
Removing the Overhead from Software-Based
Shared Memory �

Zoran Radović and Erik Hagersten

Uppsala University, Information Technology
Department of Computer Systems

P.O. Box 325, SE-751 05 Uppsala, Sweden
email: {zoranr, eh}@it.uu.se

Abstract

The implementation presented in this paper—DSZOOM-WF—
is a sequentially consistent, fine-grained distributed software-
based shared memory. It demonstrates a protocol-handling
overhead below a microsecond for all the actions involved in
a remote load operation, to be compared to the fastest imple-
mentation to date of around ten microseconds.

The all-software protocol is implemented assuming some
basic low-level primitives in the cluster interconnect and an
operating system bypass functionality, similar to the emerging
InfiniBand standard. All interrupt- and/or poll-based asyn-
chronous protocol processing is completely removed by run-
ning the entire coherence protocol in the requesting proces-
sor. This not only removes the asynchronous overhead, but
also makes use of a processor that otherwise would stall.
The technique is applicable to both page-based and fine-grain
software-based shared memory.

DSZOOM-WF consistently demonstrates performance com-
parable to hardware-based distributed shared memory imple-
mentations.

1 Introduction

Clusters of symmetric multiprocessors (SMPs) provide a pow-
erful platform for executing parallel applications. To allow
for shared-memory applications to run on such clusters, soft-
ware distributed shared memory (SW-DSM) systems support
the illusion of shared memory across the cluster via a soft-
ware run-time layer between the application and the hardware.
This approach can potentially provide a cost-effective alterna-

�Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage, and that copies bear
this notice and the full citation on the first page. To copy otherwise, to re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC2001 November 2001, Denver
c2001 ACM 1-58113-293-X/01/0011 $5.00

tive to hardware shared memory systems for executing certain
classes of workloads. SW-DSM technology can also be used
to connect several large hardware distributed shared memory
(HW-DSM) systems and thereby extend their upper scalability
limit.

Most SW-DSM systems keep coherence between page-
sized coherence units [26], [8], [21], [40], [41]. The normal
per-page access privilege of the memory-management unit of-
fers a cheap access control mechanism for these SW-DSM sys-
tems. The large page-size coherence units in the earlier SW-
DSM systems created extra false sharing and caused frequent
page transfers of large pages between nodes. In order to avoid
most of the false sharing, weaker memory models have been
used to allow many update actions to be lumped to a specific
point in time, such as the lazy release consistency (LRC) pro-
tocol [20].

Fine-grain SW-DSM systems with a more traditional cache-
line-sized coherence unit have also been implemented. Here,
the access control check is either done by altering the error-
correcting codes (ECC) [37] or by in-line codesnippets(small
fragments of machine code) [37], [35]. The small cache-line
size reduces the false sharing for these systems, but the ex-
plicit access-control check adds extra latency for each load or
store operation to global data. The most efficient access check
reported to date is three extra instructions adding three extra
cycles for each load to global data [36].

Today’s implementations of SW-DSM systems suffer from
long remote latencies and their scalability has never reached
acceptable levels for general SMP shared-memory applica-
tions. The coherence protocol is often implemented as com-
municating software agents running in the different nodes
sending requests and replies to each other. Each agent is re-
sponsible for accessing its local memory and for keeping a
directory structure for “its part” of the shared address space.
The agent where the directory structure for a specific coher-
ence unit resides is called its home node. The interrupt cost,
associated with receiving a message, for asynchronous pro-
tocol processing is the single largest component of the slow
remote latency, not the actual wire delay in the network or the
software actually implementing the protocol [6], [17]. To our

1

knowledge, the shortest SW-DSM read latency to date is that
of Shasta [34]. The 15-microsecond round-trip read latency
is roughly divided into 5 microseconds, of “real” communi-
cation and 10 microseconds of interrupt and agent overhead
[12]. Most other SW-DSM implementations have substan-
tially larger interrupt overheads, and latencies closer to 100
microseconds have been reported [37].

In this paper we suggest a new efficient approach for
software-based coherence protocols. While other work has
proposed elaborate schemes for cutting down on the overhead
associated with interrupting and/or polling caused by the asyn-
chronous communication between the agents [5], [29], our
implementation has completely eliminated the protocol-agent
interactions. In DSZOOM the entire coherence protocol is
implemented in the protocol handler running in the request-
ing processor. This also makes use of a processor that oth-
erwise would have been idle. Rather than relying on a “di-
rectory agent” located in the home node, as the synchroniza-
tion point for the coherence of a cache line, we use a remote
atomic fetch-and-set operation to allow for protocol handlers
running in any node, not just the home node, to temporarily ac-
quire atomic access to the directory structure of the cache line.
We believe that the solution presented here would be benefi-
cial both for page-sized and fine-grain SW-DSM systems, even
though we will only concentrate on fine-grain SW-DSM in this
paper.

We have implemented the DSZOOM-WF system, a sequen-
tially consistent [24] fine-grain SW-DSM, between the nodes
of a Sun Orange (earlier referred to as Sun WildFire) system
without relying on its hardware-based coherence capabilities
[15], [30]. All loads and stores are instead performed to the
node’s local “private” memory. We use the executable editing
library (EEL) [25] to insert fine-grain access control checks
before shared-memory loads and stores in a fully compiled and
linked executable. Global coherence is resolved by a coher-
ence protocol implemented in C that copies data to the node’s
“private” local memory by performing loads and stores from
and to remote memory.

A total of twelve unmodified SPLASH-2 applications [43],
developed for fine-grain hardware SMP multiprocessors, are
studied. We compare the performance of a DSZOOM-WF sys-
tem with that of a Sun Enterprise E6000 SMP server [39] as
well as the hardware-coherent Sun Orange DSM system. We
have measured the actual protocol overhead to be less than
one microsecond for a remote load operation, in addition to
the 1.7 microseconds remote latency of the Sun Orange hard-
ware, i.e., a perceived remote latency of 2.7 microseconds for
the application. Our approach is close to what hardware cache
coherence can do on the same platform. On average, our im-
plementation demonstrates a relative difference for SPLASH-
2 speedups of 31.6% compared to the hardware-based cache-
coherent, memory access (CC-NUMA) system.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our basic idea and an introduction to a general
DSZOOM system. The DSZOOM-WF implementation is de-
scribed in Section 3. Section 4 presents the experimental en-
vironment, applications used in this study, and results of our

performance study. Finally, we present related work and con-
clude.

2 DSZOOM Overview

This section contains an overview of the general DSZOOM
system. More protocol details are reported for the related
DSZOOM-EMU system [31], our initial proof-of-concept
DSZOOM implementation that emulates fine-grain software-
based DSM between “virtual nodes,” modeled as processes
inside a single SMP.

2.1 Cluster Networks Model

DSZOOM assumes a cluster interconnect with an inexpen-
sive user-level mechanism to access memory located in other
nodes, similar to the remote put/get semantics found in the
cluster version of the Scalable Coherence Interface (SCI) im-
plementation by Dolphin.1 A ping-pong round-trip latency of
5 microseconds, including MPI protocol overhead, has been
demonstrated on a SCI network with a 2 microsecond raw read
latency. Some of the memory in the other nodes is mapped into
a node’s I/O space and can be accessed using ordinary load and
store operations. The different cluster nodes run different ker-
nel instances and do not share memory with each other in a co-
herent way; in other words, no invalidation messages are sent
between the nodes to maintain coherence when replicated data
are altered in one node. This removes the needs for the compli-
cated coherence scheme implemented in hardware and allows
the NIC to be connected to the I/O bus, e.g., PCI or SBUS,
rather than to the memory bus. In order to prevent a “wild
node” from destroying crucial parts of other nodes’ memories,
the incoming transactions are sent through a network MMU
(IOMMU). Each kernel needs to set up appropriate IOMMU
mapping to the remotely accessible part of its memory before
the other nodes are accessed. Given the correct initialization
of the IOMMU, user-level accesses to remote memory are en-
abled. SCI-Cluster is widely used as the high-performance
cluster interconnect by Sun Microsystems for large commer-
cial and technical systems.

We further assume support for two new remote-access op-
erations not supported by the SCI-Cluster: the half-word-
wide put2 and fetch-and-set2(fas2). The fas2 operation is
launched by a “normal” half-word load operation and the put2
is launched by a half-word store to the remotely mapped I/O
space. The network interface detects the half-word load and
converts it into a fetch-and-set. The fas2 operation will return
the 2 bytes of data that was stored in the remote memory and
also atomically set the most significant byte of the data in the
remote memory. The fas2 primitive is used to aquire a lock
and retrieve a corresponding small data-structure in a single
operation.

1SCI is better known for its implementation of coherent shared memory
than its non-coherent internode cluster communication. In this paper we only
refer to its usage as a cluster interconnect.

2

There are strong indications that interconnects fulfilling
our assumptions will soon be widely available. The emerg-
ing InfiniBand interconnect proposal supports efficient user-
level accesses to remote memory as well as atomic opera-
tions to smaller pieces of data, e.g.,CmpSwap(Compare and
Swap) andFetchAdd (Fetch and Add) [18]. InfiniBand’s
FetchAdd can effectively implement a function similar to the
fas2 functionality for a system with up to 128 nodes. The least
significant byte (LSB) of the data entity accessed is the “lock”
and the remaining part of the data entity is the payload data.
A FetchAdd returning data with a zero LSB means that the
lock was acquired. The lock is released and the payload data is
updated in a single operation by writing the new payload value
with a zero byte concatenated at the LSB end to the data en-
tity. In order to avoid mangling the payload data for contended
locks, aFetchAdd returning a LSB with a value above 128
will require the contenders to poll the data-structure using or-
dinary fetch operations until the LSB with a value below 128
has been observed.

2.2 Node Model

Each DSZOOM node consists of an SMP multiprocessor, e.g.,
the Sun Enterprise E6000 SMP with up to 30 processors or
the Pentium Pro Quad with up to four processors. The SMP
hardware keeps coherence among the caches and the memory
within each SMP node. The InfiniBand-like interconnect, as
described above, connects the nodes. We further assume that
the write order between any two endpoints in the network is
preserved.

2.3 Blocking Directory Protocol Overview

Most of the complexity of a coherence protocol is related to
the race conditions caused by multiple simultaneous requests
for the same cache line. Blocking directory coherence pro-
tocols have been suggested to simplify the design and verifi-
cation of hardware DSM systems [15]. The directory blocks
new requests to a cache line until all previous coherence ac-
tivity to the cache line has ceased. The requesting node sends
a completion signal upon completion of the activity, that re-
leases the block for the cache line. This eliminates all the race
conditions, since each cache line can only be involved in one
ongoing coherence activity at any specific time.

The DSZOOM protocol implements a distributed version of
a blocking protocol. A processor that has detected the need
for global coherence activity will first acquire a lock associ-
ated with the cache line before starting the coherence activity.
A remote fas2 operation to the corresponding directory entry
in the home node will bring the directory entry to the processor
and also atomically acquire the cache line’s “lock.” If the most
significant byte of the directory entry returned is set, the cache
line is “busy” by some other coherence activity. The fas2 oper-
ation is repeated until the most significant byte is zero.2 Now,

2A random back-off scheme can be used to avoid a live-lock situation, but
has not been employed in DSZOOM yet.

MemDir1a. fas2

2. put2

1b. get64

= Small packet (~10 bytes)

= Large packet (~68 bytes)

= Message on the critical path

= Message off the critical path

data

Requestor

Figure 1: Read data from home node — 2-hop read.

the processor has acquired the exclusive right to perform co-
herence activities on the cache line and has also retrieved the
necessary information in the directory entry using a single op-
eration. The processor now has the same information as, and
can assume the role of, the “directory agent” in the home node
of a more traditional SW-DSM implementation. Once the co-
herence activity is completed, the lock is released and the di-
rectory is updated by a single put2 transaction. No memory
barrier is needed after the put2 operation since any other pro-
cessor will wait for the most significant byte of the directory
entry to become zero before the directory entry can be used.
Thus, the latency of the remote write will not be visible to the
processor.

To summarize, we have enabled the requesting processor to
momentarily assume the role of a traditional “directory agent,”
including access to the directory data, at the cost of one re-
mote latency and the transfer of two small network packets.
This has the advantage of removing the need for asynchronous
interrupts in foreign nodes and also allows us to execute the
protocol in the requesting processor that most likely would be
idle waiting for the data. A further advantage is that the pro-
tocol execution is divided between all the processors in the
node, not just one processor at a time as suggested in some
other proposals, for example by Mukherjee et al. [29].

2.4 Protocol Details

The SMP hardware keeps the coherence within the node, on
top of which the global DSZOOM protocol has been added.
All the coherence activities and state names discussed in this
paper apply to the DSZOOM protocol.

The DSZOOM protocol states, MODIFIED, SHARED and
INVALID (MSI), are explicitly represented by data structures
in the node memory. The DSZOOM directory entry has eight
presence bits per cache line, i.e., can support up to eight SMP
nodes. The location of a cache line’s directory location, i.e., its

3

Dir

Mem MTAG

3b. put2

2a. fas2

2b. get64

1. fas2

d
ata

3a. put2

Requestor

Figure 2: Read data modified in a third node — 3-hop read.

“home node”, is determined by looking at some of its address
bits. To avoid most of the accesses to the directory caused
by global load operations, all cache lines in state INVALID
store by convention a “magic” data value as independently
suggested by Schoinas et al. [37] and Scales et al. [35]. The
directory only has to be consulted if the register contains the
magic value after the load. Whenever our selected magic value
is indeed the intended data value, the directory state must be
examined at the cost of some unnecessary global activities.
This has, however, proven to be a very rare event in all our
studied applications.

To also avoid most of the accesses to the directory caused by
global store operations, each node has two bytes of local state
(MTAG) per global cache line (similar to theprivate state table
found in Shasta [34]), indicating if the cache line is locally
writable. Before each global store operation, the MTAG byte
is locked by a local atomic operation, before the access write
to the cache line is determined. The directory only has to be
consulted if the MTAG indicates that the node currently does
not have write permission to the cache line. The home node
can access the cache line’s directory entry by a local memory
access and does not need any extra MTAG state.

The traditional SW-DSM’s software handler running in the
current processor sends a message to the home node and busy-
waits for the reply. A new software handler is invoked in the
home node upon the arrival of the request. The home handler
retrieves the requested data from its local memory and modi-
fies the corresponding directory structure before returning the
data reply to the requesting handler. The two major drawbacks
of this approach are the latency from asynchronously invoking
a handler in the home node and the simultaneous occupancy
of two handlers during most of the protocol handling, i.e., oc-
cupying two processors.

Figure 1 illustrates the DSZOOM activity caused by a read

Algorithm 1 Pseudo-code for global coherence load opera-
tions. Emphasized line is implemented as in-line assembler,
while the remaining protocol is implemented by a routine
coded in C.

IF (register == MAGIC)
lock(dir)
IF (presence_bits(me) == 0)

IF ((number(presence_bits) == 1) &&
(remote_node != home))

lock(remote_mtag)
// Data can not be altered in the remote node now
read_remote(data)
update_release(remote_mtag)

ELSE
read_remote(data)

update_release(dir)

miss in a two-node system. The software protocol handler in
the DSZOOM example will acquire exclusive access right to
the directory entry through a single remote fas2 operation to
the home node. In parallel it also speculatively retrieves the
data from the home node through a remoteget64operation.
The directory entry is updated and released by a single remote
put2 operation at the end of the handler. The protocol handler
is completed as soon as the put2 write operation is issued to
the write buffer, so the latency of this operation is not on the
critical latency path of the application. While the DSZOOM
approach will drastically cut the latency for retrieving remote
data and will avoid using any processor time in the home node,
its major drawback is the global bandwidth consumed. To il-
lustrate the excess bandwidth consumed by DSZOOM, each
global packet has been marked as either a “small packet,” with
a payload of less than 6 bytes, or a “large packet,” with a pay-
load of 64 bytes.3 Each packet type is assumed to also carry
2 bytes of cyclic redundancy code (CRC) and 2 bytes of rout-
ing/header information, so the total number of bytes are 10
bytes and 68 bytes respectively. Based on these assumptions,
DSZOOM’s four small and one large packet will transfer 108
bytes compared with the 78 bytes used by the traditional ap-
proach, i.e., 38% more bandwidth is used in DSZOOM.

A similar bandwidth overhead can be seen in the example
in Figure 2 showing a three-node system performing a 3-hop
read operation, i.e., a read request to data which resides in a
modified state in a node different than the home node, called
the slave node. DSZOOM will need one fas2 message to lock
and acquire the directory and determine the identity of the
node holding the modified data. A second fas2 to that node’s
MTAG structure will temporarily disable write accesses to the
data. Right after the fas2 has been issued a get64 is issued to
speculatively bring the data to the requesting node. The di-
rectory entry and the MTAG are updated and released through
two put2 write operations at the end of the handler, i.e., off

3We have not included the implicit acknowledge packets that may be used
by the lower level network implementation.

4

the critical path. Again, DSZOOM will need more messages
to complete its task: seven small and one large packet com-
pared with the three small and one large used by the traditional
approach. The traditional SW-DSM approach will need two
asynchronous interrupts on the critical path before the data is
forwarded to the requesting node. Thus, DSZOOM will re-
quire 41% more bandwidth for this particular operation. This
is the worst-case protocol example for DSZOOM which, for-
tunately, is not that common in the studied examples.

Algorithm 2 Pseudo-code for global coherence store and load-
store operations. Emphasized lines are implemented as in-line
assembler, while the remaining protocol is implemented by a
routine coded in C.

lock(my_mtag)
IF (my_mtag == my_mask) // Is only “my” bit set?

IF (me != home) // Have we already locked the dir?
lock_test(dir) // Try once to lock the directory
// Release our MTAG if dir is busy
IF (busy(dir))

release(my_mtag) // To avoid deadlocks
lock(dir) // Now, first lock directory
lock(my_mtag) // then lock MTAG

// Now we have locked the dir for sure!
IF (number(presence_bits) != 1)

// The data is shared by many nodes and is not writable
IF (presence_bits(me) == 0)

// My data is not valid
read_data_from_one_node

FOREACH sharer
store_remote(MAGIC) // Invalidate remote nodes

ELSE IF (presence_bits(me) == 0)
// There is a single node with a writable copy,
// and it is not me
IF (me == home) // The dir is already locked

read_remote(data)
store_remote(MAGIC)

ELSE
lock(remote_mtag)
read_remote(data)
store_remote(MAGIC)
update_release(remote_mtag)

IF (me != home)
update_release(dir)

update_release(my_mtag)

Algorithm 1 shows pseudo-code for global coherence load
operations. The pseudo-code for global coherence store and
load-store operations is shown in Algorithm 2. Emphasized
lines in both algorithms are implemented as UltraSPARC in-
line assembler, while the remaining protocol is implemented
by routines coded in C.

DSZOOM-WF

Implementation

of PARMACS

Macros

a.out

(Un)executable

EEL

DSZOOM-WF

Run-Time Library

m4

GNU

gcc

Unmodified

SPLASH-2

Application

Coherence

Protocols

Figure 3: DSZOOM-WF compilation process.

3 Implementation Details

This section describes our implementation. DSZOOM-WF
is a sequentially consistent [24] fine-grain SW-DSM imple-
mented on top of a 2-node Sun Orange prototype SMP cluster
configured as a cache-coherent, non-uniform memory access
(CC-NUMA) architecture (without relying on its hardware-
coherent capabilities). Our cluster is built from two Sun En-
terprise E6000 SMP machines (referred to as cabinet 1 and
cabinet 2). DSZOOM-WF compilation process is shown in
Figure 3. The unmodified SMP application written with PAR-
MACS macros is first preprocessed with a m4 macro prepro-
cessor. m4 will replace all macros with DSZOOM-WF run-
time library calls. A standard GNU gcc compiler is used to
compile and link the preprocessed file with a DSZOOM-WF
run-time library. The resulting file, the “(Un)executable,” is
then passed to our binary modification tool that is based on
an unmodified version of the executable editing library (EEL)
[25]. The binary modification tool inserts fine-grain access
control checks after shared-memory loads, it inserts range
checks and node-local MTAG lookups before stores, and it
also adds calls to the corresponding coherence protocol rou-
tines shown in Algorithm 1 and Algorithm 2. Finally, the
a.out is produced and can be used as if it was executed inside
one SMP.

The implementation of PARMACS macros is based on the
System V IPC version of the shared-memory macros devel-
oped by Artiaga et al. [3], [2]. The macro library was modified
in several ways. We use user-level synchronization through
physically distributed test-and-set locks instead of System V
IPC semaphore library calls. Additionally, we added sup-
port for process distribution by using the Solaris system call
pset_bind . The support for correct memory placement and
directory distribution based on Sun Orange “first-touch” pol-
icy was added as well. We also added support for memory-
mapped communication between the processes. Address space
layout and attachment of the shared memory objects for pro-

5

shmid = A

Physical Memory

of the Cabinet 1

shmget

shmid = B

shmget

Physical Memory

of the Cabinet 2 Stack

Text & Data

Heap

PRIVATE_DATA

Stack

Text & Data

Heap

PRIVATE_DATA

Cabinet_1_G_MEM

Cabinet_2_G_MEM

Stack

Text & Data

Heap

PRIVATE_DATA

G_MEM

“Aliasing”

shmatshmat

shmat

shmat

shmatshmat

shmatshmat

0x80000000

0x20000000

shmid = P

shmget

PROFILE_DATA
0x40000000

shmat

Figure 4: Address space layout and attachment of the shared
memory objects for processes running in the cabinet 1.

cesses in cabinet 1 is shown in Figure 4. The compiled code
makes global memory accesses to theG_MEMarea. Shared
memory objects with shared memory identifiersA andB rep-
resent the physically shared memory of every node in the clus-
ter. The shared memory identifierP, which is physically al-
located and placed in the cabinet 1, is attached to thePRO-
FILE_DATA area with a standard Solaris system callshmat .
This globally shared memory segment is used for profiling
purposes only. Local run-time system data for every process
(e.g., DSZOOM-WF process identifier, UNIX process identi-
fier, etc.) is stored in a privately mappedPRIVATE_DATA
area in a current implementation, and is also used mainly for
debugging and profiling purposes. Distributed directory is
placed at the beginning of theG_MEMarea.

Binary instrumentationis a technique usually described as
a low-cost, medium-effort approach of inserting sequences of
machine instructions into a program in executable or object
format. We decided to use executable editing library (EEL),
a library that was successfully used in several similar projects
based on the UltraSPARC architecture, e.g., Blizzard-S [38]
and Sirocco-S [36]. The following code example shows the
code snippet for one global floating-point fine-grain access
control check.

1: ld [addr], %reg // original load
2: fcmps %fcc0, %reg, %reg
3: nop
4: fbe,pt %fcc0, hit
5: // call global coherence load routine ...

hit:

The “magic” value in this case is a small integer correspond-
ing to an IEEE floating-point NaN. Only instructions 1–4 are
executed if the loaded data is valid, i.e., the%reg is a non-

magic value.4 Thus, this access control check is comparable
to the most efficient access check reported to date; three extra
instructions adding three extra cycles for each load to global
data [36]. The actual implementation of the low-level fine-
grain instrumentation is still far from optimal. The DSZOOM-
WF system requires in total between 7 and 8 instructions af-
ter every global load and 17 instructions before every global
store/load-store. The reason why our instrumentation over-
head for stores/load-stores is so high compared to some other
fine-grain SW-DSM implementations (for example, Shasta
[34] and Sirocco-S [36]) is because our local MTAG lookups
are atomic in the current implementation, i.e., the MTAG byte
is locked by a local atomic operation before the access write to
the cache-line is determined. The characterization of the dy-
namic overheads for studied applications is presented in Sec-
tion 4.3.

4 Performance Study

This section describes experimental setup, applications used in
this study, sequential and parallel binary instrumentation over-
heads, and finally, DSZOOM-WF performance results for par-
allel execution.

4.1 Experimental Setup

Most experiments in this paper are performed on a Sun En-
terprise E6000 SMP [39]. The server has 16 UltraSPARC II
(250 MHz) processors and 4 Gbyte uniformly shared memory
with an access time of 330 ns (lmbenchlatency [28]) and a to-
tal bandwidth of 2.7 Gbyte/s. Each processor has a 16 kbyte
on-chip instruction cache, a 16 kbyte on-chip data cache, and
a 4 Mbyte second-level off-chip data cache.

The hardware DSM numbers have been measured on a
2-node Sun Orange built from two E6000 nodes connected
through a hardware-coherent interface with a raw bandwidth
of 800 Mbyte/s in each direction [15], [30]. The Orange
system has been configured as a traditional cache-coherent,
non-uniform memory access (CC-NUMA) architecture with
its data migration capability activated while its coherent mem-
ory replication (CMR) has been kept inactive. The Sun Orange
access time to local memory is the same as above, 330 ns,
while accessing data located in the other E6000 node takes
about 1700 ns (lmbench latency). The E6000 and the Orange
DSM system are both running a slightly modified version of
the Solaris 2.6 operating system.

DSZOOM-WF runs in user space on the Sun Orange sys-
tem. The data migration and the CMR data replication of the
Orange interconnect are kept inactive.

4.2 Applications

The benchmarks we use in this study are well-known scientific
workloads from the SPLASH-2 benchmark suite [43]. The

4Line 3 can be eliminated if the code is executed on a SPARC-V9 archi-
tecture.

6

% % Instrumented
Program Problem Size, Iterations Uniproc Time [s] Load Store Uniproc Time [s]
FFT 1 048 576 points (48.1 Mbyte) 15.47 19.0 16.5 21.28 (1.38)
LU-c 1 024�1 024, block 16 (8.0 Mbyte) 69.17 15.5 9.4 109.64 (1.59)
LU-nc 1 024�1 024, block 16 (8.0 Mbyte) 82.43 16.7 11.1 123.81 (1.50)
Radix 4 194 304 items (36.5 Mbyte) 28.95 15.6 11.6 32.68 (1.13)
Barnes 16 384 bodies (32.8 Mbyte) 37.16 23.8 31.1 38.44 (1.03)
FMM 32 768 particles (8.1 Mbyte) 109.76 17.5 13.6 116.27 (1.06)
Ocean-c 514�514 (57.5 Mbyte) 43.89 27.0 23.9 58.77 (1.34)
Ocean-nc 258�258 (22.9 Mbyte) 17.04 11.6 28.0 21.14 (1.24)
Radiosity room (29.4 Mbyte) 25.10 26.3 27.2 26.74 (1.07)
Raytrace car (32.2 Mbyte) 9.73 19.0 18.1 11.75 (1.21)
Water-nsq 2 197 molecules, 2 steps (2.0 Mbyte) 85.01 13.4 16.2 90.06 (1.06)
Water-sp 2 197 molecules, 2 steps (1.5 Mbyte) 22.98 15.7 13.9 24.95 (1.09)

Average 45.56 18.4 18.3 56.29 (1.22)

Table 1: Data-set sizes and sequential-execution times for non-instrumented and instrumented SPLASH-2 applications. Fourth
and fifth column show percentage of statically replaced loads and stores. Binary instrumentation overhead is given in parenthe-
ses in the last column.

data-set sizes for the applications studied are presented in Ta-
ble 1. The reason why we cannot run Volrend and Cholesky
(that are also part of the original SPLASH-2 distribution) is
that the global variables used as shared are not correctly al-
located with theG_MALLOCmacro. It should be possible to
manually modify those applications to solve this problem.5 We
began all measurements at the start of the parallel phase to ex-
clude DSZOOM-WF’s run-time system initialization time.

4.3 Binary Instrumentation

Efficient binary instrumentation (or compiler support) is very
important for the overall DSZOOM performance. In this sec-
tion we primarily focus on characterizing the overhead of in-
serted fine-grain access control checks for global loads and
stores by presenting the dynamic overheads for all of the stud-
ied SPLASH-2 programs.

Sequential-execution times for non-instrumented programs,
and the percentage of statically replaced loads/stores for
SPLASH-2 applications are shown in Table 1. Currently, our
binary modification tool statically replaces on average 18.4%
loads and 18.3% stores during the instrumentation phase. We
use numerous techniques to perform static and dynamic anal-
ysis of the unmodified binaries in order to recognize as many
global loads and stores as possible [42], [25], [35], i.e., the bi-
nary modification tool will not replace many of the stack and
static data accesses. Uniprocessor execution times in seconds
for instrumented programs are also shown in Table 1. Effi-
ciency overhead for sequential execution, presented in paren-
theses in the last column, is between 1.03 and 1.59 (which
averages 1.22) for all of the studied applications. Thus, in-

5Artiaga has experienced similar problems with the original fork-exec ver-
sions of Volrend and Cholesky [1].

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FFT
LU

-c

LU
-n

c

R
ad

ix

B
ar

ne
s

FM
M

O
ce

an
-c

O
ce

an
-n

c

R
ad

io
si
ty

R
ay

tra
ce

W
at

er
-n

sq

W
at

er
-s

p

f-p-ST-snippet

int-ST-snippet

f-p-LD-snippet

int-LD-snippet

E6000 seq.

Figure 5: Normalized instrumentation overhead breakdown
for sequential-execution.

strumented code takes between 3% and 59% longer time to
execute the program after the global fine-grain access con-
trol checks for loads and atomic/node-local MTAG lookups
for stores are added.

State-of-the-art checking overheads (for example in Shasta
[34]) are in the range of 5-35%. Unfortunately, increased soft-
ware checking overhead gives us a bad starting point for some
of the applications (e.g., for FFT, LU-c, and LU-nc).

Normalized instrumentation overhead breakdown for
sequential-execution is shown in Figure 5. Floating-point store
snippets are the major slowdown factor for FFT, LU-c, and
LU-nc. LU is one of the most store-intensive SPLASH-2
applications [43] and will typically perform much better on
software-based DSM systems with weaker memory models
(for example on GeNIMA [5] with home-based LRC proto-
col).

7

Program 8 Processors 16 Processors

FFT 1.29 (-8.9%) 1.08 (-29.8%)
LU-c 1.58 (-0.2%) 1.50 (-8.3%)
LU-nc 1.60 (+9.6%) 1.44 (-6.2%)
Radix 1.15 (+2.4%) 1.07 (-6.0%)
Barnes 1.15 (+11.5%) 1.05 (+1.7%)
FMM 1.03 (-3.2%) 1.02 (-3.6%)
Ocean-c 1.25 (-8.4%) 1.14 (-20.3%)
Ocean-nc 1.56 (+32.3%) 1.52 (+28.2%)
Radiosity 1.09 (+2.4%) 1.06 (-0.8%)
Raytrace 1.20 (-1.2%) 1.10 (-10.6%)
Water-nsq 1.06 (-0.4%) 1.05 (-0.6%)
Water-sp 1.09 (+0.9%) 1.09 (+0.8%)

Average 1.25 (+2.5%) 1.18 (-4.6%)

Table 2: Instrumentation overheads for parallel execution on a
single-node DSZOOM-WF system. The change in overheads
for 8- and 16-processor runs compared to the uniprocessor
overheads is presented in parentheses.

In order to examine the instrumentation overhead for par-
allel execution with 8 and 16 processors, we configure
DSZOOM-WF as a single-node system with a cache-line-
sized coherency unit of 128 bytes, i.e., a system without inter-
node communication. This shows the overhead introduced by
the inserted run-time in-line checks (ILCs) when there is no
protocol activity. Table 2 presents the parallel binary instru-
mentation overheads for a single-node DSZOOM-WF config-
uration. The instrumentation overheads for 8-processor nodes
averages 1.25 (the overhead increases by 2.5% compared to
the sequential execution). For 16-processor nodes, this over-
head averages 1.18 (the overhead decreases by 4.6% compared
to the sequential execution).

4.4 Parallel Performance

This section presents the parallel performance of the applica-
tions for the DSZOOM-WF system. We report results for 2-
node SMP clustering of 4 and 8 processors per node. We also
characterize inserted overheads compared to many of the un-
modified SMP applications by presenting the dynamic over-
heads for instrumented SPLASH-2 programs.

Figure 6 shows execution times in seconds for 8- and 16-
processor runs for Sun Enterprise E6000, 2-node CC-NUMA,
and three different DSZOOM configurations:

� Single-node DSZOOM-WF. This is a system without
inter-node communication. It shows the effects of the in-
serted run-time in-line checks for global loads and stores
as described in the previous section.

� DSZOOM-EMU . This is a system without any “real”
physical memory and process distribution. This configu-
ration emulates DSZOOM-WF between “virtual nodes,”

Program ILC Protocol Distribution

FFT 1.29 1.27 1.14
LU-c 1.58 1.00 1.02
LU-nc 1.60 1.01 1.00
Radix 1.15 1.16 1.10
Barnes 1.15 1.03 1.06
FMM 1.03 1.09 1.08
Ocean-c 1.25 1.08 1.08
Ocean-nc 1.56 1.09 1.03
Radiosity 1.09 1.21 1.18
Raytrace 1.20 1.23 1.20
Water-nsq 1.06 1.01 1.01
Water-sp 1.09 1.01 1.00

Average 1.25 1.10 1.08

Table 3: Efficency overheads for effects of in-line checks
(ILC), coherence protocol processing, and the memory and
process distribution across the nodes for 8-processor runs on a
2-node DSZOOM system.

modeled as processes inside a single SMP multiproces-
sor. It shows effects of the protocol processing for a 2-
node DSZOOM-WF system.

� 2-node DSZOOM-WF. This configuration is a “real”
DSZOOM-WF implementation. Both the memory and
the running processes are physically distributed across
the nodes. If we compare this configuration to the pre-
vious one, we can see how the Sun Orange interconnect
impacts performance.

Cache-line-sized coherency unit of 128 bytes is used for all
configurations. The performance of several 16-processor runs
shown in Figure 6(b) is lower than expected. This is due to
the contention on the SMP memory bus mainly caused by the
misses from processors within that particular SMP node.

Table 3 shows efficency overheads for the effects of in-line
checks, global coherence protocol processing, and the effects
of the physical memory and process distribution across the
nodes. The efficency overhead numbers are derived from Fig-
ure 6(a). On average, the run-time in-line checks are the largest
efficiency overhead factor for 8-processor runs.

Normalized execution time breakdowns for 8- and 16-
processor runs for a 2-node DSZOOM-WF with a coherency
unit of 128 bytes are shown in Figure 7. The execution time
is divided intoTask, inserted run-time in-line checks (ILC) for
global loads and stores, the synchronization cost (Barriersand
Locks), and the cost of coherency protocol processing (Store
andLoad).

Our performance numbers presented so far are based on a
constant cache-line-sized coherency unit of 128 bytes for all
of the tested configurations. Choosing the different coherence
granularity can potentially improve the performance for many
applications (for example, see Shasta [35]). Table 4 reports

8

0

2

4

6

8

10

12

14

16

18

E6000 8 CPUs 2.23 9.69 11.59 3.99 5.02 15.08 5.81 2.27 3.34 1.33 11.93 3.80

CC-NUMA 2x4 2.63 10.02 12.74 4.26 5.19 15.43 6.07 2.66 3.53 1.48 12.11 3.83

DSZOOM-WF 1x8 2.87 15.34 18.52 4.60 5.77 15.49 7.29 3.55 3.64 1.59 12.59 4.16

DSZOOM-EMU 2x4 3.65 15.41 18.73 5.35 5.97 16.94 7.90 3.88 4.42 1.95 12.76 4.19

DSZOOM-WF 2x4 4.17 15.79 18.81 5.91 6.33 18.29 8.57 3.98 5.20 2.34 12.95 4.21

FFT LU-c LU-nc Radix Barnes FMM Ocean-c Ocean-nc Radiosity Raytrace
Water-

nsq
Water-sp

(a) 8 processors

0

1

2

3

4

5

6

7

8

9

10

E6000 16 CPUs 1.42 5.52 7.16 2.31 2.72 8.40 3.38 1.34 1.93 0.79 6.15 2.78

CC-NUMA 2x8 1.63 5.28 6.79 2.52 2.85 8.64 3.59 1.62 2.31 1.05 6.21 2.80

DSZOOM-WF 1x16 1.53 8.29 10.31 2.47 2.86 8.60 3.84 2.04 2.04 0.87 6.48 3.04

DSZOOM-EMU 2x8 1.94 8.49 10.39 2.91 3.27 9.97 5.03 2.96 2.69 1.31 6.61 3.07

DSZOOM-WF 2x8 2.45 8.32 10.17 3.38 3.46 10.00 4.66 2.37 3.34 2.11 6.73 3.09

FFT LU-c LU-nc Radix Barnes FMM Ocean-c Ocean-nc Radiosity Raytrace
Water-

nsq
Water-sp

(b) 16 processors

Figure 6: Execution times in seconds for (a) 8- and (b) 16-processor runs for Sun Enterprise E6000, 2-node CC-NUMA,
single-node DSZOOM-WF, 2-node DSZOOM-EMU, and 2-node DSZOOM-WF.

9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FFT
LU

-c

LU
-n

c

R
ad

ix

B
ar

ne
s

FM
M

O
ce

an
-c

O
ce

an
-n

c

R
ad

io
si
ty

R
ay

tra
ce

W
at

er
-n

sq

W
at

er
-s

p

Store

Load

Locks

Barriers

ILC

Task

(a) 8 processors

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FFT
LU

-c

LU
-n

c

R
ad

ix

B
ar

ne
s

FM
M

O
ce

an
-c

O
ce

an
-n

c

R
ad

io
si
ty

R
ay

tra
ce

W
at

er
-n

sq

W
at

er
-s

p

Store

Load

Locks

Barriers

ILC

Task

(b) 16 processors

Figure 7: Normalized execution time breakdowns for (a) 8- and (b) 16-processor runs for a 2-node DSZOOM-WF with cache-
line-sized coherency unit of 128 bytes.

Program Unit Size [bytes] Time [s]
FFT 2 048 2.04 (+20.1%)
LU-c 1 024 8.22 (+1.2%)
Barnes 64 3.42 (+1.2%)
FMM 64 9.99 (+0.1%)
Ocean-c 256 4.35 (+7.1%)

Table 4: Effects of the coherency unit variations for a 2-node
DSZOOM-WF with 8 processor nodes.

our experiments for several of the SPLASH-2 applications that
have demonstrated performance improvements for a different
coherency unit sizes on a 2 node DSZOOM-WF system with
8 processors per node. For example, if the FFT is executed
with a cache-line-sized coherency unit of 2048 bytes, its over-
all performance is improved with 20.1% compared to the val-
ues presented in Figure 6(a).

The speedup values for 16-processor runs for Sun Enter-
prise E6000, 2-node CC-NUMA, and 2-node DSZOOM-WF
with “optimal” coherency units are shown in Figure 8. The
speedups shown are the ratio of the execution time of the ap-
plication running on 16 processors to the execution time of the
original sequential application (with no access control checks).
We can see that our all-software solution is close to what hard-
ware CC-NUMA architecture can do on the same platform.
On average, our implementation demonstrates a relative dif-
ference for SPLASH-2 speedups of 31.6% compared to the
hardware DSM implementation.

5 Related Work

Many different SW-DSM implementations have been pro-
posed over the years: Blizzard-S [38], Brazos [40], Cashmere-

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

FFT
LU

-c

LU
-n

c

R
ad

ix

B
ar

ne
s

FM
M

O
ce

an
-c

O
ce

an
-n

c

R
ad

io
si
ty

R
ay

tra
ce

W
at

er
-n

sq

W
at

er
-s

p

Ave
ra

ge

E6000 16 CPUs CC-NUMA 2x8 DSZOOM-WF 2x8

Figure 8: Application speedups for Sun Enterprise E6000, 2-
node CC-NUMA, and 2-node DSZOOM-WF.

2L [41], [10], CRL [19], GeNIMA [5], Ivy [26], [27], MGS
[44], Munin [8], Shasta [35], [34], [32], [33], [10], Sirocco-
S [36], SoftFLASH [11], and TreadMarks [21]. Most of them
suffer from synchronous interrupt protocol processing. We be-
live that many of these implementations would benefit from
a more efficient protocol implementation; such the one de-
scribed here.

The DSZOOM-WF’s basic approach is derived from several
fine-grain SW-DSM systems: Shasta, Blizzard-S, and Sirocco-
S. Our “magic”-value technique for fine-grain access control
checks presented in Section 3 is similar to Shasta’s “flag”-
value and Blizzard’s “sentinel”-value optimizations. This
technique was independently introduced in Shasta [35] and
Blizzard-S [38] for use with all types of loads. There are sev-
eral other systems that use compiler-generated checks to im-
plement a global address space (for example, Olden [7], Split-
C [9], and Midway [4]).

Regarding the simple architectural support [17], the GeN-
IMA proposal is closest to our work [5], [14]. GeNIMA pro-

10

poses a protocol and a general network interface mechanism to
avoid some of the asynchronous overhead. A processor start-
ing a synchronous communication event, e.g., the requesting
processor initiating some coherence actions, checks for incom-
ing messages at the same time. This avoids some of the asyn-
chronous overhead in the home node, but will also add some
extra delay while waiting for a synchronous event to happen in
the node. The protocol is still implemented as communicating
protocol agents.

Several other papers have suggested hardware support for
fine-grain remote write operations in the network interface
[23], [22]. One of the recent implementations is the auto-
matic update release consistency (AURC) home-based pro-
tocol [16]. This implementation is a page-based SW-DSM
which eliminates “diffs”—the compact encoded representa-
tion of the differences between the two pages, frequently used
in many page-based SW-DSM systems—by using fine-grain
remote writes for both the application data and the protocol
meta-data. The AURC approach usually performs better than
all-software home-based LRC implementations.

6 Conclusions

In this paper we have presented the DSZOOM-WF system, an
all-software (sequentially consistent) fine-grain SW-DSM im-
plementation. We have demonstrated how asynchronous pro-
tocol processing can be completely avoided at the cost of some
extra remote transactions—trading bandwidth for efficiency.
We believe that the total round-trip SW-DSM latency can be
kept below three microseconds once the raw latency of a mod-
ern interconnect has been added.

The protocol described in this paper is applicable to the
emerging InfiniBand I/O interconnect standard. We believe
that a protocol such as the one we describe could speed up
many of the existing SW-DSM implementations on such inter-
connects.

DSZOOM-WF consistently demonstrates performance
comparable to hardware-based DSM implementations. On
average, the speedup difference between our implementation
and the hardware CC-NUMA system is 31.6% for the studied
SPLASH-2 applications.

7 Future Work

We plan to extend this work in several different directions.
First, cache-coherence protocol code optimizations will im-
prove performance of the DSZOOM-WF system. Because
EEL has problems with hand-written in-line assembly in com-
bination with high optimization levels during the compilation
(our protocol routines written in C, and the synchronization
part of our run-time system that is also written in C, use quite
a lot of in-line assembly gcc constructs) we do not use any op-
timizations during the compiling phase of the coherence pro-
tocol routines and the run-time system.

Second, in order to improve the performance of the
DSZOOM-WF system, weaker memory models, such as lazy
release consistency (LRC) [20] and the release consistency
model presented by Gharachorloo et al. [13], [35], can be used
instead of the sequential consistency model that is currently
implemented. This kind of optimization will allow many up-
date actions to be deferred and combined into a single opera-
tion.

Third, we plan to experiment with several inter-node lock
synchronization algorithms (e.g., ticket-based locks). The test-
and-set locks that we are currently using work well for small-
scale SMP nodes, but they are not adequate for large-scale,
CC-NUMA nodes. Usually, test-and-set locks lead to poor
caching performance and increased inter-node communication
in many CC-NUMA systems. We believe that we can speed
up many lock-intensive applications with improved synchro-
nization algorithms.

Finally, to make this kind of system more usable it is desir-
able to make a POSIX-threads implementation because most
of the commercial workloads are implemented with that pro-
gramming model rather than PARMACS.

Acknowledgments

We would like to thank Glen Ammons (Computer Sciences
Department, University of Wisconsin–Madison) for excellent
support and quick EEL updates, Ernest Artiaga (Technical
University of Catalonia) for help with couple of PARMACS
applications, Sverker Holmgren and Henrik Löf (Department
of Scientific Computing, Uppsala University) for providing ac-
cess to the Sun Orange system. We would also like to thank
Lars Albertsson, Erik Berg, and Thiemo Voigt (Department of
Computer Systems, Uppsala University), Anders Landin and
Larry Meadows (Sun Microsystems), and the anonymous re-
viewers for comments on earlier drafts of the paper.

This work is supported in part by the Sun Microsys-
tems, Inc., and the Parallel and Scientific Computing Institute
(PSCI), Sweden.

References
[1] E. Artiaga. Personal communication, April 2001.

[2] E. Artiaga, X. Martorell, Y. Becerra, and N. Navarro. Ex-
periences on Implementing PARMACS Macros to Run the
SPLASH-2 Suite on Multiprocessors. InProceedings of the 6th
Euromicro Workshop on Parallel and Distributed Processing,
January 1998.

[3] E. Artiaga, N. Navarro, X. Martorell, and Y. Becerra. Imple-
menting PARMACS Macros for Shared-Memory Multiproces-
sor Environments. Technical Report UPC-DAC-1997-07, De-
partment of Computer Architecture, Polytechnic University of
Catalunya, January 1997.

[4] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Mid-
way Distributed Shared Memory System. InProceedings of the
38th IEEE Computer Society International Conference, pages
528–537, February 1993.

11

[5] A. Bilas, C. Liao, and J. P. Singh. Using Network Interface
Support to Avoid Asynchronous Protocol Processing in Shared
Virtual Memory Systems. InProceedings of the 26th Annual
International Symposium on Computer Architecture (ISCA’99),
May 1999.

[6] A. Bilas and J. P. Singh. The Effects of Communication Param-
eters on End Performance of Shared Virtual Memory Clusters.
In Proceedings of Supercomputing ’97, November 1997.

[7] M. C. Carlisle and A. Rogers. Software Caching and Computa-
tion Migration in Olden. InProceedings of the 5th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 29–38, July 1995.

[8] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation
and Performance of Munin. InProceedings of the 13th ACM
Symposium on Operating Systems Principles (SOSP’91), pages
152–164, October 1991.

[9] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel Programming
in Split-C. In Proceedings of Supercomputing ’93, pages 262–
273, November 1993.

[10] S. Dwarkadas, K. Gharachorloo, L. Kontothanassis, D. J.
Scales, M. L. Scott, and R. Stets. Comparative Evaluation of
Fine- and Coarse-Grain Approaches for Software Distributed
Shared Memory. InProceedings of the 5th International Sympo-
sium on High-Performance Computer Architecture, pages 260–
269, January 1999.

[11] A. Erlichson, N. Nuckolls, G. Chesson, and J. L. Hennessy.
SoftFLASH: Analyzing the Performance of Clustered Dis-
tributed Virtual Shared Memory. InProceedings of the 7th In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-VII), pages
210–220, October 1996.

[12] K. Gharachorloo. Personal communication, October 2000.

[13] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta,
and J. Hennessy. Memory Consistency and Event Ordering in
Scalable Shared-memory Multiprocessors. InProceedings of
the 17th Annual International Symposium on Computer Archi-
tecture (ISCA’90), pages 15–26, May 1990.

[14] C. Gibson and A. Bilas. Performance of Shared Virtual Memory
on Clusters of DSMs. InProceedings of the 8th International
Conference on High Performance Computing (HiPC 2001), De-
cember 2001.

[15] E. Hagersten and M. Koster. WildFire: A Scalable Path for
SMPs. InProceedings of the 5th IEEE Symposium on High-
Performance Computer Architecture, pages 172–181, February
1999.

[16] L. Iftode, M. Blumrich, C. Dubnicki, D. L. Oppenheimer, J. P.
Singh, and K. Li. Shared Virtual Memory with Automatic Up-
date Support. Technical Report TR-575-98, Princeton Univer-
sity, February 1998.

[17] L. Iftode and J. P. Singh. Shared Virtual Memory: Progress
and Challenges.Proceedings of the IEEE, Special Issue on Dis-
tributed Shared Memory, 87(3):498–507, March 1999.

[18] InfiniBand(SM) Trade Association, InfiniBand Architecture
Specification, Release 1.0, October 2000. Available from:
http://www.infinibandta.org.

[19] K. Johnson, M. F. Kaashoek, and D. A. Wallach. CRL: High-
Performance All-Software Distributed Shared Memory. InPro-
ceedings of the 15th ACM Symposium on Operating Systems
Principles, December 1995.

[20] P. Keleher. Lazy Release Consistency for Distributed Shared
Memory. PhD thesis, Department of Computer Science, Rice
University, January 1995.

[21] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard Work-
stations and Operating Systems. InProceedings of the Winter
1994 USENIX Conference, pages 115–131, January 1994.

[22] L. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas, M. Cier-
niak, S. Parthasarathy, W. Meira, S. Dwarkadas, and M. Scott.
VM-based Shared Memory on Low-Latency, Remote-Memory-
Access Networks. InProceedings of the 24th Annual Interna-
tional Symposium on Computer Architecture (ISCA’97), June
1997.

[23] L. Kontothanassis and M. Scott. Using Memory-Mapped Net-
work Interfaces to Improve the Performance of Distributed
Shared Memory. InProceedings of the 2nd IEEE Symposium
on High Performance Computer Architecture, February 1996.

[24] L. Lamport. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs.IEEE Transactions
on Computers, C-28(9):690–691, September 1979.

[25] J. R. Larus and E. Schnarr. EEL: Machine-Independent Exe-
cutable Editing. InProceedings of the SIGPLAN ’95 Confer-
ence on Programming Language Design and Implementation,
pages 291–300, June 1995.

[26] K. Li. IVY: A Shared Virtual Memory System for Parallel Com-
puting. InProceedings of the 1988 International Conference on
Parallel Processing (ICPP’88), volume II, pages 94–101, Au-
gust 1988.

[27] K. Li and P. Hudak. Memory Coherence in Shared Virtual
Memory Systems.ACM Transactions on Computer Systems,
7(4):321–359, November 1989.

[28] L. W. McVoy and Carl Staelin. lmbench: Portable Tools for
Performance Analysis. InProceedings of the 1996 USENIX
Annual Technical Conference, pages 279–294, January 1996.

[29] S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood. Co-
herent Network Interfaces for Fine-Grain Communication. In
Proceedings of the 23rd Annual International Symposium on
Computer Architecture (ISCA’96), pages 247–258, April 1996.

[30] L. Noordergraaf and R. van der Pas. Performance Experiences
on Sun’s Wildfire Prototype. InProceedings of Supercomputing
’99, November 1999.

[31] Z. Radovíc and E. Hagersten. DSZOOM – Low Latency
Software-Based Shared Memory. Technical Report 2001:03,
Parallel and Scientific Computing Institute (PSCI), Sweden,
April 2001.

[32] D. J. Scales and K. Gharachorloo. Design and Performance
of the Shasta Distributed Shared Memory Protocol. InPro-
ceedings of the 11th ACM International Conference on Super-
computing, July 1997. Extended version available as Technical
Report 97/2, Western Research Laboratory, Digital Equipment
Corporation, February 1997.

[33] D. J. Scales and K. Gharachorloo. Towards Transparent and
Efficient Software Distributed Shared Memory. InProceedings
of the 16th ACM Symposium on Operating System Principles,
Saint-Malo, France, October 1997.

12

[34] D. J. Scales, K. Gharachorloo, and A. Aggarwal. Fine-Grain
Software Distributed Shared Memory on SMP Clusters. Tech-
nical Report 97/3, Western Research Laboratory, Digital Equip-
ment Corporation, February 1997.

[35] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A
Low-Overhead Software-Only Approach to Fine-Grain Shared
Memory. InProceedings of the 7th International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS-VII), pages 174–185, October 1996.

[36] I. Schoinas, B. Falsafi, M. Hill, J. R. Larus, and D. A. Wood.
Sirocco: Cost-Effective Fine-Grain Distributed Shared Mem-
ory. In Proceedings of the 6th International Conference on Par-
allel Architectures and Compilation Techniques, October 1998.

[37] I. Schoinas, B. Falsafi, M. D. Hill, J. R. Larus, C. E. Lucas, S. S.
Mukherjee, S. K. Reinhardt, E. Schnarr, and D. A. Wood. Im-
plementing Fine-Grain Distributed Shared Memory On Com-
modity SMP Workstations. Technical Report 1307, Com-
puter Sciences Department, University of Wisconsin–Madison,
March 1996.

[38] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R.
Larus, and D. A. Wood. Fine-grain Access Control for Dis-
tributed Shared Memory. InProceedings of the 6th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VI), pages 297–
306, October 1994.

[39] A. Singhal, D. Broniarczyk, F. Cerauskis, J. Price, L. Yuan,
C. Cheng, D. Doblar, S. Fosth, N. Agarwal, K. Harvey,
E. Hagersten, and B. Liencres. Gigaplane: A High Performance
Bus for Large SMPs. InProceedings of IEEE Hot Interconnects
IV, pages 41–52, August 1996.

[40] E. Speight and J. Bennett. Brazos: A Third Generation DSM
System. InProceedings of the 1st USENIX Windows NT Sym-
posium, August 1997.

[41] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kon-
tothanassis, S. Parthasarathy, and M. Scott. Cashmere-2L: Soft-
ware Coherent Shared Memory on a Clustered Remote-Write
Network. InProceedings of the 16th ACM Symposium on Op-
erating System Principle, October 1997.

[42] M. Weiser. Program Slicing.IEEE Transactions on Software
Engineering, SE-10(4):352–357, July 1984.

[43] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Methodologi-
cal Considerations. InProceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture (ISCA’95), pages
24–36, June 1995.

[44] D. Yeung, J. Kubiatowicz, and A. Agarwal. MGS: A Multigrain
Shared Memory System. InProceedings of the 23rd Annual
International Symposium on Computer Architecture (ISCA’96),
pages 44–56, May 1996.

13

