
ware latency of inter-node communication decreases, the asynchronous overhead in the com-
munication becomes more dominant. Elaborate schemes, involving dedicated hardware and/or
dedicated protocol processors, have been suggested to cut the overhead.

This paper describes how all the asynchronous overhead can be completely removed by
instead running the entire coherence protocol in the requesting processor. This not only removes
the asynchronous overhead, but also makes use of a processor that otherwise would stall. The
technique is applicable to both page-based and fine-grain software shared memory.

Our proof-of-concept implementation—DSZOOM-EMU—is a fine-grained software-based
shared memory. It demonstrates a protocol-handling overhead below a microsecond for all the
actions involved in a remote load operation, to be compared to the fastest implementation to
date of around ten microseconds. The all-software protocol is implemented assuming only some
basic low-level primitives in the cluster interconnect. Based on a remote atomic and simple
remote put/get operations the requesting processor can assume the role of the directory agent,
traditionally assumed by a remote protocol agent in the home node in other implementations.
The implementation is thread-safe and allows all processors in a node to simultaneously perform
remote operations.
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1 Introduction

Clusters of symmetric multiprocessors (SMPs) provide a powerful platform for executing parallel
applications. To allow for shared-memory applications to run on such clusters, software distributed
shared memory (SW-DSM) systems support the illusion of shared memory across the cluster via a
software run-time layer between the application and the hardware. This approach can potentially
provide a cost-effective alternative to hardware shared memory systems for executing certain classes
of workloads. SW-DSM technology can also be used to connect several large hardware distributed
shared memory (HW-DSM) systems and thereby extend their upper scalability limit.

Most SW-DSM systems keep coherence between page-sized coherence units [Li88], [CBZ91],
[KCDZ94], [SB97], [SDH+97]. The normal per-page access privilege of the memory-management
unit offers a cheap access control mechanism for these SW-DSM systems. The large page-sized
coherence units in the earlier SW-DSM systems created extra false sharing and caused frequent
transfers of large pages between nodes. In order to avoid most of the false sharing, weaker memory
models have been used to allow many update actions to be lumped to a specific point in time, such
as the lazy release consistency (LRC) protocol [Kel95].

Fine-grain SW-DSM systems with a more traditional cache-line-sized coherence unit have also
been implemented. Here, the access control check is either done by altering the error-correcting
codes (ECC) [SFH+96] or by in-line codesnippets(small fragments of machine code) [SFH+96],
[SGT96]. The small cache line size reduces the false sharing for these systems, but the explicit
access check adds extra latency for each load or store operation to global data. The most efficient
access check reported to date is three extra instructions adding three extra cycles for each load to
global data [SFH+98].

Today’s implementations of SW-DSM systems suffer from long remote latencies and their scala-
bility has never reached acceptable levels for general SMP shared-memory applications. The coher-
ence protocol is often implemented as communicating software agents running in the different nodes
sending requests and replies to each other. Each agent is responsible for accessing its local memory
and for keeping a directory structure for “its part” of the shared address space. The agent where the
directory structure for a specific coherence unit resides is called its home node. The interrupt cost,
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associated with receiving a message, for asynchronous protocol processing is the single largest com-
ponent of the slow remote latency, not the actual wire delay in the network or the software actually
implementing the protocol [BS97], [IS99]. To our knowledge, the shortest SW-DSM read latency
to date is that of Shasta [SGA97]. The 15-microsecond round-trip read latency is roughly divided
into 5 microseconds, of “real” communication and 10 microseconds of interrupt and agent overhead
[Gha00]. Most other SW-DSM implementations have substantially larger interrupt overheads, and
latencies closer to 100 microseconds have been reported [SFH+96].

In this paper we suggest a new efficient approach for software-based coherence protocols. While
other work have proposed elaborate schemes for cutting down on the overhead associated with inter-
rupting and/or polling caused by the asynchronous communication between the agents [BLS99],
[MFHW96], our implementation has completely eliminated the protocol-agent interactions. In
DSZOOM the entire coherence protocol is implemented in the protocol handler running in the re-
questing processor. This also makes use of a processor that otherwise would have been idle. Rather
than relying on a “directory agent” located in the home node, as the synchronization point for the
coherence of a cache line, we use a remote atomic fetch-and-set operation to allow for protocol
handlers running in any node, not just the home node, to temporarily acquire atomic access to the
directory structure of the cache line. We believe that the solution presented here would be beneficial
both for page-sized and fine-grain SW-DSM systems, even though we will concentrate on fine-grain
SW-DSM in this paper.

We have implemented the DSZOOM-EMU system, our initial proof-of-concept DSZOOM im-
plementation that emulates fine-grain software-based DSM between “virtual nodes,” modeled as
processes inside a single SMP. We use the executable editing library (EEL) [LS95] to insert fine-
grain access control checks before shared-memory loads and stores in a fully compiled and linked
executable. Global coherence is resolved by a coherence protocol implemented in C that copies data
to the node’s local memory by performing loads and stores from and to remote memory. We have
measured the actual protocol overhead to be less than a microsecond for a “remote load.” Latency
loops have been inserted into our protocol in order to model the latency of realistic networks. We
have also modeled latencies of more traditional interrupt-driven SW-DSM implementations. A to-
tal of nine unmodified SPLASH-2 applications [WOT+95], developed for fine-grain hardware SMP
multiprocessors, are studied. We compare the performance of a DSZOOM-EMU system with that of
a Sun Enterprise E6000 SMP server [SBC+96] as well as the hardware-coherent Sun Orange (earlier
referred to as Sun WildFire) DSM system [HK99], [NvdP99].

The remainder of this paper is organized as follows. Section 2 presents our basic idea and
an introduction to a general DSZOOM system. The proof-of-concept implementation—DSZOOM-
EMU—is described in Section 3. Section 4 presents the experimental environment, applications used
in this study, and results of our performance study. Finally, we present related work and conclude.

2 Basic Idea

2.1 Cluster Networks with Put/Get Semantics

DSZOOM assumes a cluster interconnect with an inexpensive user-level mechanism to access mem-
ory located in other nodes, similar to the remote put/get semantics found in the cluster version of the
Scalable Coherence Interface (SCI) implementation by Dolphin.1 A ping-pong round-trip latency of
5 microseconds, including MPI protocol overhead, has been demonstrated on a SCI network with a

1SCI is better known for its implementation of coherent shared memory than its non-coherent internode cluster
communication. In this paper we only refer to its usage as a cluster interconnect.
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2 microsecond raw read latency. Some of the memory in the other nodes is mapped into a node’s I/O
space and can be accessed using ordinary load and store operations. The different cluster nodes run
different kernel instances and do not share memory with each other in a coherent way; in other words,
no invalidation messages are sent between the nodes to maintain coherence when replicated data are
altered in a node. This removes the needs for the complicated coherence scheme implemented in
hardware and allows the NIC to be connected to an I/O bus, e.g., PCI or SBUS, rather than to the
memory bus. In order to prevent a “wild node” from destroying crucial parts of other nodes’ mem-
ories, the incoming transactions are sent through a network MMU (IOMMU). Each kernel needs to
set up appropriate IOMMU mapping to the remotely accessible part of its memory before the other
nodes are accessed. Given the correct initialization of the IOMMU, user-level accesses to remote
memory are enabled.

We further assume support for two new remote-access operations not supported by the SCI-
Cluster: the half-word-wideput2 and fetch-and-set2(fas2). The fas2 operation is launched by a
“normal” half-word load operation and the put2 is launched by a half-word store to the remotely
mapped I/O space. The network interface detects the half-word load and converts it into a fetch-and-
set. The fas2 operation will return the 2 bytes of data that was stored in the remote memory and also
atomically set the most significant byte of the data in the remote memory. The fas2 primitive is used
to aquire a lock and retrieve a corresponding small data-structure in a single operation.

There are strong indications that interconnects fulfilling our assumptions will soon be widely
available. The emerging InfiniBand interconnect proposal supports efficient user-level accesses to
remote memory as well as atomic operations to smaller pieces of data, e.g.,CmpSwap(Compare and
Swap) andFetchAdd (Fetch and Add) [Inf00]. InfiniBand’sFetchAdd can effectively implement
a function similar to the fas2 functionality for a system with up to 128 nodes. The least significant
byte (LSB) of the data entity accessed is the “lock” and the remaining part of the data entity is the
payload data. AFetchAdd returning data with a zero LSB means that the lock was acquired. The
lock is released and the payload data is updated in a single operation by writing the new payload
value with a zero byte concatenated at the LSB end to the data entity. In order to avoid mangling the
payload data for contended locks, aFetchAdd returning a LSB with a value above 128 will require
the contenders to poll the data-structure using ordinary fetch operations until the LSB with a value
below 128 has been observed.

2.2 DSZOOM Node Model

Each DSZOOM node consists of an SMP multiprocessor, e.g., the Sun Enterprise E6000 SMP with
up to 30 processors or the Pentium Pro Quad with up to four processors. The SMP hardware keeps
coherence among the caches and the memory within each SMP node. The InfiniBand-like intercon-
nect, as described above, connects the nodes. We further assume that the write order between any
two endpoints in the network is preserved.

2.3 DSZOOM Blocking Directory Protocol Overview

Most of the complexity of a coherence protocol is related to the race conditions caused by multiple
simultaneous requests for the same cache line. Blocking directory coherence protocols have been
suggested to simplify the design and verification of hardware DSM systems [HK99]. The directory
blocks new requests to a cache line until all previous coherence activity to the cache line has ceased.
The requesting node sends a completion signal upon completion of the activity, that releases the
block for the cache line. This eliminates all the race conditions, since each cache line can only be
involved in one ongoing coherence activity at any specific time.
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The DSZOOM protocol implements a distributed version of a blocking protocol. A processor
that has detected the need for global coherence activity will first acquire a lock associated with
the cache line before starting the coherence activity. A remote fas2 operation to the corresponding
directory entry in the home node will bring the directory entry to the processor and also atomically
acquire the cache line’s “lock.” If the most significant byte of the directory entry returned is set, the
cache line is “busy” by some other coherence activity. The fas2 operation is repeated until the most
significant byte is zero.2 Now, the processor has acquired the exclusive right to perform coherence
activities on the cache line and has also retrieved the necessary information in the directory entry
using a single operation. The processor now has the same information as, and can assume the role
of, the “directory agent” in the home node of a more traditional SW-DSM implementation. Once
the coherence activity is completed, the lock is released and the directory is updated by a single put2
transaction. No memory barrier is needed after the put2 operation since any other processor will
wait for the most significant byte of the directory entry to become zero before the directory entry
can be used. Thus, the latency of the remote write will not be visible to the processor.

To summarize, we have enabled the requesting processor to momentarily assume the role of a
traditional “directory agent,” including access to the directory data, at the cost of one remote latency
and the transfer of two small network packets. This has the advantage of removing the need for
asynchronous interrupts in foreign nodes and also allows us to execute the protocol in the requesting
processor that most likely would be idle waiting for the data. A further advantage is that the protocol
execution is divided between all the processors in the node, not just one processor at a time as
suggested in some other proposals, for example by Mukherjee et al. [MFHW96].

2.4 Protocol Details

The SMP hardware keeps the coherence within the node, on top of which the global DSZOOM
protocol has been added. All the coherence activities and state names discussed in this paper apply
to the DSZOOM protocol.

The DSZOOM protocol states, MODIFIED, SHARED and INVALID (MSI), are explicitly repre-
sented by data structures in the node memory. The DSZOOM directory entry has eight presence
bits per cache line, i.e., can support up to eight SMP nodes. The location of a cache line’s directory
location, i.e., its “home node”, is determined by looking at some of its address bits. To avoid most of
the accesses to the directory caused by global load operations, all cache lines in state INVALID store
by convention a “magic” data value as independently suggested by Schoinas et al. [SFH+96] and
Scales et al. [SGT96]. The directory only has to be consulted if the register contains the magic value
after the load. Whenever our selected magic value is indeed the intended data value, the directory
state must be examined at the cost of some unnecessary global activities. This has, however, proven
to be a very rare event in all our studied applications.

To also avoid most of the accesses to the directory caused by global store operations, each node
has two bytes of local state (MTAG) per global cache line (similar to theprivate state tablefound in
Shasta [SGA97]), indicating if the cache line is locally writable. Before each global store operation,
the MTAG byte is locked by a local atomic operation, before the access write to the cache line is
determined. The directory only has to be consulted if the MTAG indicates that the node currently
does not have write permission to the cache line. The home node can access the cache line’s directory
entry by a local memory access and does not need any extra MTAG state.

Figure 1a illustrates the difference between DSZOOM and a more traditional SW-DSM by show-
ing the the activity caused by a read miss in a two-node system. The traditional software DSM’s

2A random back-off scheme can be used to avoid a live-lock situation, but has not been employed in DSZOOM yet.
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software handler running in the current processor sends a message to the home node and busy-waits
for the reply. A new software handler is invoked in the home node upon the arrival of the request.
The home handler retrieves the requested data from its local memory and modifies the corresponding
directory structure before returning the data reply to the requesting handler. The two major draw-
backs of this approach is the latency from asynchronously invoking a handler in the home node and
the simultaneous occupancy of two handlers during most of the protocol handling, i.e., occupying
two processors.

Algorithm 1 Pseudo-code for global coherence load operations. Emphasized line is implemented as
in-line assembler, while the remaining protocol is implemented by a routine coded in C.

IF (register == MAGIC) {
lock(dir)
IF (presence_bits(me) == 0) {

IF ((number(presence_bits) == 1) &&
(remote_node != home)) {

lock(remote_mtag)
// Data can not be altered in the remote node now
read_remote(data)
update_release(remote_mtag)

}
ELSE {

read_remote(data)
}

}
update_release(dir)

}

The software protocol handler in the DSZOOM example will acquire exclusive access right to the
directory entry through a single remote fas2 operation to the home node, as shown in Figure 1b. In
parallel it also speculatively retrieves the data from the home node through a remoteget64operation.
The directory entry is updated and released by a single remote put2 operation at the end of the
handler. The protocol handler is completed as soon as the put2 write operation is issued to the write
buffer, why the latency of this operation is not on the critical latency path of the application. While
the DSZOOM approach will drastically cut the latency for retrieving remote data and will avoid
using any CPU time in the home node, its major drawback is the global bandwidth consumed.

To illustrate the excess bandwidth consumed by DSZOOM, each global packet has been marked
as either a “small packet,” with a payload of less than 6 bytes, or a “large packet,” with a payload
of 64 bytes.3 Each packet type is assumed to also carry 2 bytes of cyclic redundancy code (CRC)
and 2 bytes of routing/header information, so the total number of bytes are 10 bytes and 68 bytes
respectively. Based on these assumptions, DSZOOM’s four small and one large packet will transfer
108 bytes compared with the 78 bytes used by the traditional approach, i.e., 38% more bandwidth is
used in DSZOOM.

A similar bandwidth overhead can be seen in the example in Figure 2 showing a three-node
system performing a 3-hop read operation, i.e., a read request to data which resides in a modified
state in a node different than the home node, called the slave node. The traditional SW-DSM ap-
proach will need two asynchronous interrupts on the critical path before the data is forwarded to
the requesting node. DSZOOM will need one fas2 message to lock and acquire the directory and

3We have not included the implicit acknowledge packets that may be used by the lower level network implementation.
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Algorithm 2 Pseudo-code for global coherence store and load-store operations. Emphasized lines
are implemented as in-line assembler, while the remaining protocol is implemented by a routine
coded in C.

lock(my_mtag)
IF (my_mtag == my_mask) { // Is only “my” bit set?

IF (me != home) { // Have we already locked the dir?
lock_test(dir) // Try once to lock the directory
// Release our MTAG if dir is busy
IF (busy(dir)) {

release(my_mtag) // To avoid deadlocks
lock(dir) // Now, first lock directory
lock(my_mtag) // then lock MTAG

}
}
// Now we have locked the dir for sure!
IF (number(presence_bits) != 1) {

// The data is shared by many nodes and is not writable
IF (presence_bits(me) == 0) {

// My data is not valid
read_data_from_one_node

}
FOREACH sharer {

store_remote(MAGIC) // Invalidate remote nodes
}

}
ELSE IF (presence_bits(me) == 0) {

// There is a single node with a writable copy,
// and it is not me
IF (me == home) { // The dir is already locked

read_remote(data)
store_remote(MAGIC)

}
ELSE {

lock(remote_mtag)
read_remote(data)
store_remote(MAGIC)
update_release(remote_mtag)

}
}
IF (me != home) {

update_release(dir)
}
update_release(my_mtag)

}
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determine the identity of the node holding the modified data. A second fas2 to that node’s MTAG
structure will temporarily disable write accesses to the data. Right after the fas2 has been issued a
get64 is issued to speculatively bring the data to the requesting node. The directory entry and the
MTAG are updated and released through two put2 write operations at the end of the handler, i.e., off
the critical path. Again, DSZOOM will need more messages to complete its task: seven small and
one large packet compared with the three small and one large used by the traditional approach. The
traditional SW-DSM approach will need two asynchronous interrupts on the critical path before the
data is forwarded to the requesting node. Thus, DSZOOM will require 41% more bandwidth for this
particular operation. This is the worst-case protocol example for DSZOOM which, fortunately, is
not that common in the studied examples.

Algorithm 1 shows pseudo-code for global coherence load operations. The pseudo-code for
global coherence store and load-store operations is shown in Algorithm 2. Emphasized lines in
both algorithms are implemented as UltraSPARC in-line assembler, while the remaining protocol is
implemented by routines coded in C.

3 DSZOOM-EMU: Proof-of-Concept Implementation

This section describes our proof-of-concept implementation. DSZOOM-EMU is a sequentially con-
sistent [Lam79] fine-grain SW-DSM. This implementation emulates fine-grain software-based DSM
between “virtual nodes,” modeled as processes inside a single Sun Enterprise E6000 SMP. Thus,
we logically divided one SMP into several “imaginary” SMPs, each one with its own address space,
and rely on the DSZOOM protocols to keep the coherence between the address space. To make this
kind of implementation more realistic we model the network delays for our virtual cluster as well
by inserting some extra “dummy-loops” into the cache coherence protocol routines and the synchro-
nization part of a DSZOOM-EMU run-time system. DSZOOM-EMU compilation process is shown
in Figure 3. The unmodified SMP application written with PARMACS macros is first preprocessed
with a m4 macro preprocessor. m4 will replace all PARMACS macros with DSZOOM-EMU run-
time system calls. A standard GNU gcc compiler is used to compile and link the preprocessed file
with a DSZOOM-EMU run-time library. The resulting file, the “(Un)executable,” is then passed to
our binary modification tool that is based on an unmodified version of the executable editing library
(EEL) [LS95]. The binary modification tool inserts fine-grain access control checks after shared-
memory loads, it inserts range checks and node-local MTAG lookups before stores, and it also adds
calls to the corresponding coherence protocol routines shown in Algorithm 1 and Algorithm 2. Fi-
nally, thea.out is produced and can be used as if it was executed inside one SMP.

3.1 Setting Up the Memory-Mapped Communication

Modified/Extended PARMACS macros are responsible for, among many other things, setting up the
memory-mapped communication between the processes inside one SMP. Address space layout and
attachment of the shared memory objects for every process running in the home node (NODE_ID= 0)
is shown in Figure 4. Shared memory objects with shared memory identifiersA, B, C, andD repre-
sents the physical shared/global memory of every node in the cluster. Shared memory identifierE,
which is attached to thePROFILE_DATAarea with a standard Solaris system callshmat , is used
for profiling purposes only. Local run-time system data for every process (e.g., DSZOOM-EMU
process identifier, UNIX process identifier, etc.) is stored in a privately mappedL_NODE_DATA
area in a current implementation, and is also used mainly for debugging and profiling purposes.
Directory is placed at the beginning of theG_MEMarea.
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1: ld [%o1 + 64], %DEST_REG //original LD
2: sethi %hi(._start_FFT.EXE), %temp //prepare for jmpl
3: srl %DEST_REG, 24, %g5 //mask “magic”
4: cmp %g5, 0xAA //check if “magic”
5: bne hit: //if not, it is a hit
6: mov %DEST_REG, %g6 //prepare jmpl
7: jmpl %temp, %o7 //jump link to C routine
8: add %o1 + 64, %g5 //pass addr to C routine
9: mov %g6, %DEST_REG //move LD value from C

hit:

Figure 5: Replacing onelduw instruction (partly-optimized). The%temp register is allocated with
our binary modification tool from dead or freed registers at the insertion point. Only instructions 1–5
are executed in cases when the loaded data is valid (i.e., the%DEST_REGis a non-magic value). In
cases when the data is a magic-value, first then the cache coherence handler routine will be invoked
(with instruction 7). False misses almost never occur in practice.

3.2 Inserting the Cache-Coherence Protocol Code into Binaries

There are at least three ways of inserting cache-coherence protocol code into benchmark binaries.
The most classical way of doing this is to make a compiler modification to perform that particular
task, e.g., create a compiler backend that is capable of exchanging all relevant loads and stores with
corresponding code snippets for those loads and stores. There are several systems that use compiler-
generated checks, for example, Olden [CR95], Split-C [CDG+93], and Midway [BZS93]. Dynamic
code instrumentation (e.g.,JiTI: a Robust Just in Time Instrumentation Technique [RB00]) is another
technique that also is capable of performing this task. The third alternative, binaryinstrumentation
is a technique usually described as a low-cost, medium-effort approach of inserting sequences of
machine instructions into a program in executable or object format. We decided to use executable
editing library (EEL) [LS95], a library that was successfully used in several similar projects based
on the UltraSPARC architecture, e.g. Blizzard-S [SFL+94] and Sirocco-S [SFH+98].

The purpose of the proof-of-concept DSZOOM implementation is to demonstrate the implemen-
tation of a low-overhead global SW-DSM protocol, which is applicable to both page-based software-
based DSMs and fine-grain SW-DSMs. The code in Figure 5 shows the code snippet replacing one
particular global load instruction. The actual implementation of the low-level fine-grain instrumen-
tation is still far from optimal. Examples of more efficient instrumentation can be found in both
the Shasta [SGA97] and the Sirocco-S [SFH+98]. Our binary modification tool does not instrument
accesses to non-shared stack data, but it still do instrument a huge number of static data accesses.

3.2.1 Modeling the Network

SW-DSM is run very efficiently in a single SMP node. In order to model a more realistic set-up
with real network delay, the protocol implemented in C code have extra latency loops inserted. A
“remote” access has about 2 microseconds of extra latency added to model the expected latency of a
remote network.

We also wanted to compare our SW-DSM implementation to one with a more common, still
short, remote latency caused by the extra protocol overhead. We have used the shortest latency
reported to date as our benchmark number: 15 microseconds (Shasta [SGA97], [Gha00]). This is
modeled as extra network delay. The extra CPUs occupancy by the protocol agent in the remote end
have not been taken into account, nor have we modeled any contention effects from single threaded
agent in that scheme.

12



4 Performance Study

In this section we describe experimental setup, applications used in this study, and finally, we present
DSZOOM-EMU performance overview.

4.1 Experimental Setup

Most experiments in this paper are performed on a Sun Enterprise E6000 SMP [SBC+96]. The
server has 16 UltraSPARC II (250 MHz) processors and 4 Gbyte uniformly shared memory with
an access time of 330 ns (lmbenchlatency [MS96]) and a total bandwidth of 2.7 Gbyte/s. Each
processor has a 16 kbyte on-chip instruction cache, a 16 kbyte on-chip data cache, and a 4 Mbyte
second-level off-chip data cache.

The hardware DSM numbers have been measured on a 2-node Sun Orange built from two E6000
nodes connected through a hardware-coherent interface with a raw bandwidth of 800 Mbyte/s in
each direction [HK99], [NvdP99]. The Orange system has been configured as a traditional cache-
coherent, non-uniform memory access (CC-NUMA) architecture with its data migration capability
activated while its coherent memory replication (CMR) has been kept inactive. The Sun Orange
access time to local memory is the same as above, 330 ns, while accessing data located in the other
E6000 node takes about 1700 ns (lmbench latency). The E6000 and the Orange DSM system are
both running a slightly modified version of the Solaris 2.6 operating system.

4.2 Applications

The benchmarks we use in this study are well-known scientific workloads from the SPLASH-2
benchmark suite [WOT+95]. We study a total of nine SPLASH-2 applications (that do not require
any modifications) from the original Stanford University distribution, which were originally devel-
oped for hardware multiprocessors. The applications are:Barnes-Hut(hierarchical N-body method),
FFT (complex 1-D version of the radix-

p
n six-step FFT algorithm [Bai90]),LU (blocked LU de-

composition, see [WSH94] for more details),CLU (blocked LU decomposition with contiguous
allocation of data, more optimized version of LU),Radix(integer radix sort kernel),Radiosity(it-
erative hierarchical diffuse radiosity method [HSA91]),Raytrace(rendering of a three-dimensional
scene using ray tracing),Water-nsq(water simulation without spatial data structure), andWater-sp
(water simulation with spatial data structure, this application solves the same problem as Water-nsq,
but uses a more efficient algorithm). The benchmarks were compiled with System V IPC version of
the PARMACS shared-memory macros used by Artiaga et al. [ANMB97], [AMBN98]. The macro
library was modified in several ways, for example we use user-level synchronization through test-
and-set locks instead of System V IPC semaphore library calls. We also began all measurements at
the start of the parallel phase to exclude DSZOOM-EMU’s run-time system initialization time.

The reason why we cannot run the entire SPLASH-2 application suite is that the global variables
used as shared are not correctly allocated with theG_MALLOCmacro. It should be possible to
manually modify those applications to solve this problem.4

The data-set sizes and uniprocessor-execution times for the studied SPLASH-2 applications are
presented in Table 1.

4Artiaga has experienced similar problems with the original fork-exec versions of several applications [Art01].

13



Non-Instrumented

Program Problem Size Sequential Time [s]

FFT 1,048,576 points (48.1 MB) 15.51

CLU 1024�1024, block 16 (8.0 MB) 75.45

LU 1024�1024, block 16 (8.0 MB) 85.85

Radix 4,194,304 items (36.5 MB) 28.88

Barnes-Hut 16,384 bodies (32.8 MB) 37.12

Radiosity Test (29.4 MB) 8.62

Raytrace Teapot (32.2 MB) 6.28

Water-nsq 2197 molecules, 2 steps (2.0 MB) 86.73

Water-sp 2197 molecules, 2 steps (1.5 MB) 23.08

Table 1: Data-set sizes and sequential-execution times for the studied SPLASH-2 applications.

% % Instrumented Efficiency Overhead

Program LD ST Sequential Time [s] Total (LD%) (ST%)

FFT 40.5 23.5 22.92 1.48 (17%) (83%)

CLU 40.2 14.8 140.05 1.86 (41%) (59%)

LU 38.8 17.1 154.08 1.79 (49%) (51%)

Radix 46.1 17.3 41.16 1.43 (63%) (37%)

Barnes-Hut 52.1 51.9 65.59 1.77 (87%) (13%)

Radiosity 41.4 35.2 14.36 1.67 (90%) (10%)

Raytrace 41.4 35.2 6.28 1.67 (90%) (10%)

Water-nsq 45.0 32.5 166.21 1.92 (96%) ( 4%)

Water-sp 43.7 27.7 44.54 1.93 (90%) (10%)

Table 2: Data-set sizes and sequential-execution times for instrumented SPLASH-2 applications
with an efficiency overhead shown in the last column. Efficiency overhead is divided into dynamic
values produced by load and store snippets during the run-time. Second and third columns show
percentage of statically instrumented loads, and stores respectively.

4.3 DSZOOM-EMU Performance Overview

Sequential-execution times for the instrumented SPLASH-2 programs are shown in Table 2. Effi-
ciency overhead is between 1.43 and 1.93 for all of the studied applications, i.e., instrumented code
takes between 43% and 93% longer time to execute the programs. State-of-the-art checking over-
heads (for example in Shasta [SGA97]) are in the range of 5-35%. Unfortunately, increased software
checking overhead gives us a bad starting point for many of the applications.

All experiments presented here are performed with 8 and 16 processors. Figure 6 shows the
results of our performance study for the four different configurations; (i) 8-processor runs on E6000
SMP server; (ii ) CC-NUMA 2-node configuration, 4 processors per node; (iii ) DSZOOM-EMU 2�4
(i.e., 2 nodes, 4 processors per node) with 3 microseconds network delay; and (iv) DSZOOM-EMU
2�4 with 15 microseconds network delay. Speedup values are calculated relatively execution times
from Table 1.

Figure 7 shows the results for 16-processor configurations; (i) 16-processor SMP; (ii ) CC-
NUMA 2�8 (i.e., 2 nodes, 8 processors per node); (iii ) DSZOOM-EMU 2�8, 3 microseconds
delay; and (iv) DSZOOM-EMU 2�8, 15 microseconds delay. Also here, speedup values are calcu-
lated relatively execution times from Table 1.
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The DSZOOM-EMU simulations with 1, 2, 4, and 8 nodes are also performed on a Sun En-
terprise E6000 SMP server and the results are shown in Figure 8 (8-processor runs) and Figure 9
(16-processor runs) respectively. Note that the speedup values for DSZOOM-EMU systems in both
Figure 8 and Figure 9 are calculated relatively values from Table 2. Network delay is about 3 mi-
croseconds for all DSZOOM-EMU configurations.

5 Related Work

Many different SW-DSM implementations have been proposed over the years: Blizzard-S [SFL+94],
Brazos [SB97], Cashmere-2L [SDH+97], [DGK+99], CRL [JKW95], GeNIMA [BLS99], Ivy [Li88],
[LH89], MGS [YKA96], Munin [CBZ91], Shasta [SGT96], [SGA97], [SG97a], [SG97b], [DGK+99],
Sirocco-S [SFH+98], SoftFLASH [ENCH96], and TreadMarks [KCDZ94]. Most of them suffer
from synchronous interrupt protocol processing. We belive that many of these implementations
would benefit from a more efficient protocol implementation; such the one described here.

Regarding the simple architectural support [IS99], the GeNIMA proposal is closest to our work.
GeNIMA proposes a protocol and a general network interface mechanism to avoid some of the asyn-
chronous overhead. A processor starting a synchronous communication event, e.g., the requesting
processor initiating some coherence actions, checks for incoming messages at the same time. This
avoids some of the asynchronous overhead in the home node, but will also add some extra delay
while waiting for a synchronous event to happen in the node. The protocol is still implemented as
communicating protocol agents.

Several other papers have suggested hardware support for fine-grain remote write operations
in the network interface [KS96], [KHS+97]. One of the recent implementations is the automatic
update release consistency (AURC) home-based protocol [IBD+98]. This implementation is a page-
based SW-DSM which eliminates “diffs”—the compact encoded representation of the differences
between the two pages, frequently used in many page-based SW-DSM systems—by using fine-grain
remote writes for both the application data and the protocol meta-data. The AURC approach usually
performs better than all-software home-based LRC implementations.

6 Conclusions

We have demonstrated how asynchronous protocol processing can be completely avoided at the cost
of some extra remote transactions—trading bandwidth for efficiency. The entire protocol processing
for remote SW-DSM load operation on our initial DSZOOM implementation has been measured to
be below 800 nanoseconds on a 4-way 400 MHz UltraSPARC II SMP system. We believe that the
total round-trip SW-DSM latency can be kept below three microseconds once the raw latency of a
modern interconnects has been added. We demonstrate a substantial improvement in speedup for
many of the SPLASH-2 applications when we compare a modeled three microsecond SDSM system
with the current state-of-the-art 15-microsecond.

The protocol technique described in this paper is applicable to the emerging InfiniBand I/O
interconnect proposal. We believe a protocol, such as the one we describe, could speed up many of
the existing SW-DSM implementations on such interconnect.
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(b) Speedup

Figure 6: Execution times and speedup values for SMP 8-processor runs, CC-NUMA 2�4,
DSZOOM-EMU 2�4 (3�s network delay), and DSZOOM-EMU 2�4 (15�s network delay). Note
that all speedup values are calculated relatively execution times from Table 1.
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Figure 7: Execution times and speedup values for SMP 16-processor runs, CC-NUMA 2�8,
DSZOOM-EMU 2�8 (3�s network delay), and DSZOOM-EMU 2�8 (15�s network delay). Note
that all speedup values are calculated relatively execution times from Table 1.
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(b) Speedup

Figure 8: DSZOOM-EMU with 8 processors; 1, 2, 4, and 8 node simulations. Note that speedup
values for DSZOOM-EMU systems are calculated relatively execution times from Table 2. Network
delay is about 3�s for all configurations presented here.
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Figure 9: DSZOOM-EMU with 16 processors; 1, 2, 4, and 8 node simulations. Note that speedup
values for DSZOOM-EMU systems are calculated relatively execution times from Table 2. Network
delay is about 3�s for all configurations presented here.
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7 Future Work

We plan to extend this work in several different directions. First, cache-coherence protocol code
optimizations will improve performance of the DSZOOM-WF system. Because EEL has problems
with hand-written in-line assembly in combination with high optimization levels during the compi-
lation (our protocol routines written in C, and the synchronization part of our run-time system that is
also written in C, use quite a lot of in-line assembly gcc constructs) we do not use any optimizations
during the compiling phase of the coherence protocol routines and the run-time system.

Second, we plan to port DSZOOM-EMU to a real cluster interconnect with remote load/store se-
mantics and remote fetch-and-set and/or fetch-and-add capabilities (e.g., to begin with, we can more
accurately model up to four-node configuration on a Sun Orange [HK99] prototype SMP cluster by
simply binding the processes/threads to arbitrary node with Solaris system callpset_bind ).

Third, in order to improve the performance of the DSZOOM-WF system, weaker memory mod-
els, such as lazy release consistency (LRC) [Kel95] and the release consistency model presented by
Gharachorloo et al. [GLL+90], [SGT96], can be used instead of the sequential consistency model
that is currently implemented. This kind of optimization will allow many update actions to be de-
ferred and combined into a single operation.

Fourth, we plan to experiment with several inter-node lock synchronization algorithms (e.g.,
ticket-based locks). The test-and-set locks that we are currently using work well for small-scale SMP
nodes, but they are not adequate for large-scale, CC-NUMA nodes. Usually, test-and-set locks lead
to poor caching performance and increased inter-node communication in many CC-NUMA systems.
We believe that we can speed up many lock-intensive applications with improved synchronization
algorithms.

Finally, to make this kind of system more usable it is desirable to make a POSIX-threads im-
plementation because most of the commercial workloads are implemented with that programming
model rather than PARMACS.
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