
RH Lock: A Scalable Hierarchical Spin Lock

Zoran Radović and Erik Hagersten

Uppsala University, Department of Information Technology
P.O. Box 337, SE-751 05 Uppsala, Sweden

E-mail: {zoranr,eh}@it.uu.se

Abstract

Scalable architectures with non-uniform memory access time
(NUMAs) have gained increased popularity in recent years.
The increased scalability have increased the demand for
scalable lock implementations, such as the queue-based
locks of Mellor-Crummey and Scott (MCS lock), and of
Craig, Landin and Hagersten (CLH lock).

This paper demonstrates that the first-come first-served
nature of queue-based locks make them less suitable for non-
uniform communication architectures (NUCAs), for example
NUMAs built from a few large nodes. In contrast, the sim-
pler test-and-set locks gives a unfair advantage to neighbor-
ing processors when a lock is released, which will create a
fast lock handover time as well as create more locality for
the data accessed in the critical region.

We also propose the new RH lock that explores the NUCA
architectures by creating a controlled unfairness in combi-
nation with a much reduced traffic compared with the test-
and-set locks. A critical section guarded by the RH lock is
shown to take less than half the time to execute compared
with the same critical section guarded by any other lock. We
also investigate the effectiveness of our new lock on a set of
real SPLASH-2 applications. For example, execution time
for Raytrace with 30 processors can be improved between
1.83 and 5.70 times by using the RH locks instead of any
other tested locks.

1 Introduction

There are plenty of examples in academia and industry of
shared-memory architectures with a non-uniform memory
access time to the shared memory (NUMA). Most of the
NUMA architectures, but not all, also have a non-uniform
communication architectures (NUCA), i.e., the access time
from a processor to the other processor’s caches varies
greatly depending on their placement. In particular, node-
based NUCAs, where a group of processors have a much
shorter access time to each other’s caches than to the other
caches, are common.

Recently, technology trends have made it attractive to run
more than one thread on a chip, using either the Chip Mul-
tiprocessor (CMP) and/or the Simultaneous Multithreading
(SMT) approach. Larger servers, built from several of those
chips, can therefore be expected to be NUCA architectures,

since collocated threads will most likely share an on-chip
cache at some level [3]. In our opinion, there are strong in-
dications that many important architectures in the future will
have a non-uniform access time to each other’s caches, as
well as to the shared memory.

NUMA optimizations have attracted much attention in the
past. The migration and replication of data in NUMA sys-
tems have demonstrated a great performance improvement
in many applications [11], [20]. However, many of today’s
applications show a large fraction of cache-to-cache misses
[4], which is why attention should also be given to the NUCA
nature of the system.

The scalability of a shared-memory application is often
limited by contention for some critical section, often access-
ing some shared data, guarded by mutual exclusion locks.
The simpler, and most widely used, test-and-set locks imple-
mentations perform worse at high contention, i.e., the more
important the critical section gets, the worse the lock algo-
rithm performs. This is mostly due to the vast amount of
traffic generated at the lock handover.

An application can often be rewritten to decrease the con-
tention. This could, however, be a complicated task. More
advanced queue-based locks have been proposed that have
a slightly worse performance at light lock contention, but
a much better performance at high lock contention because
less traffic is generated [19], [6], [17]. Furthermore, the
queue-based locks maintain a first-come first-served order
between the contenders. While queue-based locks have
shown low traffic and great scalability on many architectures,
their first-come first-served property is less desirable on a
NUCA architecture.

Three properties determine the average time between two
threads entering the contended critical section: lock han-
dover time, traffic generated by the lock, and the data locality
created by the lock algorithm.

We have noticed that the test-and-set locks give an unfair
advantage to processors in the NUCA node where the lock
last was held. This will create more node locality and will
partly make up for the more traffic generated by the test-and-
set locks. The increased node locality will improve on the
lock handover time, but also on the locality of the work in
the critical section.

The goal of this work is to create a lock that minimizes the
global traffic generated at lock handover, and maximizes the
node locality of NUCA architectures.

1

The remainder of this paper is organized as follows. Sec-
tion 2 gives an introduction to several machines with NUCA
architectures. Background and related work is presented in
section 3. The key idea behind the RH lock is given in sec-
tion 4, and section 5 presents the RH lock algorithm. In
section 6 we present performance results obtained on a 32-
processor Sun WildFire machine (not to be confused with the
Compaq product of the same name). Finally, we conclude in
section 7.

2 Non-Uniform Communication Ar-
chitectures

Many large-scale shared-memory architectures have non-
uniform access time to the shared memory (NUMA). In or-
der to make a key difference, the non-uniformity should be
substantial, let’s say at least a factor two between best case
and worst unloaded case. Most of the NUMA architec-
tures also have a substantial difference in latency for cache-
to-cache transfer—aNon-Uniform Communication Architec-
ture (NUCA). A NUCA is an architecture where the un-
loaded latency for a processor accessing data recently modi-
fied another processor differs at least a factor two depending
on where that CPU is located.

DASH was the first NUCA architecture [14]. Each DASH
node consists of four processors connected by a snooping
bus. A cache-to-cache transfer from a cache in a remote node
is 4.5 times slower than a transfer from a cache in the same
node. We call this theNUCA ratio. Sequent’s NUMA-Q
has a similar topology, but its NUCA ratio is closer to ten
[16]. Both DASH and NUMA-Q have a remote access cache
(RAC) located in each node that simplifies the implementa-
tion of the node-local cache-to-cache transfer.

Sun’s WildFire system can have up to four nodes with 28
processors each, totaling 112 processors [11]. Parts of each
node’s memory can be turned into a RAC a using technique
called Coherent Memory Replication (CMR). Accesses to
data allocated in a CMR cache have a NUCA ratio of about
six, while accesses to other data only have a minor latency
difference between node-local and remote cache-to-cache
transfers.

Compaq’s DS-320 (which was also code-named WildFire)
can connect up to four nodes, each with four processors shar-
ing a common DTAG and directory controller [8]. Its NUCA
ratio is roughly 3.5.

The IBM Regatta system is built from the new Power4
chips [25]. Each Power4 contains two processor cores shar-
ing one common L2 cache. Four such chips are grouped
into a “supernode” with eight processor cores sharing one
L3 cache. A fully configured system consists of four such
supernodes, i.e., up to 32 processor cores. There is sparse in-
formation about Regatta’s different latencies, but its NUCA
ratio can be expected to be very high.

Future microprocessors can be expected to run many more
threads on a chip by a combination of CMP and SMT tech-
nology. This can already be seen in the Pentium 4’s Hyper-
threading and the IBM Power4’s dual CMP processors on a
chip. The Piranha CMP proposal expects 8 CMP threads to

run on each chip [3]. Larger systems, built from many such
CMPs, are expected to have a NUCA ration of between six
and ten depending on the technology chosen.

Not all architectures are NUMAs nor NUCAs. The re-
cent SunFire 15k architecture can have up to 18 nodes, each
with four processors, memory and directory controllers [5].
The nodes are connected by a fast backplane. It has a flavor
of both NUMA and NUCA. However, both its NUMA ratio
and NUCA ratio is well below two. The SGI Origin 2000
is a NUMA architecture with a NUMA ratio of around three
for reasonable sized systems [13]. However, it does not ef-
ficiently support cache-to-cache transfers between adjacent
processors and has a NUCA ratio below two.

3 Background and Related Work

Ideally, synchronization primitives should provide high per-
formance under both high and low contention without requir-
ing substantial programmer effort. Mutual exclusion (lock-
unlock) operations can be implemented in a variety of dif-
ferent ways, including: (1) atomic memory primitives (e.g.,
test_and_set and fetch_and_add), (2) non-atomic
memory primitives (e.g., load-linked/store-conditional), and
(3) explicit hardware lock-unlock primitives (e.g., CRAY
Xmp lock registers, DASH’s lock-unlock operations on di-
rectory entries, or queue-on-lock-bit, QOLB). We will con-
centrate on implementing locks with only atomic primitives.
Explicit hardware primitives are currently not popular on
modern bus-based machines.

The five synchronization primitives we discuss and di-
rectly compare in this paper are test-and-test_and_set
(abbreviated TATAS), test-and-test_and_set with ex-
ponential backoff (abbreviated TATAS_EXP), MCS locks,
CLH locks, and RH locks (our new hierarchical spin lock).
We also present a short introduction to alternative synchro-
nization approaches; reactive synchronization and an aggres-
sive queue-on-lock-bit (QOLB) hardware scheme.

3.1 Atomic Primitives

In this paper we make reference to three atomic oper-
ations. Test_and_set (address) atomically writes a
nonzero value to theaddressmemory location and returns
its original contents. A nonzero value for the lock repre-
sents the locked condition, while a zero value means that
the lock is free.Swap (address, value) atomically writes a
valueto theaddressmemory location and returns its original
contents.Compare_and_swap (address, expected_value,
new_value) atomically checks the contents of a memory lo-
cationaddressto see if it matches anexpected_valueand, if
so, replaces it with anew_value.

Compare_and_swap first appeared in the IBM 370
instruction set. Test_and_set , swap and com-
pare_and_swap are provided by Sparc V9 — our target
architecture for this paper.

2

3.2 Simple Lock Algorithms

Traditionally, the simple synchronization algorithms tend to
be fast when there is little or no contention for the lock,
while more sophisticated algorithms usually have a higher
cost for low-contention case, but, on the other hand, they
handle contention much better. In this section we describe
two still very commonly usedbusy-waitalgorithms: TATAS
and TATAS_EXP.

It was Rudolph and Segall who first proposed an exten-
sion to ordinarytest_and_set (this was the sole syn-
chronization primitive available on numerous early systems,
such as the IBM 360 series) that performs a read of the lock
before attempting the actual atomictest_and_set oper-
ation [21]. A typical TATAS algorithm is shown below:

typedef unsigned long bool;
typedef volatile bool tatas_lock;

1: void tatas_acquire(tatas_lock *L)
2: {
3: if (tas(L)) {
4: do {
5: if (*L)
6: continue;
7: } while (tas(L));
8: }
9: }

10:
11: void tatas_release(tatas_lock *L)
12: {
13: *L = 0;
14: }

This is the most basic busy-wait algorithm in which a pro-
cess (or thread) repeatedly attempts to change a lock-value
L from true to false , using an atomic hardware prim-
itive (for example, in the Sparc V9 instruction set, this is
typically done with load-store unsigned byte (LDSTUB) in-
struction). Traditionaltest_and_set -based spin locks
are vulnerable to memory and interconnect contention, and
do not scale well to large machines. This contention can be
reduced by polling (busy-wait code) with ordinary load op-
erations to avoid generating expensive stores to potentially
shared location (lines 4–6 in the code above). Furthermore,
the burst of refill traffic whenever lock is released can be re-
duced by using the Ethernet-style exponential backoff algo-
rithm in which after a failure to obtain the lock a requester
waits for successively longer periods of time before trying to
issue another lock operation [2], [19]. This is the idea be-
hind the TATAS_EXP lock. Theacquire function of one
typical TATAS_EXP implementation is shown below:

1: void tatas_exp_acquire(tatas_lock *L)
2: {
3: int b = BACKOFF_BASE, i;
4:
5: if (tas(L)) {
6: do {
7: for (i = b; i; i--) ; // delay
8: b = min(b * BACKOFF_FACTOR, BACKOFF_CAP);
9: if (*L)

10: continue;
11: } while (tas(L));
12: }
13: }

Type definitions and release code are the same as in
the TATAS example. ParametersBACKOFF_BASE, BACK-
OFF_FACTOR, andBACKOFF_CAPmust be tuned by trial

and error for each individual architecture. We use the fol-
lowing settings in our experiments, which are identical to the
settings used by Scott and Scherer on the same platform [22]:

BACKOFF_BASE 625
BACKOFF_FACTOR 2
BACKOFF_CAP 2,500

3.3 Queue-Based Locks

Even with exponential backoff, TATAS locks still induce sig-
nificant contention (performance results using backoff with
a realtest_and_set instruction on older machines can
be found in the literature [10], [19]). On a standard sym-
metric multiprocessor (SMP) with uniform access times be-
tween all processor’s caches in the node, queue-based locks
may eliminate these problems by letting each process spin
on a different local memory location. The first proposal
for a distributed, queue-based locking scheme in hardware
was made by Goodman, Vernon, and Woest [9] (see sec-
tion 3.4 for more details). Several researchers have inde-
pendently proposed locking primitives that incorporate both
local spinning and queue-based locking in software [1],
[10], [19]. The locking primitive called MCS is one of
the first software queue-based lock implementations, orig-
inally inspired by the QOSB [9] hardware primitive pro-
posed for the cache controllers of the Wisconsin Multicube
in the late 1980s. The MSC lock was developed by Mellor-
Crummey and Scott [19]. During the acquire request, the
MSC lock inserts requesters for a held lock into a software
queue using the atomic operations such asswap andcom-
pare_and_swap . Mellor-Crummey and Scott also de-
scribe another version of the MSC lock which only requires
theswap operation. Fairness in that case is no longer guar-
anteed, and the implementation is slightly more complex.

Magnusson, Landin, and Hagersten proposed two soft-
ware queue-based locking primitives about three years after
MCS, namely LH and M [17] (Craig independently devel-
oped a lock identical to LH [6], in this paper we will refer to
this lock as the CLH lock). The CLH lock requires one fewer
remote access to transfer a lock than does MCS, and will usu-
ally outperform MCS when high lock contention exists [22].
The CLH lock achieves this behavior at the expense of in-
creased latency to acquire an uncontested lock. The M lock
achieves the more efficient lock transfer without increased
uncontested lock access latency, at the expense of significant
additional complexity in the lock algorithm.

3.4 Alternative Approaches

The fact that some synchronization algorithms perform
well under low-contention periods and other under high-
contention periods is the basic idea behind “reactive synchro-
nization” presented by Lim and Agarwal a couple of years
after first proposals for queue-based locks [15]. Reactive
synchronization algorithm will dynamically swith among
several software lock implementations. Typically, spin-
locks (e.g., TATAS_EXP) are used during the low-contention
phase, and queue-based locks (e.g., MCS) are used during

3

the high-contention phase [12]. The goal of reactive syn-
chronization is to achieve both low latency lock access and
efficient lock-handoff at low cost.

Very aggressive hardware support for locks have been
proposed by Goodman, Vernon, and Woest [9]. They in-
troduce the queue-on-lock-bit primitive (QOLB, originally
called QOSB), which was the first proposal for a distributed,
queue-based locking scheme. In this scheme, a distributed
linked list of nodes waiting on a lock is maintained entirely
in hardware, where the releaser grants the lock to the first
waiting node without affecting others. Furthermore, QOLB
prevents unnecessary network traffic or interference with the
lock holder by letting the waiting processors spin locally on
a “shadow” copy of the lock address. Effective collocation
is possible because processors that are requesting a lock spin
on the same address as that of the lock, without evicting or
downgrading the lock holder’s copy. Thus, this hardware
scheme may reduce the lock handover time as well as the
interference of lock traffic with data access and coherence
traffic.

Unfortunately, QOLB requires additional hardware sup-
port. Most synchronization primitives that we discussed
in previous sections can be implemented entirely in soft-
ware, requiring only an atomic memory operation available
in the majority of modern processors. Detailed evaluation of
all hardware requirements for QOLB is presented by Kägi,
Burger, and Goodman [12].

4 Key Idea Behind RH Lock

The goal for the RH lock is to create a lock that minimizes
the global traffic generated at lock-handover, and maximizes
the node locality of NUCA architectures. Queue-based locks
implement a first-come first-served fairness, which is less de-
sirable on a NUCA machine because of the potentially huge
percentage of lock node-handoffs, in other words, there is a
risk that a contended lock might “jump” back and forth be-
tween the nodes, creating enormous amount of traffic.

In our scheme, every node contains a copy of the lock.
Our total lock storage cost is thusN×sizeof (lock), where
N is the number of nodes in the system. Initially, we can
for example decide to logically place a lock in node 0 (mark
the lock-value asFREE, meaning that both threads from the
local node or from another nodes are allowed to acquire the
lock). At most one node may have this local copy of the lock
in stateFREE. In that case, all other nodes (node 1, node 2,
..., nodeN - 1) are going to “see” aREMOTEtag if they try
to acquire their local copy of the lock.

One way to increase locality is to handover the lock to
another thread running in the same node (we will later refer
to this operation as marking the lock-value withL_FREE
tag). This will not only cut down on the lock handover time,
but will also create locality in the critical section work, since
its data structures will already reside in the node.

One way to cut down on lock traffic is to make sure that
only one thread per node will try to retrieve a lock which is
currently not owned by a thread in the node.

Even if the first-come first-served policy may be a too
strong requirement for a lock, it must guarantee some fair-

ness, i.e., make sure that other nodes will eventually get the
lock even if there are always local requests for the lock.

5 The RH Lock

During the design phase of our RH lock we paid attention to
several general performance goals for locks, given by Culler
et al. [7], page 343:

• Low latency. If a lock is free and no other processors are
trying to acquire it at the same time, processor should be
able to acquire it with low latency.

• Low traffic. If many or all processors try to acquire a
lock at the same time, they should be able to acquire
the lock one after the other with as little generation of
traffic or bus transactions as possible.

• Scalability. Neither latency nor traffic should scale
quickly with the number of processors used.

• Low storage cost. The information needed for a lock
should be small and should not scale quickly with the
number of processors.

• Fairness. Ideally, processors should acquire a lock in
the same order as their requests are issued. At the least,
starvation or substantial unfairness should be avoided.
Since starvation is usually unlikely, the importance of
fairness must be traded off with its impact on perfor-
mance.

Well, in fact, we paid attention to only first four goals and
ignored the last one (with the exception of goals for starva-
tion). We also paid attention to the data locality created by
our lock algorithm, in other words, our additional goal is to
maximize the node locality of NUCA architectures.

Our hierarchical spin lock algorithm (called the RH lock,
after our initials) is shown in Figure 1 and Figure 2.1 We use
the following settings and definitions:

BACKOFF_BASE 625
BACKOFF_FACTOR 2
BACKOFF_CAP 2,500
REMOTE_BACKOFF_BASE 625
REMOTE_BACKOFF_CAP 20,000
FREE max number of threads
REMOTE FREE+ 1
L_FREE FREE+ 2

The following atomic operations are used in our cur-
rent implementation:test_and_set , swap and com-
pare_and_swap , which are all available in the Sparc V9
instruction set.

my_tid is the thread identification number (0, 1, 2, ...,
max number of threads – 1), andmy_node_id is the node
number in which thread is placed (0, 1, 2, ..., max num-
ber of nodes – 1). Bothmy_tid andmy_node_id must

1The RH lock algorithm is currently optimized for small amount of
nodes or chip multiprocessors.

4

typedef volatile unsigned long rh_lock;

1: void rh_acquire(rh_lock *L)
2: {
3: unsigned long tmp;
4:
5: tmp = swap(L, my_tid);
6: if (tmp == L_FREE || tmp == FREE)
7: return;
8: if (tmp == REMOTE) {
9: rh_acquire_remote_lock(L);

10: return;
11: }
12: rh_acquire_slowpath(L);
13: }

1: void rh_acquire_slowpath(rh_lock *L)
2: {
3: unsigned long tmp;
4: int b = BACKOFF_BASE, i;
5:
6: if ((random() % FAIR_FACTOR) == 0)
7: be_fare = TRUE;
8: else
9: be_fare = FALSE;

10:
11: while (1) {
12: for (i = b; i; i--) ; // delay
13: b = min(b * BACKOFF_FACTOR, BACKOFF_CAP);
14: if (*L < FREE)
15: continue;
16: tmp = swap(L, my_tid);
17: if (tmp == L_FREE || tmp == FREE)
18: break;
19: if (tmp == REMOTE) {
20: rh_acquire_remote_lock(L);
21: break;
22: }
23: }
24: }

1: void rh_acquire_remote_lock(rh_lock *L)
2: {
3: int b = REMOTE_BACKOFF_BASE, i;
4:
5: L = get_remote_lock_addr(L, my_node_id);
6:
7: while (1) {
8: if (cas(L, FREE, REMOTE) == FREE)
9: break;

10: for (i = b; i; i--) ; // delay
11: b = min(b * BACKOFF_FACTOR, REMOTE_BACKOFF_CAP);
12: }
13: }

Figure 1: RH lock acquire code.

1: void rh_release(rh_lock *L)
2: {
3: if (be_fare)
4: *L = FREE;
5: else {
6: if (cas(L, my_tid, FREE) != my_tid)
7: *L = L_FREE;
8: }
9: }

Figure 2: RH lock release code.

be thread-private values, and preferably efficiently accessi-
ble fromrh_acquire andrh_release functions.

To achieve controlled unfairness we use a thread-private
be_fare variable that initially isTRUE. Therandom func-
tion (line 6 in therh_acquire_slowpath function) uses
a nonlinear feedback random-number generator. It returns
pseudo-random numbers in the range from 0 to231 − 1. If
FAIR_FACTORis equal to one, the RH lock will behave “as
much fair as it can,” i.e., it will be comparable to the ordi-
nary TATAS_EXP lock becauserh_release function will
always mark lock-data with aFREEtag.

6 Performance Evaluation

Most experiments in this paper are performed on a Sun En-
terprise E6000 SMP [24]. The server has 16 UltraSPARC II
(250 MHz) processors and 4 Gbyte uniformly shared mem-
ory with an access time of 330 ns (lmbenchlatency [18])
and a total bandwidth of 2.7 Gbyte/s. Each processor has a
16 kbyte on-chip instruction cache, a 16 kbyte on-chip data
cache, and a 4 Mbyte second-level off-chip data cache.

The hardware DSM numbers have been measured on a 2-
node Sun WildFire built from two E6000 nodes connected
through a hardware-coherent interface with a raw bandwidth
of 800 Mbyte/s in each direction [11], [20]. The Sun Wild-
Fire access time to local memory is the same as above,
330 ns, while accessing data located in the other E6000 node
takes about 1700 ns (lmbench latency). Accesses to data al-
located in a CMR cache have a NUCA ratio of about six,
while accesses to other data only have a minor latency differ-
ence between node-local and remote cache-to-cache trans-
fers. The E6000 and the WildFire DSM system are both run-
ning a slightly modified version of the Solaris 2.6 operating
system.

We have implemented the traditional TATAS lock and
the RH lock using thetest_and_set , swap andcom-
pare_and_swap operations available in the Sparc V9 in-
struction set. The source code for TATAS_EXP, CLH, and
MCS lock is written by Scott and Scherer [22], and is avail-
able for download:

ftp://ftp.cs.rochester.edu/pub/packages/
scalable_synch/PPoPP_01_trylocks.tar.gz

The entire experimentation framework is compiled with
GNU’s gcc-3.0.4, optimization level -O3. The TATAS_EXP
lock was previously tuned for a Sun Enterprise E6000 ma-
chine by Scott and Scherer [22]. We use identical values in
our experiments.

6.1 Traditional Microbenchmark

The traditional microbenchmark we use in this paper is a
slightly modified code used by Scott and Scherer in [22] on
the same architecture—Sun WildFire prototype SMP clus-
ter. The code consists of a tight loop containing a single
aquire/release lock operations, plus some minimal critical
work in form of code for gathering statistics. Also, after re-
lease operation, we make sure that the same thread will not
acquire the lock immediately. Thus, our lock-handoff val-

5

ues are nearly equal to 100% for all tested lock algorithms.
Machines used for tests were otherwise unloaded.

6.1.1 Single-Processor Results

By running the traditional microbenchmark on a single pro-
cessor and then subtracting the loop overhead, we can obtain
an estimate of lock overhead in the absence of contention.
Results on our Sun Enterprise E6000 SMP are as follows:

pthread_mutex 267ns
TATAS 97ns
TATAS_EXP 97ns
MCS 202ns
CLH 137ns
RH 121ns

Unsurprisingly, TATAS and TATAS_EXP are fastest ac-
quire/release operations for this simple test without con-
tention. We observe that ourlow latencydesign goal for
RH lock is within the reasonable magnitudes. In this experi-
ment, we also report numbers for the native implementation
of pthread_mutexlocks. The fast paths of all other locks are
in-lined with thestatic __inline__ GCC-construct,
only pthread_mutex is a “real” function call, and that is why
that number is somewhat higher than others.

6.1.2 Parallel Performance

In this section we present the parallel performance results for
both single-node Sun Enterprise E6000 and for a 2-node Sun
WildFire system. Given numbers are derived from the worst
case execution time runs.

Single-node Sun Enterprise E6000

The microbenchmark iteration time for parallel execution on
Sun Enterprise E6000 is shown in Figure 3. As expected,
the RH lock performs similarly to TATAS_EXP. If we look
at the queue-based locks, the CLH lock has slightly better
performance than the MCS lock, but both of them are out-
performed by TATAS_EXP and the RH lock for almost all
cases. The CLH and the RH lock demonstrates stable and
predictable performance.

2-node Sun WildFire

The microbenchmark iteration time for parallel execution on
a 2-node Sun WildFire is shown in Figure 4. In this study,
we simultaneously bind first half of the running threads to
cabinet number one, and the other half to cabinet num-
ber two. FAIR_FACTORis equal to one (we are as much
fair as we can be). The RH lock outperforms all other
tested locks for all runs with more than two threads, and
is comparable to other locks for one (no contention) and
two threads. In the two-thread case the node-handoff is
100%, i.e., allrh_acquire accesses will result in the
rh_acquire_remote calls. A critical section guarded by
the RH lock takes less than half the time to execute compared
with the same critical section guarded by any other lock.

0,00

0,05

0,10

0,15

0,20

0,25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Processors

T
im

e/
P

ro
ce

ss
or

s
[s

ec
on

ds
]

TATAS
TATAS_EXP
MCS
CLH
RH

Figure 3: Traditional microbenchmark iteration time for a
single-node Sun Enterprise E6000.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Processors

T
im

e/
P

ro
ce

ss
or

s
[s

ec
on

ds
]

TATAS
TATAS_EXP
MCS
CLH
RH

Figure 4: Traditional microbenchmark iteration time for a
2-node Sun WildFire system.

6

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Processors

N
od

e-
ha

nd
of

fs
 [%

]

TATAS
TATAS_EXP
MCS
CLH
RH Fair_factor = 1
RH Fair_factor = 50
RH Fair_factor = 100

Figure 5: Traditional microbenchmark locality study for a
2-node Sun WildFire system.

Figure 5 shows the ratio of node-handoff for each lock
type, i.e., how likely is a lock to migrate between nodes
each time it is acquired. The RH lock consistently show
low node-handoff numbers for all the three settings of the
FAIR_FACTOR. The simple spin locks also show a fairly
low node-handoff, which could be expected since local pro-
cessors can aquire a released lock much faster than a remote
processors. However, the queue-based locks shows an un-
natural behavior. It can be expected that the fair queue locks
should show a node-handoff equal to(N/2)/(N − 1), since
N/2 of the processors reside in the other node and we do
not allow the same processor to aquire the lock twice in a
row. However, the simplistic microbenchmark that we, as
well as most other lock studies use, make processors in the
same node more likely to queue up after each other, why the
lock ratio is substantially lower than expected. This is espe-
cially true for MCS which is taking unfair advantage of the
test setup.

6.2 New Microbenchmark

The unnatural node handover behavior of the traditional lock
benchmark led us to a new lock benchmark that we think re-
flects the expected behavior of a real application better. In
the new microbenchmark, the number of processors is kept
constant. They each perform some amount of non-critical
work between trying to aquire the lock, which consists of
one static delay and one random delay of similar sizes. Ini-
tially, the length of the non-critical work is chosen such that

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Critical Work [array size]

T
im

e
[s

ec
on

ds
]

pthread_mutex
TATAS
TATAS_EXP
MCS
CLH
RH

Figure 6: New microbenchmark iteration time for a 2-node
Sun WildFire system, 28-processor runs.

there is little contention for the critical section and all lock
algorithms perform the same. More contention is modeled
by increasing the number of elements of a shared vector that
are modified before the lock is released. The pseudocode of
the new benchmark is shown below:

shared int cs_work[MAX_CRITICAL_WORK];
shared int iterations;

1: for (i = 0; i < iterations; i++) {
2: ACQUIRE(lock);
3: {
4: int i;
5: for (i = 0; i < critical_work; i++)
6: cs_work[i]++;
7: }
8: RELEASE(lock);
9: {

10: int non_cs_work[MAX_NON_CRITICAL_WORK];
11: int i, j;
12: j = random() % non_critical_work;
13: for (i = 0; i < non_critical_work; i++)
14: non_cs_work[i]++;
15: for (i = 0; i < j; i++)
16: non_cs_work[i]++;
17: }
18: }

Figure 6 shows that the two queue-based locks perform
almost identical for the new benchmark and Figure 7 show
their node handover to be close to the expected values of
50%. The simple spin locks still perform unpredictable
which is tied to their unpredictable node-handover. The RH
lock performs better the more contention there is, which can
be explained by its decreasing amount of node handover.
This is exactly the behavior we want in a lock: the more
contention there is, the better it should perform.

7

Program pthread_mutex TATAS TATAS_EXP MCS CLH RH
Barnes 1.44 (0.048) 1.54 (0.068) 1.35 (0.075) 1.28 (0.064) 1.44 (0.108) 1.44 (0.009)
Cholesky 2.11 (0.019) 2.40 (0.033) 2.44 (0.044) 2.18 (0.047) 2.26 (0.044) 2.38 (0.013)
FMM 3.55 (0.028) 4.47 (0.166) 3.70 (0.082) – – 3.59 (0.066)
Radiosity 6.38 (2.264) 1.26 (0.018) 1.58 (0.127) – – 1.48 (0.049)
Raytrace 2.86 (0.128) 2.27 (0.097) 1.56 (0.079) 1.14 (0.207) 1.66 (0.522) 0.71 (0.009)
Volrend 1.45 (0.026) 1.39 (0.032) 1.40 (0.106) 1.42 (0.143) 1.79 (0.168) 1.30 (0.034)
Water-Nsq 1.99 (0.038) 1.90 (0.009) 2.08 (0.092) 2.15 (0.053) 1.97 (0.056) 1.94 (0.023)

Average variance (0.365) (0.060) (0.086) (0.103) (0.180) (0.029)

Table 2: Application performance for six different synchronization algorithms for 28-processor runs, 14 threads per WildFire
node. Execution time is given in seconds and the variance is shown in parentheses.

0

5

10

15

20

25

30

35

40

45

50

55

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Critical Work [array size]

N
od

e-
ha

nd
of

fs
 [%

]

pthread_mutex
TATAS
TATAS_EXP
MCS
CLH
RH

Figure 7: New microbenchmark locality study for a 2-node
Sun WildFire system, 28-processor runs. Note that the
TATAS numbers are not shown in this diagram.

Problem Total Lock
Program Size Locks Calls
Barnes 29k particles 130 69 193
Cholesky tk29.O 67 74 284
FFT 1M points 1 32
FMM 32k particles 2 052 80 528
LU-c 1024×1024 matrix, 1 32

16×16 blocks
LU-nc 1024×1024 matrix, 1 32

16×16 blocks
Ocean-c 514×514 6 6 304
Ocean-nc 258×258 6 6 656
Radiosity room, -ae 5000.0 3 975 295 627

-en 0.050 -bf 0.10
Radix 4M integers, 1 32

radix 1024
Raytrace car 35 366 450
Volrend head 67 38 456
Water-Nsq 2197 molecules 2 206 112 415
Water-Sp 2197 molecules 222 510

Table 1: The SPLASH-2 programs. Only emphasized pro-
grams are studied further. Lock-statistics are obtained for
32-processor runs.

6.3 Application Performance

In this section we evaluate the effectiveness of our new lock-
ing mechanism using the real SPLASH-2 applications [26].
Table 1 shows SPLASH-2 applications with the correspond-
ing problem sizes and lock-statistics (Total Locksis the num-
ber of allocated locks, and theLock Callsis the total num-
ber of acquire/release lock operations during the execution).
We chose to further examine only applications with more
than 10,000 lock calls, i.e., Barnes, Cholesky, FMM, Ra-
diosity, Raytrace, Volrend, and Water-Nsq. For each ap-
plication, we vary the synchronization algorithm used and
measure the execution time on a 2-node Sun WildFire ma-
chine. Programs are compiled with GNU’s gcc-3.0.4 (op-
timization level -O3). Table 2 presents the execution times
in seconds for 28-processor runs for six different locking

8

schemes: native Solaris implementation of pthread_mutex-
locks, TATAS, TATAS_EXP, MCS, CLH, and our RH lock
(FAIR_FACTORis equal to one in this experiment).2 Vari-
ance is given in parentheses in the same table.

We chose to further investigate only Raytrace. This appli-
cation renders a three-dimensional scene using ray tracing,
and is one of the most unpredictable SPLASH-2 programs
[7]. Detailed analysis of Raytrace is out of scope for this
paper (see [23], [26], or [7] for more details). In this appli-
cation, locks are used to protect task queues and for some
global variables that track statistics for the program. The
work between synchronization points is usually quite large.
Execution time given in seconds for six different synchro-
nization algorithms for 30- and 32-processor runs is shown
below (variance is presented in parentheses):

Lock type 30 processors 32 processors
pthread_mutex 3.77 (0.840) 3.12 (0.166)
TATAS 3.93 (2.550) 3.86 (0.921)
TATAS_EXP 1.90 (0.101) 1.72 (0.125)
MCS 1.26 (0.265) > 250s
CLH 1.44 (0.255) > 250s
RH 0.69 (0.005) 0.70 (0.005)

The RH lock outperforms all other locks with a factor be-
tween 1.83 and 5.70 for 30-processor runs. Our lock also
demonstrates the lowest measurement variance, only 0.005,
compared to the second best value of 0.101 for TATAS_EXP.
In the table above, we also demonstrate that MCS and CLH
locks are practically unusable for a 32-processor runs. They
seem to be extremely sensitive for small disturbances pro-
duced by the operating system itself. Speedup for Raytrace
is shown in Figure 8.

7 Conclusions

Three properties determine the average time between two
processes/threads entering the contended critical section:
lock handover time, traffic generated by the lock, and the data
locality created by the lock algorithm. This paper demon-
strates that the first-come first-served nature of queue-based
locks make them less suitable for architectures with a non-
uniform cache access time (NUCA), for example NUMAs
built from a few large nodes or chip multiprocessors. In con-
trast, the simpler test-and-set locks gives a unfair advantage
to neighboring processors when a lock is released, which will
create a fast lock handover time as well as create more local-
ity for the data accessed in the critical region.

We propose the new RH lock, that explores the NUCA
architectures by creating a controlled unfairness in combi-
nation with a much reduced traffic compared with the test-
and-set locks. The RH lock algorithm minimizes the global
traffic generated at lock handover by making sure that only
one thread per node will try to retrieve a lock which is cur-
rently not owned by a thread in the node. Also, the RH lock

2Unmodified versions of FMM and Radiosity will not execute correctly
with queue-based locks, i.e., with the MCS and/or CLH locks. We did not
investigated this any further.

0

1

2

3

4

5

6

7

8

0 4 8 12 16 20 24 28

Number of Processors

S
pe

ed
up

pthread_mutex TATAS TATAS_EXP
MCS CLH RH

Figure 8: Speedup for Raytrace.

maximizes the node locality of NUCA architectures by hand-
ing over the lock to another process/thread in the same node.
This will not only cut down on the lock handover time, but
will also create locality in the critical section work, since its
data structures will already reside in the node. A critical sec-
tion guarded by the RH lock is shown to take less than half
the time to execute compared with the same critical section
guarded by any other lock.

Finally, we investigate the effectiveness of our new lock
on a set of real SPLASH-2 applications. For example, exe-
cution time for Raytrace with 30 processors can be improved
between 1.83 and 5.70 times by using the RH locks instead
of any other tested locks.

Acknowledgments

We thank Michael L. Scott and William N. Scherer III, De-
partment of Computer Systems, University of Rochester, for
providing us with the source code for many of the tested
locks, and for the entire microbenchmark experimentation
framework. We would also like to thank Bengt Eliasson,
Sverker Holmgren, Henrik Löf and the Department of Sci-
entific Computing at Uppsala University for the use of their
Sun WildFire machine. This work is supported in part by
the Sun Microsystems, Inc., and the Parallel and Scientific
Computing Institute (PSCI —ψ), Sweden.

9

References
[1] T. E. Anderson. The Performance Implications of Spin-

Waiting Alternatives for Shared-Memory Multiprocessors. In
Proceedings of the 1989 International Conference on Paral-
lel Processing, volume II Software, pages 170–174, August
1989.

[2] T. E. Anderson. The Performance of Spin Lock Alternatives
for Shared-Memory Multiprocessors.IEEE Transactions on
Parallel and Distributed Systems, 1(1):6–16, January 1990.

[3] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Pi-
ranha: A Scalable Architecture Based on Single-Chip Multi-
processing. InProceedings of the 27th Annual International
Symposium on Computer Architecture (ISCA’00), pages 282–
293, June 2000.

[4] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Mem-
ory System Characterization of Commercial Workloads. In
Proceedings of the 25th Annual International Symposium on
Computer Architecture (ISCA’98), pages 3–14, June 1998.

[5] A. E. Charlesworth. The Sun Fireplane System Interconnect.
In Proceedings of Supercomputing 2001, November 2001.

[6] T. S. Craig. Building FIFO and Priority-Queuing Spin Locks
from Atomic Swap. Technical Report TR 93-02-02, Depart-
ment of Computer Science, University of Washington, Febru-
ary 1993.

[7] D. E. Culler, J. P. Singh, and A. Gupta.Parallel Computer
Architecture: A Hardware/Software Approach. Morgan Kauf-
man, 1999.

[8] K. Gharachorloo, M. Sharma, S. Steely, and S. Van Doren.
Architecture and Design of AlphaServer GS320. InPro-
ceedings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-IX), pages 13–24, November 2000.

[9] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient
Synchronization Primitives for Large-Scale Cache-Coherent
Shared-Memory Multiprocessors. InProceedings of the 3rd
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-III),
pages 64–75, April 1989.

[10] G. Graunke and S. Thakkar. Synchronization Algorithms for
Shared Memory Multiprocessors.IEEE Computer, 23(6):60–
69, 1990.

[11] E. Hagersten and M. Koster. WildFire: A Scalable Path for
SMPs. InProceedings of the 5th IEEE Symposium on High-
Performance Computer Architecture, pages 172–181, Febru-
ary 1999.

[12] A. Kägi, D. Burger, and J. R. Goodman. Efficient Synchro-
nization: Let Them Eat QOLB. InProceedings of the 24th
Annual International Symposium on Computer Architecture
(ISCA’97), pages 170–180, June 1997.

[13] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. InProceedings of the 24th Annual In-
ternational Symposium on Computer Architecture (ISCA’97),
pages 241–251, June 1997.

[14] D. Lenoski, J. Laudon, K. Gharachorloo, W-D. Weber,
A. Gupta, J. Hennessy, M. Horowitz, and M. S. Lam. The
Stanford Dash Multiprocessor.IEEE Computer, 25(3):63–79,
March 1992.

[15] B-H. Lim and A. Agarwal. Reactive Synchronization Algo-
rithms for Multiprocessors. InProceedings of the 6th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VI), pages 25–
35, October 1994.

[16] T. Lovett and R. Clapp. STiNG: A CC-NUMA Computer Sys-
tem for the Commercial Marketplace. InProceedings of the
23rd Annual International Symposium on Computer Architec-
ture (ISCA’96), pages 308–317, May 1996.

[17] P. Magnusson, A. Landin, and E. Hagersten. Queue Locks
on Cache Coherent Multiprocessors. InProceedings of the
8th International Parallel Processing Symposium, pages 165–
171, Cancun, Mexico, April 1994. Extended version avail-
able as “Efficient Software Synchronization on Large Cache
Coherent Multiprocessors,” SICS Research Report T94:07,
Swedish Institute of Computer Science, February 1994.

[18] L. W. McVoy and Carl Staelin. lmbench: Portable Tools for
Performance Analysis. InProceedings of the 1996 USENIX
Annual Technical Conference, pages 279–294, January 1996.

[19] J. Mellor-Crummey and M. Scott. Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors.ACM
Transactions on Computer Systems, 9(1):21–65, February
1991.

[20] L. Noordergraaf and R. van der Pas. Performance Experiences
on Sun’s Wildfire Prototype. InProceedings of Supercomput-
ing ’99, November 1999.

[21] L. Rudolph and Z. Segall. Dynamic Decentralized Cache
Schemes for MIMD Parallel Processors. InProceedings of
the 11th Annual International Symposium on Computer Ar-
chitecture (ISCA’84), pages 340–347, June 1984.

[22] M. L. Scott and W. N. Scherer. Scalable Queue-Based Spin
Locks with Timeout. InPPOPP’01, Snowbird, Utah, USA,
June 2001.

[23] J. P. Singh, A. Gupta, and M. Levoy. Parallel Visualization Al-
gorithms: Performance and Architectural Implications.IEEE
Computer, 27(7):45–55, July 1994.

[24] A. Singhal, D. Broniarczyk, F. Cerauskis, J. Price, L. Yuan,
C. Cheng, D. Doblar, S. Fosth, N. Agarwal, K. Harvey,
E. Hagersten, and B. Liencres. Gigaplane: A High Perfor-
mance Bus for Large SMPs. InProceedings of IEEE Hot In-
terconnects IV, pages 41–52, August 1996.

[25] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.
Power4 system microarchitecture.IBM Journal of Research
and Development, 46(1):5–25, January 2002.

[26] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. InProceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture (ISCA’95), pages
24–36, June 1995.

10

