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Abstract

Scalable parallel computers are often nonuniform communi-
cation architectures (NUCAs), where the access time to other
processor’s caches vary with their physical location. Still,
few attempts of exploring cache-to-cache communication lo-
cality have been made. This paper introduces a new kind
of synchronization primitives (lock-unlock) that favor neigh-
boring processors when a lock is released. This improves the
lock handover time as well as access time to the shared data
of the critical region.

A critical section guarded by our new RH lock takes less
than half the time to execute compared with the same critical
section guarded by any other lock on our NUCA hardware.
The execution time for Raytrace with 28 processors was im-
proved 2.23–4.68 times, while global traffic was dramatically
decreased compared with all the other locks. The average
execution time was improved 7–24% while the global traffic
was decreased 8–28% for an average over the seven appli-
cations studied.

1 Introduction

There are plenty of examples in academia and industry of
shared-memory architectures with a nonuniform memory
access time to the shared memory (NUMA). Most of the
NUMA architectures, but not all, also havenonuniform com-
munication architectures(NUCA). This means the access
time from a processor to the other processor’s caches varies
greatly depending on their placement. In particular, node-
based NUCAs, in which a group of processors have a much
shorter access time to each other’s caches than to the other
caches, are common.

Recently, technology trends have made it attractive to run
more than one thread on a chip, using either the chip mul-
tiprocessor (CMP) and/or the simultaneous multithreading
(SMT) approach. Larger servers, built from several of those
chips, can therefore be expected to be NUCA architectures,
since collocated threads will most likely share an on-chip
cache at some level [BGM+00]. In our opinion, there are
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strong indications that many important architectures in the
future will have a nonuniform access time to each other’s
caches, as well as to the shared memory.

NUMA optimizations have attracted much attention in the
past. The migration and replication of data in NUMA sys-
tems have demonstrated a great performance improvement
in many applications [HK99, NvdP99]. However, many of
today’s applications show a large fraction of cache-to-cache
misses [BGB98], which is why attention should also be given
to the NUCA nature of the system.

The scalability of a shared-memory application is often
limited by contention for some critical section, often access-
ing some shared data, guarded by mutual exclusion locks.
The simpler, and most widely used,test&setlock implemen-
tations, perform worse at high contention; i.e., the more im-
portant the critical section gets, the worse the lock algorithm
performs. This is mostly due to the vast amount of traffic
generated at the lock handover.

An application can often be rewritten to decrease the con-
tention. This could, however, be a complicated task. More
advanced queue-based locks have been proposed that have
a slightly worse performance at light lock contention, but
a much better performance at high lock contention because
less traffic is generated [MCS91, Cra93, MLH94]. Fur-
thermore, the queue-based locks maintain a first come, first
served order between the contenders. While queue-based
locks have shown low traffic and great scalability on many
architectures, their first come, first served property is less de-
sirable on a NUCA architecture.

Three properties determine the average time between two
threads entering the contested critical section: lock handover
time, traffic generated by the lock, and the data locality cre-
ated by the lock algorithm. We have noticed that thetest&set
locks give an unfair advantage to processors in the NUCA
node where the lock last was held. This will create more
node locality and will partly make up for the more traffic
generated by thetest&setlocks. The increased node locality
will improve the lock handover time, but also on the locality
of the work in the critical section.

The goal of this work is to create a lock that minimizes the
global traffic generated at lock handover, and maximizes the
node locality of NUCA architectures.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an introduction to several machines with NUCA
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architectures. Background and related work is presented in
section 3. The key idea behind the RH lock is given in sec-
tion 4, and section 5 presents the RH lock algorithm. In
section 6 we present performance results obtained on a 32-
processor Sun WildFire machine. Finally, we conclude in
section 7.

2 Nonuniform Communication Ar-
chitectures

Many large-scale shared-memory architectures have nonuni-
form access time to the shared memory (NUMA). In or-
der to make a key difference, the nonuniformity should be
substantial—let’s say at least a factor two between best case
and worst unloaded case. Most of the NUMA architectures
also have a substantial difference in latency for cache-to-
cache transfer—a nonuniform communication architecture
(NUCA). A NUCA is an architecture where the unloaded
latency for a processor accessing data recently modified by
another processor differs at least a factor of two depending
on where that processor is located.

DASH was the first NUCA architecture [LLG+92]. Each
DASH node consists of four processors connected by a
snooping bus. A cache-to-cache transfer from a cache in
a remote node is 4.5 times slower than a transfer from a
cache in the same node. We call this theNUCA ratio. Se-
quent’s NUMA-Q has a similar topology, but its NUCA ratio
is closer to 10 [LC96]. Both DASH and NUMA-Q have a
remote access cache (RAC) located in each node that sim-
plifies the implementation of the node-local cache-to-cache
transfer.

NUCA architecture NUCA ratio
Stanford DASH ~ 4.5

Sequent NUMA-Q ~ 10
Sun WildFire ~ 6

Compaq DS-320 ~ 3.5
Future: CMP & SMT ~ 6–10

Sun’s WildFire system can have up to four nodes with up
to 28 processors each, totaling 112 processors [HK99]. Parts
of each node’s memory can be turned into a RAC using a
technique called coherent memory replication (CMR). Ac-
cesses to data allocated in a CMR cache have a NUCA ratio
of about six, while accesses to other data only have a minor
latency difference between node-local and remote cache-to-
cache transfers.

Compaq’s DS-320 (which was also code-named WildFire)
can connect up to four nodes, each with four processors shar-
ing a common DTAG and directory controller [GSSD00]. Its
NUCA ratio is roughly 3.5.

Future microprocessors can be expected to run many more
threads on a chip by a combination of CMP and SMT tech-
nology. This can already be seen in the Pentium 4’s Hyper-
threading and the IBM Power4’s dual CMP processors on
a chip. The Piranha CMP proposal expects 8 CMP threads
to run on each chip [BGM+00]. Larger systems, built from
many such CMPs, are expected to have a NUCA ratio of be-
tween six and ten depending on the technology chosen.

Not all architectures are NUMAs or NUCAs. The recent
SunFire 15k architecture can have up to 18 nodes, each with
four processors, memory and directory controllers [Cha01].
The nodes are connected by a fast backplane. It has a flavor
of both NUMA and NUCA. However, both its NUMA and
NUCA ratios are well below two. The SGI Origin 2000 is
a NUMA architecture with a NUMA ratio of around three
for reasonably sized systems [LL97]. However, it does not
efficiently support cache-to-cache transfers between adjacent
processors and has a NUCA ratio below two.

3 Background and Related Work

Ideally, synchronization primitives should provide high per-
formance under both high and low contention without requir-
ing substantial programmer effort. Mutual exclusion (lock-
unlock) operations can be implemented in a variety of differ-
ent ways, including: atomic memory primitives; nonatomic
memory primitives (load-linked/store-conditional), and ex-
plicit hardware lock-unlock primitives (CRAY’s Xmp lock
registers, DASH’s lock-unlock operations on directory en-
tries, or queue-on-lock-bit, QOLB). We will concentrate on
implementing locks with only atomic primitives. Explicit
hardware primitives are not currently popular on modern ma-
chines.

The five synchronization primitives we discuss and di-
rectly compare in this paper are:test&test&set(abbreviated
TATAS), test&test&setwith exponential backoff (abbrevi-
ated TATAS_EXP), queue-based locks of Mellor-Crummey
and Scott (abbreviated MCS), queue-based locks of Craig,
Landin, and Hagersten (abbreviated CLH), and RH lock (our
new NUCA-aware lock). We also present a short introduc-
tion to alternative synchronization approaches; reactive syn-
chronization and an aggressive queue-on-lock-bit (QOLB)
hardware scheme.

3.1 Atomic Primitives

In this paper we make reference to three atomic operations:
tas (address) atomically writes a nonzero value to thead-
dressmemory location and returns its original contents; a
nonzero value for the lock represents the locked condition,
while a zero value means that the lock is free;swap(address,
value) atomically writes avalue to theaddressmemory lo-
cation and returns its original contents;cas (address, ex-
pected_value, new_value) atomically checks the contents
of a memory locationaddressto see if it matches anex-
pected_valueand, if so, replaces it with anew_value.

The IBM 370 instruction set introducedcas . Sparc V9
providestas , swap, andcas and is our target architecture
for this paper.

3.2 Simple Lock Algorithms

Traditionally, the simple synchronization algorithms tend to
be fast when there is little or no contention for the lock,
while more sophisticated algorithms usually have a higher
cost for low-contention cases. On the other hand, they han-
dle contention much better. In this section we describe two
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still very commonly usedbusy-waitalgorithms: TATAS and
TATAS_EXP.

Rudolph and Segall first proposed an extension to ordinary
test&set(this was the sole synchronization primitive avail-
able on numerous early systems, such as the IBM 360 series)
that performs a read of the lock before attempting the actual
atomic tas operation [RS84]. A typical TATAS algorithm
is shown below.

typedef unsigned long bool;
typedef volatile bool tatas_lock;

1: void tatas_acquire(tatas_lock *L)
2: {
3: if (tas(L)) {
4: do {
5: if (*L)
6: continue;
7: } while (tas(L));
8: }
9: }

10:
11: void tatas_release(tatas_lock *L)
12: {
13: *L = 0;
14: }

This is the most basic busy-wait algorithm in which a pro-
cess (or thread) repeatedly attempts to change a lock value
L from false/zero to true/nonzero , using an atomic hardware
primitive. In the Sparc V9 instruction set, this is typically
done with load-store unsigned byte (LDSTUB) instruction.
Traditionaltest&set-based spin locks are vulnerable to mem-
ory and interconnect contention, and do not scale well to
large machines. This contention can be reduced by polling
(busy-wait code) with ordinary load operations to avoid gen-
erating expensive stores to potentially shared location (lines
4–6 in the code above). Furthermore, the burst of refill traf-
fic whenever lock is released can be reduced by using the
Ethernet-style exponential backoff algorithm in which, after
a failure to obtain the lock, a requester waits for successively
longer periods of time before trying to issue another lock op-
eration [And90, MCS91]. The delay betweentas attempts
should not be too long; otherwise, processors might remain
idle even when the lock becomes free. This is the idea behind
the TATAS_EXP lock. The acquire function of one typical
TATAS_EXP implementation is shown below.

1: void tatas_exp_acquire(tatas_lock *L)
2: {
3: int b = BACKOFF_BASE, i;
4:
5: if (tas(L)) {
6: do {
7: for (i = b; i; i--) ; // delay
8: b = min(b * BACKOFF_FACTOR, BACKOFF_CAP);
9: if (*L)

10: continue;
11: } while (tas(L));
12: }
13: }

Type definitions and release code are the same as in
the TATAS example. ParametersBACKOFF_BASE, BACK-
OFF_FACTOR, andBACKOFF_CAPmust be tuned by trial
and error for each individual architecture. We use the fol-
lowing settings in our experiments, which are identical to
the settings used by Scott and Scherer on the same platform
[SS01]:

BACKOFF_BASE 625
BACKOFF_FACTOR 2
BACKOFF_CAP 2,500

3.3 Queue-Based Locks

Even with exponential backoff, TATAS locks still induce sig-
nificant contention. Performance results using backoff with
a realtas instruction on older machines can be found in the
literature [GT90, MCS91]. On a standard symmetric multi-
processor (SMP) with uniform access times between all of
the processor’s caches in the node, queue-based locks may
eliminate these problems by letting each process spin on a
different local memory location. The first proposal for a dis-
tributed, queue-based locking scheme in hardware was made
by Goodman, Vernon, and Woest [GVW89] (see section 3.4
for more details). Several researchers have proposed locking
primitives that incorporate both local spinning and queue-
based locking in software [And89, GT90, MCS91].

The acquire function of the software-based queue locks
perform three basic phases: 1) aflag variable in a shared
address space is initialized to the valueBUSY; 2) the con-
tent at the lock location in memory is swapped with the ad-
dress value pointing to theflag ; 3) the thread spins until
theprev_flag memory location, a pointer which was re-
turned by the swap, contains the valueFREE. The release
function of the queue-based locks writes aFREEvalue to the
flag location.

The locking primitive called MCS is one of the first soft-
ware queue-based lock implementations, originally inspired
by the QOSB [GVW89] hardware primitive proposed for
the cache controllers of the Wisconsin Multicube in the late
1980s. The MCS lock was developed by Mellor-Crummey
and Scott [MCS91]. During the acquire request, the MCS
lock inserts requesters for a held lock into a software queue
using atomic operations such asswap and cas . Mellor-
Crummey and Scott also describe another version of the
MCS lock which only requires theswap operation. Fairness
in that case is no longer guaranteed, and the implementation
is slightly more complex.

Magnusson, Landin, and Hagersten proposed two soft-
ware queue-based locking primitives about three years after
MCS, namely LH and M [MLH94]. Craig independently de-
veloped a lock identical to LH [Cra93]. In this paper we will
refer to this lock as the CLH lock. The CLH lock requires
one fewer remote accesses to transfer a lock than does MCS,
and will usually outperform MCS when high lock contention
exists [MLH94, SS01]. The CLH lock achieves this behavior
at the expense of increased latency to acquire an uncontested
lock. The M lock achieves the more efficient lock transfer
without increased uncontested lock access latency, at the ex-
pense of significant additional complexity in the lock algo-
rithm.

3.4 Alternative Approaches

The fact that some synchronization algorithms perform
well under low-contention periods and other under high-
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contention periods is the basic idea behind the “reactive
synchronization” presented by Lim and Agarwal a cou-
ple of years after the first proposals for queue-based locks
[LA94]. Reactive synchronization algorithms will dynami-
cally switch among several software lock implementations.
Typically, spin locks (TATAS_EXP) are used during the low-
contention phase, and queue-based locks (MCS) are used
during the high-contention phase [KBG97]. The goal of re-
active synchronization is to achieve both low latency lock
access and efficient lock handoff at low cost.

Very aggressive hardware support for locks have been pro-
posed by Goodman, Vernon, and Woest [GVW89]. They in-
troduce the queue-on-lock-bit primitive (QOLB, originally
called QOSB), which was the first proposal for a distributed,
queue-based locking scheme. In this scheme, a distributed,
linked list of nodes waiting on a lock is maintained entirely
in hardware, and the releaser grants the lock to the first wait-
ing node without affecting others. Furthermore, QOLB pre-
vents unnecessary network traffic or interference with the
lock holder by letting the waiting processors spin locally on
a “shadow” copy. Effective collocation is possible. Thus,
this hardware scheme may reduce the lock handover time as
well as the interference of lock traffic with data access and
coherence traffic.

Unfortunately, QOLB requires additional hardware sup-
port. Most synchronization primitives that we discussed
in previous sections can be implemented entirely in soft-
ware, requiring only an atomic memory operation available
in the majority of modern processors. Detailed evaluation of
all hardware requirements for QOLB is presented by Kägi,
Burger, and Goodman [KBG97].

4 Key Idea Behind RH Lock

Queue-based locks implement a first come, first served fair-
ness, which is less desirable on a NUCA machine because
of the potentially huge percentage of the lock’s node hand-
offs. In other words, there is a risk that a contested lock
might “jump” back and forth between the nodes, creating an
enormous amount of traffic. The goal of the RH lock is to
create a lock that minimizes the global traffic generated at
lock handover and maximizes the node locality of NUCA ar-
chitectures. To make this possible in our first proposal of a
NUCA-aware lock, it is necessary to have the information
about what thread is performing the acquire-release opera-
tion and in which node that thread is running.

Preliminaries. Every node contains a copy of the
lock. The total lock storage for a 2-node case is thus
2×sizeof (lock). Initially, we could decide to logically
place a lock in node 0 (mark the lock value asFREEin that
node, meaning that both threads from the local node or from
another node can acquire the lock). The copy of the lock
that is allocated and placed in node 1 is then marked with a
REMOTEvalue, meaning that the “global” lock is in another
node (node 0). At most one node may have this local copy of
the lock in stateFREE. Thus, the threads from node 1 would
“see” aREMOTEtag if they tried to acquire the local copy of
the lock for the first time. The first thread that gets back the
REMOTEvalue is the “node winner” and is allowed to con-

tinue to spin remotely with a larger backoff until the global
lock is obtained. Other threads will spin locally (on their lo-
cal copy) until the lock is fetched and released by the node
winner.

Minimizing global traffic. One way to cut down on lock
traffic is to make sure that only one thread per node (the node
winner) tries to retrieve a lock which is currently not owned
by a thread in the node.

Maximizing the node locality of NUCAs. One way to in-
crease locality is to hand over the lock to another thread run-
ning in the same node. We will later refer to this operation as
marking the lock value withL_FREEtag. This not only cuts
down on the lock-handover time, but creates locality in the
critical section work, since its data structures already reside
in the node.

Even if the first come, first served policy may be a too
strong requirement for a lock, it must guarantee some fair-
ness and make sure that other nodes eventually get the lock
even if there are always local requests for the lock.

5 The RH Lock

During the design phase of the RH lock we paid attention
to several general performance goals for locks, as given by
Culler et al. [CSG99], page 343:

• Low latency. If a lock is free and no other processors are
trying to acquire it at the same time, a processor should
be able to acquire it with low latency.

• Low traffic. If many or all processors try to acquire a
lock at the same time, they should be able to acquire
the lock one after the other with as little generation of
traffic or bus transactions as possible.

• Scalability. Neither latency nor traffic should scale
quickly with the number of processors used.

• Low storage cost. The information needed for a lock
should be small and should not scale quickly with the
number of processors.

• Fairness. Ideally, processors should acquire locks in the
order their requests are issued. At the least, starvation or
substantial unfairness should be avoided. Since starva-
tion is usually unlikely, the importance of fairness must
be traded off with its impact on performance.

In fact, we paid attention only to the first four goals and ig-
nored the last one (with the exception of goals for starvation).
We also paid attention to the data locality created by our lock
algorithm; in other words, our additional goal was to maxi-
mize the node locality of NUCA architectures.

The following atomic operations are used in our current
implementation:tas , swap, andcas , which are all avail-
able in the Sparc V9 instruction set.

Our NUCA-aware lock algorithm is shown in Figures 1
and 2. The RH lock algorithm supports only two nodes.
my_tid is the thread identification number (0, 1, 2, ..., max-
imum number of threads – 1), andmy_node_id is the node
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typedef volatile unsigned long rh_lock;

--------------------------------------------------------

1: void rh_acquire(rh_lock *L)
2: {
3: unsigned long tmp;
4:
5: tmp = swap(L, my_tid);
6: if (tmp == L_FREE || tmp == FREE)
7: return;
8: if (tmp == REMOTE) {
9: rh_acquire_remote_lock(L);

10: return;
11: }
12: rh_acquire_slowpath(L);
13: }

--------------------------------------------------------

1: void rh_acquire_slowpath(rh_lock *L)
2: {
3: unsigned long tmp;
4: int b = BACKOFF_BASE, i;
5:
6: if ((random() % FAIR_FACTOR) == 0)
7: be_fair = TRUE;
8: else
9: be_fair = FALSE;

10:
11: while (1) {
12: for (i = b; i; i--) ; // delay
13: b = min(b * BACKOFF_FACTOR, BACKOFF_CAP);
14: if (*L < FREE)
15: continue;
16: tmp = swap(L, my_tid);
17: if (tmp == L_FREE || tmp == FREE)
18: break;
19: if (tmp == REMOTE) {
20: rh_acquire_remote_lock(L);
21: break;
22: }
23: }
24: }

--------------------------------------------------------

1: void rh_acquire_remote_lock(rh_lock *L)
2: {
3: int b = REMOTE_BACKOFF_BASE, i;
4:
5: L = get_remote_lock_addr(L, my_node_id);
6:
7: while (1) {
8: if (cas(L, FREE, REMOTE) == FREE)
9: break;

10: for (i = b; i; i--) ; // delay
11: b = min(b * BACKOFF_FACTOR, REMOTE_BACKOFF_CAP);
12: }
13: }

Figure 1: RH lock-acquire code.

1: void rh_release(rh_lock *L)
2: {
3: if (be_fair)
4: *L = FREE;
5: else {
6: if (cas(L, my_tid, FREE) != my_tid)
7: *L = L_FREE;
8: }
9: }

Figure 2: RH lock-release code.

number in which thread is placed (0 or 1). Bothmy_tid and
my_node_id must be thread-private values, and prefer-
ably efficiently accessible fromrh_acquireand rh_release
functions. In our implementation, we reserve one of the
Sparc’s thread-private global registers (%g2) for that partic-
ular task which is the most efficient way to obtainmy_tid
andmy_node_id . During therh_acquirefunction, every
thread will swap its own thread identification number into
the node-local copy of the lock. If it happens that the lock
is already in the node and is in the stateL_FREE or FREE
(lines 6–7 in therh_acquirefunction), the acquire operation
finishes and the thread can proceed with its critical section.
If the lock value is in theREMOTEstate (lines 8–11), the
function rh_acquire_remote_lockis called. Otherwise, the
lock is in the node and some other neighbor thread performs
the critical task. In that case, the current thread calls the
rh_acquire_slowpathfunction and spins locally until it suc-
ceeds with its own acquire operation. Of course, there is
one rare special case when another node is lucky enough
to obtain the lock before the current thread (line 19 in the
rh_acquire_slowpathfunction). Once again, in that case, the
functionrh_acquire_remote_lockis called.

To achieve controlled unfairness we use a thread-private
be_fair variable that initially isTRUE. Therandom func-
tion (line 6 in the rh_acquire_slowpathfunction) uses a
nonlinear feedback random-number generator. It returns
pseudo random numbers in the range from 0 to231 − 1. If
FAIR_FACTORis equal to one, the RH lock will behave
“as fairly as it can.” During therh_releaseoperation, the
thread first checks if thebe_fair variable isTRUEor not
(line 3). If thread-privatebe_fair is TRUE, the lock will
be released by writing theFREEvalue into the lock’s place.
Otherwise, the lock can be released only to local/neighbor
threads if interest was shown by them (line 7). Or, the lock
can be released to the “world” by an atomiccas operation if
no other from the same node showed any interest to acquire
the same lock (line 6).

We use the following settings and definitions:

BACKOFF_BASE 625
BACKOFF_FACTOR 2
BACKOFF_CAP 2,500
REMOTE_BACKOFF_BASE 2,500
REMOTE_BACKOFF_CAP 10,000
FREE max. number of threads
REMOTE FREE+ 1
L_FREE FREE+ 2

6 Performance Evaluation

Most experiments in this paper are performed on a Sun En-
terprise E6000 SMP [SBC+96]. The server has 16 Ultra-
SPARC II (250 MHz) processors and 4 Gbyte uniformly
shared memory with an access time of 330 ns (lmbench
latency [MS96]) and a total bandwidth of 2.7 Gbyte/s.
Each processor has a 16 kbyte on-chip instruction cache, a
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16 kbyte on-chip data cache, and a 4 Mbyte second-level off-
chip data cache.

The hardware DSM numbers have been measured on a 2-
node Sun WildFire built from two E6000 nodes connected
through a hardware-coherent interface with a raw bandwidth
of 800 Mbyte/s in each direction [HK99, NvdP99].1 The Sun
WildFire access time to local memory is the same as above,
330 ns, while accessing data located in the other E6000 node
takes about 1700 ns (lmbench latency). Accesses to data al-
located in a CMR cache have a NUCA ratio of about six,
while accesses to other data only have a minor latency differ-
ence between node-local and remote cache-to-cache trans-
fers. The E6000 and the WildFire DSM system are both run-
ning a slightly modified version of the Solaris 2.6 operating
system.

We have implemented the traditional TATAS lock and the
RH lock using thetas , swap, andcas operations avail-
able in the Sparc V9 instruction set. The source code for
TATAS_EXP, CLH, and MCS lock is written by Scott and
Scherer [SS01]. The entire experimentation framework is
compiled with GNU’s gcc-3.0.4, optimization level -O1. The
TATAS_EXP lock was previously tuned for a Sun Enterprise
E6000 machine by Scott and Scherer [SS01]. We use identi-
cal values in our experiments.

6.1 Uncontested Performance

One important performance goal for locks islow latency
[CSG99]. In other words, if a lock is free and no other pro-
cessors are trying to acquire it at the same time, the proces-
sor should be able to acquire it as quickly as possible. This
is especially important for applications with little or no con-
tention for the locks, which is a quite common case.

In this section we obtain an estimate of lock overhead in
the absence of contention for three common scenarios. We
evaluate the cost of the acquire-release operation (1) if the
same processor is the owner of the lock (lock is in its cache);
(2) if the lock is in the same node but the previous owner
is not the current processor (lock is in the neighbor’s cache),
and (3) if the lock was owned by a remote node (lock is in the
cache of a processor that is in another node). The pseudocode
for this NUCA-aware microbenchmark is shown below.

1: acquire and release all locks;
2: BARRIER

// case 1: previous owner: same processor

3: if (my_tid == 0) {
4: acquire and release all locks;
5: start timer;
6: acquire and release all locks;
7: stop timer;
8: }
9: BARRIER

// case 2: previous owner: same node

10: if (my_tid == 1) {
11: start timer;
12: acquire and release all locks;
13: stop timer;
14: }
15: BARRIER

1Currently, our system has 30 processors, 16 plus 14, and therefore we
perform our experiments mainly on a 14 plus 14 configuration.

// case 3: previous owner: remote node

16: if (my_tid == 2) {
17: start timer;
18: acquire and release all locks;
19: stop timer;
20: }

For this experiment we need three threads. Threads with
thread identification numbers (tid ) zero and one are execut-
ing inside cabinet 1 and thread two is running inside cabinet
2. The total number of allocated locks is 2,000. The first two
lines of the microbenchmark are used to warm the TLBs and
are executed by all threads. Results are presented in Table 1.

Previous Owner
Lock type same same remote

processor node node

TATAS 135 ns 614 ns 2081 ns
TATAS_EXP 139 ns 668 ns 2014 ns
MCS 250 ns 722 ns 2192 ns
CLH 230 ns 827 ns 2623 ns
RH 178 ns 663 ns 4497 ns

Table 1: Uncontested performance for a single acquire-
release operation for different synchronization algorithms.

Unsurprisingly, TATAS and TATAS_EXP are the fastest
acquire-release operations for this simple test without con-
tention. We observe that our low latency design goal for the
RH lock is within the reasonable magnitudes for thesame
processorand thesame nodecase. For theremote node
case RH lock performs much more poorly compared to other
locks. The reason for this is two fold: 1) therh_acquire
function executed by the third thread will always acquire the
local copy of the lock before the “global” lock which is in
another cabinet (therh_acquire_remote_lockfunction is al-
ways called), and 2) therh_acquirefunction generates some
additional remote coherence traffic at line 5.

6.2 Traditional Microbenchmark

The traditional microbenchmark that is used by many re-
searchers consists of a tight loop containing a single acquire-
release operation. The iteration time for a single-node Sun
Enterprise E6000 is shown in Figure 3. The number of it-
erations performed by every thread in this microbenchmark
is 10,000. TheFAIR_FACTORfor the RH lock is equal to
one. From the Figure 3 it appears that TATAS_EXP and RH
performs much better than the other locks. Both these locks
have an exponential backoff, why waiting threads will “sam-
ple” the lock variable less often. This increases the proba-
bility that the thread releasing a lock will manage to acquire
it again right away. The iteration time for these two locks
indeed look similar to that of their uncontested performance
if the previous owner is thesame processor(see Table 1).
TATAS has no backoff for the waiting threads, that is why
a handoff to the same processor is less likely to occur, es-
pecially at high processor counts. Queue-based locks on the
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Figure 3: Traditional microbenchmark iteration time for a
single-node Sun Enterprise E6000 (empty critical section).

other hand will rarely allow the releasing processor to di-
rectly acquire the lock again.

To overcome this problem we altered the microbenchmark
to initialize a global variablelast_owner inside the crit-
ical section, and force the thread to observe a new owner
before it is allowed to compete for the lock again. A single
remaining thread will be excluded from this requirement in
order to run until completion. Slightly modified traditional
microbenchmark is shown below.

shared int iterations, total_threads;
shared volatile int last_owner = -1;
shared volatile int total_finished = 0;

1: for (i = 0; i < iterations; i++) {
2: ACQUIRE(L);
3: if (my_tid != last_owner) last_owner = my_tid;
4: // some more statistics goes here
5: RELEASE(L);
6: while ((last_owner == my_tid) &&
7: (total_finished < total_threads - 1))
8: ; // spin
9: }

10: atomic_increase(total_finished);

Figure 4 shows the result from the modified microbench-
mark (number of iterations is still equal to 10,000 and RH’s
FAIR_FACTORis one). The iteration time here is an offset
by the time it takes to perform the extra work in the critical
section. The queue-based CLH and MCS perform the best.
This is because only their third phase of the lock-acquire
function (see section 3.3) is performed at lock-handover
time. The releasing thread will perform an single store up-
grade cache miss to itsflag (its cache already contains a
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Figure 4: Slightly modified traditional microbenchmark iter-
ation time for a single-node Sun Enterprise E6000.

valid copy in shared state) and the next thread will need a
single load cache miss for itsprev_flag , i.e., the same
memory location as the releasing thread’sflag . For all the
other locks the releasing thread will need to perform a store
miss toL (its cache does not contain a valid copy) and the
next thread will perform a load cache miss and an store up-
grade miss toL. TATAS is the only lock showing a distinct
degradation caused by increased traffic as more processors
are added.

The iteration time for the modified benchmark on a 2-
node Sun WildFire is shown in Figure 5. In this study, we
use round-robin scheduling for thread binding to different
cabinets. The RH lock outperforms all other tested locks
for all runs with more than two threads, and is compara-
ble to other locks for one (no contention) and two threads.
In the two-thread case the node-handoff is 100 percent, and
all rh_acquireaccesses will result in therh_acquire_remote
calls.

Figure 6 shows the ratio of node handoffs for each lock
type, reflecting how likely it is for a lock to migrate between
nodes each time it is acquired. We ignore the TATAS values
for more than 16 processors. The graph clearly shows the
key advantage of the RH lock. The RH lock consistently
shows low node handoff numbers for all the three settings of
FAIR_FACTOR.

The simple spin locks also show a node handoff ratio be-
low 50 percent, which could be expected since local proces-
sors can acquire a released lock much faster than can remote
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Figure 5: Slightly modified traditional microbenchmark iter-
ation time for a 2-node Sun WildFire system.

processors. The queue locks are expected to show a node
handoffs equal to(N/2)/(N − 1), sinceN/2 of the proces-
sors reside in the other node and we do not allow the same
processor to aquire the lock twice in a row. However, the
queue-based locks show unnatural behavior with large varia-
tion in the node handoff ratio. Our only explanation for this is
pure luck. At 22 processors the CLH shows a ratio of 23 per-
cent. This also explains the varied performance in Figure 5,
for example the good CLH performance at 12 and 22 pro-
cessors. At 8–10 processors, the node handoff ratio is fairly
normal for both queue-based locks. Here we can see that a
critical section guarded by the RH lock takes less than half
the time to execute compared with the same critical section
guarded by any other lock.

It appears that the simplistic regular microbenchmark that
we, as well as most other lock studies, use sometimes makes
processors in the same node more likely to queue up after
each other making the lock ratio substantially lower than ex-
pected. We also suspect that RH’s job of creating locality is
greatly simplified by this highly regular benchmark.

6.3 New Microbenchmark

No real applications have a fixed number of processors
pounding on a lock. Instead, they have a fixed number of pro-
cessors spending most of their time on noncritical work, in-
cluding accesses to uncontested locks. They rarely enter the
“hot” critical section. The degree of contention is affected by
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Figure 6: Slightly modified traditional microbenchmark lo-
cality study for a 2-node Sun WildFire system.

the ratio of noncritical work to critical work. The unnatural
node handover behavior of the traditional lock benchmark
led us to this new benchmark that we think reflects the ex-
pected behavior of a real application better. The pseudocode
of the new benchmark is shown below.

shared int cs_work[MAX_CRITICAL_WORK];
shared int iterations;

1: for (i = 0; i < iterations; i++) {
2: ACQUIRE(L);
3: {
4: int j;
5: for (j = 0; j < critical_work; j++)
6: cs_work[j]++;
7: }
8: RELEASE(L);
9: {

10: int private_work[MAX_NONCRITICAL_WORK];
11: int j, random_delay;
12: for (j = 0; j < noncritical_work; j++)
13: private_work[j]++;
14: random_delay = random() % noncritical_work;
15: for (j = 0; j < random_delay; j++)
16: private_work[j]++;
17: }
18: }

In the new microbenchmark, the number of processors is
kept constant. They each perform some amount of noncriti-
cal work between trying to aquire the lock, consisting of one
static delay (lines 12–13) and one random delay (lines 14–
16) of similar sizes. Initially, the length of the noncritical
work is chosen such that there is insignificant contention for
the critical section (lines 3–7) and all lock algorithms per-
form almost identically. More contention is modeled by in-
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Figure 7: New microbenchmark iteration time for a 2-node
Sun WildFire system, 28-processor runs.

creasing the number of elements of a shared vector that are
modified before the lock is released.

Figure 7 shows that the two queue-based locks perform al-
most identically for the new benchmark and Figure 8 shows
their node handoffs to be close to the expected values of 50
percent. The number of iterations is 1,000 in this exper-
iment, and thenoncritical_work is equal to 80,000.
TheFAIR_FACTORfor the RH lock is equal to one. As the
amount of critical work is increased, the time to perform the
critical work gets longer and contention for the lock is in-
tensified. The TATAS poor contested performance will fur-
ther add to the time period the lock is held for each itera-
tion. This results in even more contention—very much like
the feedback loop of an instable control system. This clearly
demonstrates the danger of using TATAS in the application
with some contention.

The TATAS values are measured for acritical_work
between 0 and 400 because its performance is extremely
poor as soon some contention is present. The simple spin
locks still perform unpredictably which is tied to their un-
predictable node handover. The RH lock performs better the
more contention there is, which can be explained by its de-
creasing amount of node handover. This is exactly the be-
havior we want in a lock: the more contention there is, the
better it should perform.

In Table 2 we also present the numbers for the traffic
that is generated on the machine for our new microbench-
mark. The numbers are normalized against the TATAS_EXP
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Figure 8: New microbenchmark locality study for a 2-node
Sun WildFire system, 28-processor runs.

which is generating 15.145 millions local transactions and
8.878 millions global/remote transactions. The queue-based
locks performs almost the same, MCS is generating slightly
more transactions than CLH. The RH lock performs best,
it generates about the same amount of local transactions
as queue-based locks, but it generates only 2.777 millions
global transactions, which is more than three times better
than the TATAS_EXP. For this setup, the execution time is
improved 1.46–1.58 times, while the global traffic is signifi-
cantly decreased.

Local Global
Lock type transactions transactions
TATAS_EXP 1.00 1.00
MCS 0.49 0.47
CLH 0.48 0.46
RH 0.48 0.31

Table 2: Local and global/remote traffic generated for the
new microbenchmark (critical_work = 1500, 28 pro-
cessors). The performance for TATAS is extremely poor for
this setting (see Figure 7), and is excluded from the table.
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Program TATAS TATAS_EXP MCS CLH RH
Barnes 1.54 (0.052) 1.43 (0.010) 1.83 (0.153) 1.54 (0.099) 1.54 (0.137)
Cholesky 2.31 (0.072) 2.04 (0.043) 2.09 (0.027) 2.25 (0.107) 2.23 (0.061)
FMM 4.84 (0.333) 4.19 (0.193) 4.33 (0.057) 4.46 (0.067) 4.27 (0.134)
Radiosity 1.66 (0.059) 1.75 (0.067) N/A N/A 1.44 (0.068)
Raytrace 2.90 (0.914) 1.71 (0.183) 1.41 (0.284) 1.38 (0.319) 0.62 (0.011)
Volrend 1.70 (0.031) 1.57 (0.096) 1.48 (0.278) 1.75 (0.157) 1.61 (0.088)
Water-Nsq 2.37 (0.028) 2.25 (0.057) 2.20 (0.035) 2.45 (0.031) 2.21 (0.011)

Average 2.47 (0.212) 2.13 (0.093) 2.22 (0.139) 2.31 (0.130) 1.99 (0.073)

Table 4: Application performance for five different synchronization algorithms for 28-processor runs, 14 threads per WildFire
node. Execution time is given in seconds and the variance is shown in parentheses.

Total Lock
Program Problem size locks calls
Barnes 29k particles 130 69,193
Cholesky tk29.O 67 74,284
FFT 1M points 1 32
FMM 32k particles 2,052 80,528
LU-c 1024×1024 matrix, 1 32

16×16 blocks
LU-nc 1024×1024 matrix, 1 32

16×16 blocks
Ocean-c 514×514 6 6,304
Ocean-nc 258×258 6 6,656
Radiosity room, -ae 5000.0 3,975 295,627

-en 0.050 -bf 0.10
Radix 4M integers, 1 32

radix 1024
Raytrace car 35 366,450
Volrend head 67 38,456
Water-Nsq 2197 molecules 2,206 112,415
Water-Sp 2197 molecules 222 510

Table 3: The SPLASH-2 programs. Only emphasized pro-
grams are studied further. Lock statistics are obtained for
32-processor runs.

6.4 Application Performance

In this section we evaluate the effectiveness of our new
locking mechanism using the real SPLASH-2 applica-
tions [WOT+95]. Table 3 shows SPLASH-2 applications
with the corresponding problem sizes and lock statistics.To-
tal locks is the number of allocated locks, andLock callsis
the total number of acquire-release lock operations during
the execution. We chose to further examine only applica-
tions with more than 10,000 lock calls, which were the cases
of Barnes, Cholesky, FMM, Radiosity, Raytrace, Volrend,
and Water-Nsq. For each application, we vary the synchro-
nization algorithm used and measure the execution time on a
2-node Sun WildFire machine. Programs are compiled with
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Figure 9: Normalized speedup for 28-processor runs on a
2-node Sun WildFire.

GNU’s gcc-3.0.4 (optimization level -O1). Table 4 presents
the execution times in seconds for 28-processor runs for
five different locking schemes: TATAS, TATAS_EXP, MCS,
CLH, and our RH lock.2 (FAIR_FACTORis equal to one
in this experiment.) Variance is given in parentheses in the
same table. On the average, the execution time is improved
7–24 percent with the RH locks instead of other locks.

Normalized speedup for all lock algorithms is shown in
Figure 9. For Barnes, the MCS lock is much worse than the

2Unmodified version of Radiosity will not execute correctly with queue-
based locks. We did not investigated this any further.
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Figure 10: Speedup for Raytrace.

ordinary TATAS_EXP, and for Volrend and Water-Nsq that is
also the case for the CLH lock. On the average, queue-based
locks perform about the same as the TATAS with exponential
backoff. The RH lock demonstrates quite stable performance
for both uncontested and contested applications.

We chose to further investigate only Raytrace. This ap-
plication renders a three-dimensional scene using ray tracing
and is one of the most unpredictable SPLASH-2 programs
[CSG99]. Detailed analysis of Raytrace is out of the scope of
this paper (see [SGL94, WOT+95, CSG99] for more details).
In this application, locks are used to protect task queues and
for some global variables that track statistics for the program.
The work between synchronization points is usually quite
large. Execution time given in seconds for five different syn-
chronization algorithms, for single-, 28-, and 30-processor
runs, is shown below (variance is presented in parentheses).

Lock type 1 CPU 28 CPUs 30 CPUs
TATAS 5.02 2.90 (0.914) 2.70 (0.445)
TATAS_EXP 5.26 1.71 (0.183) 2.05 (0.257)
MCS 5.05 1.41 (0.284) > 200 s
CLH 5.30 1.38 (0.319) > 200 s
RH 5.08 0.62 (0.011) 0.68 (0.002)

Speedup for Raytrace is shown in Figure 10. There is a
decrease in performance for all other locks above 12 pro-
cessors, while the RH lock continue to scale all the way
up to 28 processors. The RH lock outperforms all other

Local Global
Program transactions transactions
Barnes 2.339 1.779
Cholesky 14.323 4.553
FMM 6.771 3.227
Radiosity 4.142 1.876
Raytrace 7.751 2.882
Volrend 5.172 1.298
Water-Nsq 2.840 1.157

Total 43.338 16.772

Table 5: Local and global/remote traffic for TATAS_EXP on
a 2-node Sun WildFire, 28-processor runs. The numbers are
given in the millions of transactions.

locks by a factor of 2.23–4.68 for 28-processor runs. Also,
our NUCA-aware lock demonstrates the lowest measurement
variance, only 0.011, compared to the second best value of
0.183 for TATAS_EXP. In the table above, we also demon-
strate that MCS and CLH locks are practically unusable for
a 30-processor runs. They are extremely sensitive for small
disturbances produced by the operating system itself. This
unwanted behavior of the queue-based lock has been stud-
ied further by Scott on the same architecture and on the Sun
Enterprise 10000 multiprocessor [SS01, Sco02].

Table 5 shows the generated traffic by all applications for
the TATAS_EXP synchronization algorithm. The normal-
ized traffic numbers for all other synchronization algorithms
are shown in Table 6. On the average, the global traffic is
decreased 8–28 percent by RH locks for an average over the
seven applications studied.

7 Conclusions

Three properties determine the average time between two
processes/threads entering the contested critical section: lock
handover time, traffic generated by the lock, and the data lo-
cality created by the lock algorithm. This paper demonstrates
that the first come, first served nature of queue-based locks
makes them less suitable for architectures with a nonuniform
cache access time (NUCA), such as NUMAs built from a few
large nodes or chip multiprocessors. In contrast, the simpler
test&setlocks gives an unfair advantage to neighboring pro-
cessors when a lock is released, which will create a fast lock
handover time as well as more locality for the data accessed
in the critical region.

We also propose the new RH lock, which explores the
NUCA architectures by creating controlled unfairness and
much reduced traffic compared with the simpletest&set
locks. The RH lock algorithm minimizes the global traffic
generated at lock handover by making sure that only one
thread per node tries to retrieve a lock which is currently
not owned by the same node. Also, the RH lock maximizes
the node locality of NUCA architectures by handing over the
lock to another process/thread in the same node. This will not
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Program TATAS TATAS_EXP MCS CLH RH
Barnes 1.01 / 0.67 1.00 / 1.00 1.01 / 0.66 1.14 / 0.78 1.02 / 0.60
Cholesky 0.99 / 1.00 1.00 / 1.00 0.96 / 0.87 0.97 / 0.90 0.95 / 0.87
FMM 1.09 / 1.17 1.00 / 1.00 0.99 / 0.83 0.97 / 0.80 1.00 / 0.83
Radiosity 1.06 / 1.08 1.00 / 1.00 N/A N/A 1.00 / 0.85
Raytrace 1.15 / 1.24 1.00 / 1.00 0.91 / 0.84 1.04 / 0.78 0.86 / 0.49
Volrend 1.02 / 1.07 1.00 / 1.00 1.02 / 1.05 1.04 / 1.17 1.01 / 1.03
Water-Nsq 1.01 / 1.03 1.00 / 1.00 1.00 / 1.04 1.07 / 1.10 1.03 / 1.02

Average 1.05 / 1.04 1.00 / 1.00 0.98 / 0.88 1.04 / 0.92 0.98 / 0.81

Table 6: Normalized traffic (local / global) for all synchronization algorithms for 28-processor runs, 14 threads per node.

only cut down on the lock handover time, but will also create
locality in the critical section work, since its data structures
will already reside in the node. A critical section guarded by
the RH lock is shown to take less than half the time to exe-
cute compared with the same critical section guarded by any
other lock. We also demonstrate that one of the most com-
monly usedtest&setlocks shows extremely unstable perfor-
mance for a certain microbenchmark. We highly recommend
to avoid this type of synchronization algorithms in a large-
scale parallel applications, even though the risk of lock con-
tention is minimal.

Finally, we investigate the effectiveness of our new lock on
a set of real SPLASH-2 applications. For example, execution
time for Raytrace with 28 processors was improved between
2.23 and 4.68 times, while the global traffic was dramatically
decreased by using the RH locks instead of any other tested
locks. The average execution time was improved 7–24 per-
cent while the global traffic was decreased 8–28 percent for
an average over the seven applications studied.
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