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Abstract

Software-implementations of shared memory are still
far behind the performance of hardware-based shared
memory implementations (HW-DSM) and are not vi-
able options for most fine-grain shared memory appli-
cations. The major source for their inefficiency comes
from the cost of interrupt-based asynchronous proto-
col processing, not from the actual network latency. As
the raw hardware latency of inter-node communication
decreases, the asynchronous overhead in the communi-
cation becomes more dominant.

We describe how all the interrupt- and/or poll-based
asynchronous protocol processing can be completely
removed by running the entire coherence protocol in the
requesting processor. This not only removes the asyn-
chronous overhead, but also makes use of a processor
that otherwise would stall. The technique is applica-
ble to both page-based and fine-grain software-based
shared memory.

DSZOOM-WF—the implementation presented in
this paper—is a sequentially consistent, fine-grain dis-
tributed software-based shared memory. It demon-
strates a protocol-handling overhead below a mi-
crosecond for all the actions involved in a remote load
operation, to be compared to the fastest implementation
to date of around ten microseconds. The all-software
protocol is implemented assuming some basic low-level
primitives in the cluster interconnect and an operating
system bypass functionality, similar to the emerging In-
finiBand standard.

DSZOOM-WF demonstrates consistently compara-
ble performance to HW-DSM implementations.

1 Introduction

Clusters of symmetric multiprocessors (SMPs) pro-
vide a powerful platform for executing parallel appli-
cations. To allow for shared-memory applications to
run on such clusters, software distributed shared mem-
ory (SW-DSM) systems support the illusion of shared
memory across the cluster via a software run-time layer
between the application and the hardware. This ap-
proach can potentially provide a cost-effective alterna-
tive to hardware shared memory systems for execut-
ing certain classes of workloads. SW-DSM technol-
ogy can also be used to connect several large hard-
ware distributed shared memory (HW-DSM) systems
and thereby extend their upper scalability limit.

Most SW-DSM systems keep coherence be-
tween page-sized coherence units [Li88], [CBZ91],
[KCDZ94], [SB97], [SDH�97]. The normal per-page
access privilege of the memory-management unit
offers a cheap access control mechanism for these
SW-DSM systems. The large page-size coherence
units in the earlier SW-DSM systems created extra
false sharing and caused frequent page transfers of
large pages between nodes. In order to avoid most
of the false sharing, weaker memory models have
been used to allow many update actions to be lumped
to a specific point in time, such as the lazy release
consistency (LRC) protocol [Kel95].

Fine-grain SW-DSM systems with a more traditional
cache-line-sized coherence unit have also been im-
plemented. Here, the access control check is either
done by altering of the error-correcting codes (ECC)
[SFH�96] or by in-line code snippets (small fragments
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of machine code) [SFH�96], [SGT96]. The small
cache-line size reduces the false sharing for these sys-
tems, but the explicit access-control check adds extra
latency for each load or store operation to global data.
The most efficient access check reported to date is three
extra instructions adding three extra cycles for each
load to global data [SFH�98].

Today’s implementations of SW-DSM systems suf-
fer from long remote latencies and their scalability
have never reached acceptable levels for general SMP
shared-memory applications. The coherence proto-
col is often implemented as communicating software
agents running in the different nodes sending requests
and replies to each other. Each agent is responsible
for accessing its local memory and for keeping a di-
rectory structure for “its part” of the shared address
space. The agent where the directory structure for a
specific coherence unit resides is called its home node.
The interrupt cost, associated with receiving a mes-
sage, for asynchronous protocol processing is the single
largest component of the slow remote latency, not the
actual wire delay in the network or the software actu-
ally implementing the protocol. To our knowledge, the
shortest SW-DSM read latency to date is that of Shasta
[SGA97]. The 15-microsecond round-trip read latency
is roughly divided into 5 microseconds, of “real” com-
munication and 10 microseconds of interrupt and agent
overhead [Gha00]. Most other SW-DSM implemen-
tations have substantially larger interrupt overheads,
and latencies closer to 100 microseconds have been re-
ported [SFH�96].

In this paper we suggest a new efficient approach for
software-based coherence protocols. While other work
have proposed elaborate schemes for cutting down
on the overhead associated with interrupting and/or
polling caused by the asynchronous communication be-
tween the agents [BLS99], [MFHW96], our implemen-
tation has completely eliminated the protocol-agent in-
teractions. In DSZOOM the entire coherence protocol
is implemented in the protocol handler running in the
requesting processor. This also makes use of a pro-
cessor that otherwise would have been idle. Rather
than relying on a “directory agent” located in the home
node, as the synchronization point for the coherence of
a cache line, we use a remote atomic fetch-and-set op-
eration to allow for protocol handlers running in any
node, not just the home node, to temporarily acquire

atomic access to the directory structure of the cache
line. We believe that the solution presented here would
be beneficial both for page-sized and fine-grain SW-
DSM systems, even though we will only concentrate
on fine-grain SW-DSM in this paper.

We have implemented the DSZOOM-WF system, a
sequentially consistent fine-grain SW-DSM, between
the nodes of a Sun-WildFire [HK99] system without re-
lying on its hardware-based coherence capabilities. All
loads and stores are instead performed to the node’s lo-
cal “private” memory. We use the executable editing
library (EEL) [LS95] to insert fine-grain access con-
trol checks before shared-memory loads and stores in
a fully compiled and linked executable. Global coher-
ence is resolved by coherence protocol implemented in
C that copies data to the nodes “private” local mem-
ory by performing loads and stores from and to remote
memory.

We have measured the actual protocol overhead to be
less than one microsecond for a remote load operation,
in addition to the 1.7 microseconds remote latency of
the Sun-WildFire hardware, i.e. a perceived remote la-
tency of 2.7 microseconds for the application. A total of
twelve unmodified SPLASH-2 programs [WOT�95],
developed for fine-grain hardware SMP multiproces-
sors, are studied. We compare the performance of a
DSZOOM-WF system with that of a Sun Enterprise
E6000 SMP server [SBC�96] as well as the hardware-
coherent Sun-WildFire DSM system.

The remainder of this paper is organized as fol-
lows. Section 2 presents our basic idea and an introduc-
tion to a general DSZOOM system. The DSZOOM-
WF implementation is described in Section 3. Sec-
tion 4 presents the experimental environment, applica-
tions used in this study, and results of our performance
study. Finally, we present related work and conclude.

2 DSZOOM Overview

This section contains an overview of the general
DSZOOM system. More protocol details are reported
for the related DSZOOM-EMU protocol [RH01], our
initial proof-of-concept DSZOOM implementation that
emulates fine-grain SW-DSM between “virtual nodes,”
modeled as processes inside a single SMP.
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2.1 Cluster Networks Model

DSZOOM assumes a cluster interconnect with an in-
expensive user-level mechanism to access memory lo-
cated in other nodes, similar to the remote put/get se-
mantics found in the cluster version of the Scalable Co-
herence Interface (SCI) implementation by Dolphin.1

A ping-pong round-trip latency of 5 microseconds, in-
cluding MPI protocol overhead, has been demonstrated
on a SCI network with a 2 microsecond raw read la-
tency. Some of the memory in the other nodes is
mapped into a node’s I/O space and can be accessed
using ordinary load and store operations. The differ-
ent cluster nodes run different kernel instances and do
not share memory with each other in a coherent way;
in other words, no invalidation messages are sent be-
tween the nodes to maintain coherence when replicated
data are altered in one node. This removes the needs
for the complicated coherence scheme implemented in
hardware and allows the NIC to be connected to the I/O
bus, e.g. PCI or SBUS, rather than to the memory bus.
In order to prevent a “wild node” from destroying cru-
cial parts of other node’s memories, the incoming trans-
actions are sent through a network MMU (IOMMU).
Each kernel needs to set up appropriate IOMMU map-
ping to the remotely accessible part of its memory
before the other nodes are accessed. Given the cor-
rect initialization of the IOMMU, user-level accesses
to remote memory have been enabled. SCI-Cluster is
widely used as the high-performance cluster intercon-
nect by Sun Microsystems for large commercial and
technical systems.

We further assume support for two new remote-
access operations not supported by the SCI-Cluster: the
half-word-wide put2 and fetch-and-set2 (fas2). The
fas2 operation is launched by a “normal” half-word
load operation and the put2 is launched by a half-word
store to the remotely mapped I/O space. The network
interface detects the half-word load and converts it into
a fetch-and-set. The fas2 operation will return the 2
byte of data that was stored in the remote memory and
also atomically set the most significant byte of the data
in the remote memory. The fas2 primitive is used to
aquire a lock and retrieve a corresponding small data-
structure in a single operation.

1SCI is better known for its implementation of coherent shared
memory than its non-coherent internode cluster communication. In
this paper we only refer to its usage as a cluster interconnect.

There are strong indications that interconnects ful-
filling our assumptions will soon be widely available.
The emerging InfiniBand interconnect proposal sup-
ports efficient user-level accesses to remote memory
as well as atomic operations to smaller pieces of data,
e.g. CmpSwap (Compare and Swap) and FetchAdd
(Fetch and Add) [Inf00]. InfiniBand’s FetchAdd can
effectively implement a function similar to the fas2
functionality for a system with up to 128 nodes. The
least significant byte (LSB) of the data entity accessed
is the “lock” and the remaining part of the data entity
is the payload data. A FetchAdd returning data with
a zero LSB means that the lock was acquired. The
lock is released and the payload data is updated in a
single operation by writing the new payload value with
a zero byte concatenated at the LSB end to the data
entity. In order to avoid mangling the payload data for
contended locks, a FetchAdd returning a LSB with a
value above 128 will require the contenders to poll the
data-structure using ordinary Fetch operations until
the LSB with a value below 128 has been observed.

2.2 Node Model

Each DSZOOM node consists of an SMP multipro-
cessor, e.g. the Sun Enterprise E6000 SMP with up
to 30 processors or the Pentium Pro Quad with up to
four processors. The SMP hardware keeps coherence
among the caches and the memory within each SMP
node. The InfiniBand-like interconnect, as described
above, connects the nodes. We further assume that the
write order between any two endpoints in the network
is preserved.

2.3 Blocking Directory Protocol Overview

Most of the complexity of coherence protocol is related
to the race conditions caused by multiple simultaneous
requests for the same cache line. Blocking directory
coherence protocols have been suggested to simplify
the design and verification of hardware DSM systems
[HK99]. The directory blocks new requests to a cache
line until all previous coherence activity to the cache
line has ceased. The requesting node sends a comple-
tion signal upon completion of the activity, which re-
leases the block for the cache line. This eliminates all
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the race conditions, since each cache line can only be
involved in one ongoing coherence activity at any spe-
cific time.

The DSZOOM protocol implements a distributed
version of a blocking protocol. A processor that has de-
tected the need for global coherence activity will first
acquire a lock associated with the cache line before
starting the coherence activity. A remote fas2 opera-
tion to the corresponding directory entry in the home
node will bring the directory entry to the processor and
also atomically acquire the cache line’s “lock.” If the
most significant byte of the directory entry returned is
set, the cache line is “busy” by some other coherence
activity. The fas2 operation is repeated until the most
significant byte is zero.2 Now, the processor has ac-
quired the exclusive right to perform coherence activ-
ities on the cache line and has also retrieved the nec-
essary information in the directory entry using a single
operation. The processor now has the same information
as, and can assume the role of, the “directory agent” in
the home node of a more traditional SW-DSM imple-
mentation. Once the coherence activity is completed,
the lock is released and the directory is updated by a
single put2 transaction. No memory barrier is needed
after the put2 operation since any other processor will
wait for the most significant byte of the directory entry
to become zero before the directory entry can be used.
Thus, the latency of the remote write will not be visible
to the processor.

To summarize, we have enabled the requesting pro-
cessor to momentarily assume the role of a traditional
“directory agent,” including access to the directory
data, at the cost of one remote latency and the trans-
fer of two small network packets. This has the advan-
tage of removing the need for asynchronous interrupts
in foreign nodes and also allows us to execute the pro-
tocol in the requesting processor that most likely would
be idle waiting for the data. A further advantage is that
the protocol execution is divided between all the pro-
cessors in the node, not just one processor at a time
as suggested in some other proposals, for example by
Mukherjee et al. [MFHW96].

2A random back-off scheme can be used to avoid a live-lock
situation, but has not been employed in DSZOOM yet.

MemDir1a. fas2

2. put2

1b. get64

= Small packet (~10 bytes)

= Large packet (~68 bytes)

= Message on the critical path

= Message off the critical path

data

Requestor

Figure 1: Read data from home node — 2-hop read.

2.4 Protocol Details

The SMP hardware keeps the coherence within the
node, on top of which the global DSZOOM protocol
has been added. All the coherence activities and state
names discussed in this paper apply to the DSZOOM
protocol.

The DSZOOM protocol states, MODIFIED, SHARED

and INVALID (MSI), are explicitly represented by data
structures in the node memory. The DSZOOM direc-
tory entry has eight presence bits per cache line, i.e. can
support up to eight SMP nodes. The location of a cache
line’s directory location, i.e. its “home node”, is deter-
mined by looking at some of its address bits. To avoid
most of the accesses to the directory caused by global
load operations, all cache lines in state INVALID store
by convention a “magic” data value as independently
suggested by Schoinas et al. [SFH�96] and Scales et
al. [SGT96]. The directory only has to be consulted
if the register contains the magic value after the load.
Whenever our selected magic value is indeed the in-
tended data value, the directory state must be examined
at the cost of some unnecessary global activities. This
has, however, proven to be a very rare event in all our
studied applications.

To also avoid most of the accesses to the directory
caused by global store operations, each node has two
bytes of local MTAG state per global cache line, indi-
cating if the cache line is locally writable. Before each
global store operation, the MTAG byte is locked by a
local atomic operation, before the access write to the
cache line is determined. The directory only has to be
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2b. get64
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ata
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Requestor

Figure 2: Read data modified in a third node — 3-hop
read.

consulted if the MTAG indicate that the node currently
does not have write permission to the cache line. The
home node can access the cache line’s directory entry
by a local memory access and do not need any extra
MTAG state.

The traditional SW-DSM’s software handler running
in the current processor sends a message to the home
node and busy-waits for the reply. A new software han-
dler is invoked in the home node upon the arrival of the
request. The home handler retrieves the requested data
from its local memory and modifies the corresponding
directory structure before returning the data reply to the
requesting handler. The two major drawbacks of this
approach is the latency from asynchronously invoking
a handler in the home node and the simultaneous oc-
cupancy of two handlers during most of the protocol
handling, i.e. occupying two processors.

Figure 1 illustrates the DSZOOM activity caused by
a read miss in a two-node system. The software proto-
col handler in the DSZOOM example will acquire ex-
clusive access right to the directory entry through a sin-
gle remote fas2 operation to the home node. In parallel
it also speculatively retrieves the data from the home
node through a remote get64 operation. The directory
entry is updated and released by a single remote put2
operation at the end of the handler. The protocol han-
dler is completed as soon as the put2 write operation is
issued to the write buffer, why the latency of this op-
eration is not on the critical latency path of the appli-

IF (register == MAGIC) {

lock(dir)

IF (presence_bits(me) == 0) {

IF ((number(presence_bits) == 1) &&

(remote_node != home)) {

lock(remote_mtag)

// Data can not be altered in the remote node now

read_remote(data)

update_release(remote_data)

}

ELSE read_remote(data)

}

update_release(dir)

}

Figure 3: Pseudo-code for global coherence load oper-
ations. Emphasized lines are implemented as in-line as-
sembler, while the remaining protocol is implemented
by a routine coded in C.

cation. While the DSZOOM approach will drastically
cut the latency for retrieving remote data and will avoid
using any processor time in the home node, its major
drawback is the global bandwidth consumed. To il-
lustrate the excess bandwidth consumed by DSZOOM,
each global packet has been marked as either a “small
packet,” with a payload of less than 6 bytes, or a “large
packet,” with a payload of 64 bytes.3 Each packet type
is assumed to also carry 2 bytes of cyclic redundancy
code (CRC) and 2 bytes of routing/header information,
why the total number of bytes are 10 bytes and 68 bytes
respectively. Based on these assumptions, DSZOOM’s
four small and one large packet will transfer 108 bytes
compared with the 78 bytes used by the traditional ap-
proach, i.e. 38% more bandwidth is used in DSZOOM.

A similar bandwidth overhead can be seen in the ex-
ample in Figure 2 showing a three-node system per-
forming a 3-hop read operation, i.e. a read request to
data which resides in a modified state in a node different
than the home node, called the slave node. DSZOOM
will need one fas2 message to lock and acquire the di-
rectory and determine the identity of the node holding
the modified data. A second fas2 to that node’s MTAG
structure will temporarily disable write accesses to the
data. Right after the fas2 has been issued a get64 is
issued to speculatively bring the data to the requesting
node. The directory entry and the MTAG is updated and
released through two put2 write operations at the end of

3We have not included the implicit acknowledge packets that
may be used by the lower level network implementation.
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lock(my_mtag)

// Is only ”my” bit set?
IF (my_mtag == my_mask) {

// Have we already locked the dir?

IF (me != home) {

// Try once to lock the directory

lock_test(dir)

// Release our MTAG if dir is busy

IF (busy(dir)) {

// to avoid deadlocks

release(my_mtag)

// Now, first lock directory

lock(dir)

// then lock MTAG

lock(my_mtag)

}

}

// Now we have locked the dir for sure!

IF (number(presence_bits) != 1) {

// The data is shared by many nodes and is not writable

IF (presence_bits(me) == 0)

// my data is not valid

read_data_from_one_node

FOREACH sharer

// invalidate remote nodes

store_remote(MAGIC)

}

ELSE IF (presence_bits(me) == 0) {

// There is a single node with a writable copy,

// and it is not me

IF (me == home) {

// The dir is already locked

read_remote(data)

store_remote(MAGIC)

}

ELSE {

lock(remote_mtag)

read_remote(data)

store_remote(MAGIC)

update_release(remote_mtag)

}

}

IF (me != home) update_release(dir)

update_release(my_mtag)

}

Figure 4: Pseudo-code for global coherence store and
load-store operations. Emphasized lines are imple-
mented as in-line assembler, while the remaining pro-
tocol is implemented by a routine coded in C.

the handler, i.e. off the critical path. Again, DSZOOM
will need more messages to complete its task: seven
small and one large packet compared with the three
small and one large used by the traditional approach.
The traditional SW-DSM approach will need two asyn-
chronous interrupts on the critical path before the data
is forwarded to the requesting node. Thus, DSZOOM
will require 41% more bandwidth for this particular op-
eration. This is the worst-case protocol example for
DSZOOM which, fortunately, is not that common in
the studied examples.

Figure 3 shows pseudo-code for global load opera-
tions and Figure 4 shows pseudo-code for global store
and load-store operations.

3 Implementation Details

This section describes our DSZOOM-WF implementa-
tion. DSZOOM-WF is a sequentially consistent fine-
grain SW-DSM implemented on top of the 2-node Sun-
WildFire prototype SMP cluster (without relaying on
its hardware-coherent capabilities). Our cluster is built
from two Sun Enterprise E6000 SMP machines (we call
them here for cabinet 1 and cabinet 2). DSZOOM-WF
compilation process is shown in Figure 5. The unmod-
ified SMP application written with PARMACS macros
is first preprocessed with a m4 macro preprocessor. m4
will replace all PARMACS macros with DSZOOM-WF
run-time library calls. Standard GNU gcc compiler is
used to compile and link the preprocessed file with a
DSZOOM-WF run-time library.4 The resulting file, the
“(Un)executable,” is then passed to our binary mod-
ification tool that will insert fine-grain access control
checks before shared-memory loads and stores into bi-
naries by statically analyzing and modifying executa-
bles. Binary modification tool will also add coherence
protocol code (shown in Figure 3 and Figure 4) to the
binaries. Finally, the a.out is produced and can be
used as if it was executed inside one SMP.

The DSZOOM-WF implementation of PARMACS
macros is based on the System V IPC version of the
PARMACS shared-memory macros developed by Arti-
aga et al. [ANMB97], [AMBN98]. The macro library
was modified in several ways, e.g. we use user-level

4Current version of EEL, i.e. version 4.0.1, can only be com-
piled with GNU gcc 2.8.1 compiler, and can only modify binaries
that are compiled with that particular compiler.
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Run-Time
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m4

gcc

Figure 5: DSZOOM-WF compilation process.

synchronization through test-and-set locks instead of
System V IPC semaphore library calls, we added sup-
port for process distribution by using the Solaris system
call pset_bind, support for correct memory place-
ment and directory distribution based on WildFire’s
“first-touch” policy was added as well. We also added
support for memory-mapped communication between
the processes. Address space layout and attachment of
the shared memory objects for every process running
in the cabinet 1 is shown in Figure 6. Shared mem-
ory objects with shared memory identifiers A and B
represent the physical shared/global memory of every
node in the cluster. Shared memory identifier P, which
is attached to the PROFILE_DATA area with a stan-
dard Solaris system call shmat, is used for profiling
purposes only. Local run-time system data for every
process (e.g. DSZOOM-WF process identifier, UNIX
process identifier, etc.) is stored in a privately mapped
PRIVATE_DATA area in a current implementation and
is also used only for debugging and profiling purposes.
Distributed directory is placed at the beginning of the
G_MEM area.

Binary instrumentation is a technique usually de-
scribed as a low-cost, medium-effort approach of in-
serting sequences of machine instructions into a pro-
gram in executable or object format. We decided to
use executable editing library (EEL) [LS95], a library
that was successfully used in several similar projects
based on the UltraSPARC architecture, e.g. Blizzard-S
[SFL�94] and Sirocco-S [SFH�98]. The actual imple-

shmid = B

NODE_0_G_MEM

NODE_1_G_MEM

0x80000000

Stack

0x40000000

Text & Data

Heap

PRIVATE_DATA

PROFILE_DATA

0xA0000000

0x20000000

shmid = A

shmid = P

Physical Memory

of the Cabinet 1

G_MEM

shmat

shmat

shmat

shmat

shmget

shmget

shmget

Physical Memory

of the Cabinet 2

Figure 6: Address space layout and attachment of the
shared memory objects for processes running in the
cabinet 1.

1: ld [addr], %f-p reg // original LD
2: fcmps %fcc0, %f-p reg, %f-p reg
3: nop
4: fbe,pt %fcc0, hit
5: nop
6: // call global coherence load routine

hit:

Figure 7: Fine-grain access control check for one
floating-point load instruction.

mentation of the low-level fine-grain instrumentation is
still far from optimal. Examples of more efficient in-
strumentation can be found in both the Shasta [SGA97]
and the Sirocco-S [SFH�98]. Our binary modification
tool does not instrument accesses to non-shared stack
data, but it still do instrument a huge number of static
data accesses. Figure 7 shows the code snippet for one
global floating-point fine-grain access control check.
The “magic” value in this case is a small integer corre-
sponding to an IEEE floating-point NaN. Only instruc-
tions 1–4 are executed if the loaded data is valid.

4 Performance Study

In this section we describe experimental setup, ap-
plications used in this study, and finally, we present
DSZOOM-WF performance overview.
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4.1 Experimental Setup

Most experiments in this paper are performed on a Sun
Enterprise E6000 SMP [SBC�96]. The server has 16
UltraSPARC II (250 MHz) processors and 4 Gbyte uni-
formly shared memory with an access time of 330 ns
(lmbench latency [MS96]) and a total bandwidth of
2.7 Gbyte/s. Each processor has a 16 kbyte on-chip
instruction cache, a 16 kbyte on-chip data cache, and a
4 Mbyte second-level off-chip data cache.

The hardware DSM numbers have been measured
on a 2-node Sun-WildFire built from two E6000 nodes
connected through a hardware-coherent interface with
a raw bandwidth of 800 Mbyte/s in each direction
[HK99]. The Sun-WildFire has been configured as a
traditional non-uniform memory architecture (NUMA)
with its data migration capability activated while its co-
herent memory replication (CMR) has been kept inac-
tive. The Sun-WildFire access time to local memory
is the same as above, 330 ns, while accessing data lo-
cated in the other E6000 node takes 1700 ns (lmbench
latency). The E6000 and the Sun-WildFire are both
running a slightly modified version of the Solaris 2.6
operating system.

DSZOOM-WF runs in user space on the Sun-
WildFire system with its data migration and the CMR
data replication kept inactive.

4.2 Applications

The benchmarks we use in this study are well-known
scientific workloads from the SPLASH-2 benchmark
suite [WOT�95]. The data-set sizes and uniprocessor-
execution times are presented in Table 1. The reason
why we cannot run Volrend and Cholesky is only be-
cause of the global variables used as shared. It should
be possible to manually modify those applications to
solve this problem.5 We began all measurements at the
start of the parallel phase to exclude DSZOOM-WF’s
run-time system initialization time.

4.3 DSZOOM-WF Performance Overview

Efficient binary instrumentation (or compiler support)
is very important for the overall DSZOOM perfor-
mance. Sequential-execution times for the instru-

5Ernest Artiaga have experienced similar problems with the
original fork-exec versions of Volrend and Cholesky [Art01].

0%

20%

40%

60%

80%

100%

FFT

LU
-C

on
t

LU
-N

on
-C

on
t

R
ad

ix

B
ar

ne
s-

H
ut

FM
M

O
ce

an
-C

on
t

O
ce

an
-N

on
-C

on
t

R
ad

io
si
ty

R
ay

tra
ce

W
at

er
-n

sq

W
at

er
-s

p

f-p-ST-snippet

int-ST-snippet

f-p-LD-snippet

int-LD-snippet

E6000 seq

Figure 8: Normalized instrumentation overhead break-
down for sequential-execution.

mented SPLASH-2 programs are shown in Table 1. Ef-
ficiency overhead is between 1.11 and 1.68 (which av-
erages 1.30) for all of the studied applications, i.e. in-
strumented code takes between 11% and 68% longer
time to execute the program after the DSZOOM-WF
global access checks are added. State-of-the-art check-
ing overheads (for example in Shasta [SGA97]) are
in the range of 5-35%. Increased software checking
overhead gives us a bad starting point. Normalized
instrumentation overhead breakdown for sequential-
execution is shown in Figure 8. Floating-point store
snippets are the major slowdown factor for both the LU-
Cont and the LU-Non-Cont. LU will typically perform
much better on systems with weaker memory models
(for example on GeNIMA [BLS99] with home-based
LRC protocol). The total number of Raytrace’s static
memory accesses (that are currently also instrumented)
is much bigger then the number of global memory ac-
cesses. That is one of the reasons why the efficiency
overhead for Raytrace is so high, i.e. 1.53. It should be
possible to cut down this kind of overhead with more
detailed backward slice algorithm [Wei84] to avoid in-
strumenting static loads and stores.

Execution times for 8- and 16-processor runs for Sun
Enterprise E6000, 2-node Sun-WildFire, and 2-node
DSZOOM-WF with cache-line-sized coherency unit of
128 bytes are shown in Figure 9. Normalized execu-
tion time breakdowns for 8- and 16-processor runs for
a 2-node DSZOOM-WF with the same coherency unit
are shown in Figure 10. In our current implementation,
synchronization variables (for example, locks, barriers,
events, etc.) are allocated and physically placed in the
cabinet 1 only. That can explain the big synchroniza-
tion time increment for Ocean-Non-Cont, Raytrace,
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Non-Instrumented % % Instrumented Instrumentation

Program Problem Size, Iterations Seq. Time [s] LD ST Seq. Time [s] Overhead

FFT 1,048,576 points (48.1 MB) 15.39 26.1 22.2 21.99 1.43

LU-Cont 1024�1024, block 16 (8.0 MB) 68.78 22.7 14.5 115.49 1.68

LU-Non-Cont 1024�1024, block 16 (8.0 MB) 88.63 23.9 16.6 125.50 1.42

Radix 4,194,304 items (36.5 MB) 28.81 24.1 14.9 33.17 1.15

Barnes-Hut 16,384 bodies (32.8 MB) 36.78 37.5 50.5 45.98 1.25

FMM 32,768 particles (8.1 MB) 109.03 25.5 22.9 121.80 1.12

Ocean-Cont 514�514 (57.5 MB) 43.85 28.6 26.2 58.54 1.34

Ocean-Non-Cont 258�258 (22.9 MB) 17.05 15.5 31.6 20.71 1.21

Radiosity room (29.4 MB) 25.06 31.1 35.0 27.91 1.11

Raytrace car (50.2 MB) 9.75 28.8 31.5 14.93 1.53

Water-nsq 2197 mols., 2 steps (2.0 MB) 85.55 24.5 32.4 103.30 1.21

Water-sp 2197 mols., 2 steps (1.5 MB) 22.91 25.5 27.6 27.65 1.21

Table 1: Data-set sizes and sequential-execution times for non-instrumented and instrumented SPLASH-2 ap-
plications. Fourth and fifth column show percentage of statically replaced loads and stores. Instrumentation
overhead is shown in the last column.
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Figure 9: Execution times for 8- (left) and 16-processor runs (right) for Sun Enterprise E6000, 2-node Sun-
WildFire, and 2-node DSZOOM-WF with cache-line-sized coherency unit of 128 bytes.
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Figure 10: Normalized execution time breakdowns for 8- (left) and 16-processor runs (right) for a 2-node
DSZOOM-WF with cache-line-sized coherency unit of 128 bytes.

9



0

2

4

6

8

10

12

14

FFT

LU
-C

on
t

LU
-N

on
-C

on
t

R
ad

ix

B
ar

ne
s-

H
ut

FM
M

O
ce

an
-C

on
t

O
ce

an
-N

on
-C

on
t

R
ad

io
si
ty

R
ay

tra
ce

W
at

er
-n

sq

W
at

er
-s

p

A
ve

ra
ge

E6000 16 Processors Sun-WildFire 2x8 DSZOOM-WF 2x8 CL128

Figure 11: Application speedups for Sun Enterprise
E6000, 2-node Sun-WildFire, and 2-node DSZOOM-
WF.

and Water-sp for 16-processor runs compared with 8-
processor experiments.

Speedup values for 16-processor runs for Sun En-
terprise E6000, 2-node Sun-WildFire, and 2-node
DSZOOM-WF with cache-line-sized coherency unit
of 128 bytes are shown in Figure 11. Note that the
DSZOOM-WF speedup values are calculated relatively
Table 1, column three, i.e. non-instrumented sequen-
tial times. Performance of FFT and LU-Cont can be
improved with larger coherency units [WOT�95], for
example we have measured that the coherency unit of
2048 bytes can speedup FFT with at least 15%.

5 Related Work

Many different SW-DSM implementations have been
proposed over the years: Blizzard-S [SFL�94], Brazos
[SB97], Cashmere-2L [SDH�97], [DGK�99], CRL
[JKW95], GeNIMA [BLS99], Ivy [Li88], [LH89],
MGS [YKA96], Munin [CBZ91], Shasta [SGT96],
[SGA97], [SG97a], [SG97b], [DGK�99], Sirocco-S
[SFH�98], SoftFLASH [ENCH96], and TreadMarks
[KCDZ94]. Most of them suffer from synchronous in-
terrupt protocol processing. We see our work as a com-
plement to these activities and believe that most of these
implementations would benefit from a more efficient
protocol implementation.

The GeNIMA proposal is closest to our work. GeN-
IMA proposes a protocol and network solution to avoid
some of the asynchronous overhead. A processor start-
ing a synchronous communication event, e.g. the re-
questing processor initiating some coherence actions,

checks for incoming messages at the same time. This
avoids some of the asynchronous overhead in the home
node, but will also add some extra delay while waiting
for a synchronous event to happen in the node. The
protocol is still implemented as communicating proto-
col agents.

6 Conclusions

We have demonstrated how asynchronous protocol pro-
cessing can be completely avoided at the cost of some
extra remote transactions—trading bandwidth for effi-
ciency. We believe that the total round-trip SW-DSM
latency can be kept below three microseconds once the
raw latency of a modern interconnects has been added.

The protocol technique described in this paper is ap-
plicable to the emerging InfiniBand I/O interconnect
proposal. We believe a protocol, such as the one we de-
scribe, could speed up many of the existing SW-DSM
implementations on such interconnect.

DSZOOM-WF demonstrates consistently compara-
ble performance to hardware DSM implementations.

7 Future Work

We plan to continue this work in several different di-
rections. First, cache-coherence protocol code opti-
mizations will give direct impact on the performance
of the DSZOOM-WF system. Because EEL has prob-
lems with hand-written in-line assembly in combina-
tion with high optimization levels during the compila-
tion (our protocol routines written in C, and synchro-
nization part of our run-time system that is also written
in C, use quite a lot of in-line assembly gcc constructs)
we do not use any optimizations during the compiling
phase of both the coherence protocol routines and the
run-time system.

Second, instrumentation technique can be improved
even more. For example, instrumentation of the huge
number of static loads and stores could be minimized
by using a more detailed backward slice algorithm
[Wei84] as in systems such as the Blizzard-S [SFL�94]
and the Sirocco-S [SFH�98].

Third, in order to improve the performance of the
DSZOOM-WF system a weaker memory models, such
as the lazy release consistency (LRC) [Kel95] and the
release consistency model presented by Gharachorloo
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et al. [GLL�90], can be used instead of the sequential
consistency model that is currently implemented. This
kind of optimization will allow many update actions to
be lumped to a specific point in time.

Fourth, the synchronization part of our implementa-
tion should be distributed to get more balanced execu-
tion between the cabinets.

Finally, to make this kind of system more usable it
is desirable to make a POSIX-threads implementation
as well because most of the commercial workloads are
implemented with that programming model rather than
PARMACS.
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