IT Master theses
UPTEC F 02 033

Refinement and Evaluation of the
Elbow Cache

MATHIAS SPJUTH

Supervisors: Martin Karlsson, Professor Erik Hagersten

Examiner: Professor Erik Hagersten

UPPSALA UNIVERSITY
Department of |nformation Technology

UPPSALA UNIVERSITY

Refinement and Evaluation of the Elbow Cache

MATHIAS SPJUTH

April 2002

INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS
UPPSALA UNIVERSITY
UPPSALA
SWEDEN

Dissertation for the degree of Master of Science in Technology
at Uppsala University 2002

Refinement and Evaluation of the Elbow Cache

Mathias Spjuth
masp0413@t udent . uu. se

Infor mation Technology
Department of Computer Systems
Uppsala University
Box 337
SE-751 05 Uppsala
Sweden

http://ww.it.uu.se

Uppsala Architecture Research Team

http://ww.it.uu.sel/research/group/uart/

© Mathias Spjuth 2002
ISSN 1401-5757
Printed by the Department of Information Technology, Uppsala University, Sweden

Abstract

During the last 15-20 years there has been an increasing gap between the band-
width demands of the modern microprocessor and the performance of the memory
sub-system. Memory hierarchies, with nested levels of memory buffers for inter-
mediate caching of data, has been devised as the main solution for this problem.
Hardware caching has become of fundamental importance for the overall perfor-
mance of any modern microcomputer. Consequently, much recent research has
been focused on different techniques to improve caching.

There are tough demands on a hardware cache. First of all, it needs to be fast
to satisfy the CPU’s demand for data. It also needs to have good performance in
bringing down the total number of data misses. Finally, it must be simple and
cheap to implement. In this trade-off between simplicity and performance, cache
misses caused by conflicts might become a problem. To mitigate this, different
schemes such as victim caches, column-associative caches and skewed-associative
caches, have been proposed.

This thesis investigates a novel technique to further improve on skewed-associ-
ative caching. The technique, dubbed elbow caching, is based on an ability to
dynamically move data between alternate positions in the cache. To support this, a
new replacement policy based on cache allocation timestamps is suggested. By using
trace-driven simulation it is shown that a 2-way elbow cache, using timestamps, has
roughly the same miss ratio as a conventional, LRU, 8-way set-associative cache.

CONTENTS CONTENTS

Contents
1 Introduction 3
1.1 Background 3
1.2 Related Work 3
2 Caches and Conflicts 4
2.1 Direct-Mapped Caches L. 4
2.2 Set-Associative Caches, 4
2.3 Classification of Cache Misses 4
2.4 Different kinds of Conflict Misses 5
3 Skewed-Associative Caches 6
3.1 Principle of the Skewed-Associative Cache 6
3.2 Deficiencies of a Skewed Cache 6
3.3 Replacement Policies 7
4 The Elbow Cache 8
4.1 Finding the Victim o oo L. 8
4.2 Choosing the Hash Functions 9
4.3 Reconstructing the Address 9
5 Replacement Metric 10
5.1 Least-Recently-Used Replacement 10
5.2 Timestampso e e e 10
6 Cache Models 12
6.1 mn-step Lookahead Cache 12
6.2 Feedback Cache Model 13
7 Evaluation Setup 15
7.1 The SPLASH-2 Benchmark Suite 15
7.2 The reduced SPEC 2000 Benchmark Suite 16
8 Results 17
81 Lookahead Cache 17
82 Feedback Cache 19
8.3 Different Cache Sizes 21
8.4 Benchmark Properties L. 21
8.5 Ranking the Cache Configurations 23
9 Conclusions 25
10 Suggestions for Future Work 26
A Simulation Results for a 16 KB Cache 28
B Results Summary 31
C Estimating Block Survival Time 32

1 INTRODUCTION

1 Introduction

The main objective of this thesis is to study a new cache-architecture called elbow
cache. It is a refinement of skewed-associative caching methods meant to reduce
mapping conflicts to popular data sets contained in the cache. By dynamically
reallocating data, the elbow cache seeks to further reduce conflicts and allow for a
wider choice of victims. To benefit from this, it is also necessary to find a better
replacement strategy than the ones suggested for skewed caches so far. This is
accomplished by tagging each cache block with the timestamp of the last reference.
Simulation shows that a 2-way elbow cache perform, on average, similar to a 8-way
set-associative cache with regard to the effective miss-ratio.

This thesis is organized as follows; Background and related work is presented
in the rest of this section. Section 2 discuses conventional techniques for conflict
avoidance. Section 3 and 4 presents the skewed-associative and the elbow caches.
Replacement metrics and implementation is discussed in sections 5 and 6. The
evaluation methodology is described in section 7 and the results are presented in
section 8. The work is summarized in section 9. Finally, section 10 suggests areas
for future research.

1.1 Background

Caching has been used as the main solution for bridging the ever-increasing gap be-
tween the bandwidth demand of the modern microprocessor and the performance
of the memory system. Consequently, well-designed caches are crucial for the per-
formance of the entire system. The main limiting factor in cache performance is
the size of the cache, but also architectural limitations in the cache affect cache
performance, since they might cause allocation conflicts within an active data set.
Therefore, novel architectures that are better at avoiding such conflicts without
adding excessive complexity or cost in terms of extra hardware, has become an
important research topic.

1.2 Related Work

Some of the earlier work that has addressed the issue of reducing cache conflicts is
presented here. Jouppi [5] presented the victim cache, primarily for use in direct-
mapped caches. Topham and Gonzales [14] studied the use of hash-functions for
indexing a cache. Agarwal and Pudar [1] suggested column-associativity for improv-
ing direct-mapped caches. Seznec and Bodin [11] pioneered the work on skewed-
associative caches. Further work on skewed caches is presented in some of their
later papers [3, 9, 10].

Karlsson and Hagersten [6] showed the usefulness of timestamps as block survival
time metric in the RASCAL-cache.

2 CACHES AND CONFLICTS

2 Caches and Conflicts

This section presents a brief introduction to the problem of conflicts in caches, how
conventional set-associative caches deal with this issue and how misses are classified.
Section 3 then presents skewed-associative caches that utilizes a slightly different
approach.

2.1 Direct-Mapped Caches

The simplest form of a hardware cache is the direct-mapped cache. In a direct-
mapped (or one-way set-associative) cache every address in the computer is asso-
ciated with a specific position in the cache. Once a data request is made, that
position (or cache block) is checked to see if it contains the requested data. If not,
the data is fetched from memory and put in the cache, replacing any previous data
in that block. This simple scheme has the advantage of being not only simple, but
also very quick since the requested data, if in the cache, can be found in one specific
position only. The problem is that two or more sets of data might compete for the
same position, while other positions are left unused.

2.2 Set-Associative Caches

The mapping of memory into the cache might cause an uneven distribution of
references to each cache block—i.e, some positions become more ‘crowded’ than
other positions. Such hot-spots might cause conflict misses—misses that would
otherwise never have occurred. By increasing the associativity of a cache, some
of the irregularities in the access pattern can be removed by joining several cache
blocks into sets.

In a n-way set-associative cache, each memory address can be associated with
any block in a set of n equivalent blocks. Thus, there is a choice of which of the
n previously cached data items to replace. Additional information stored in each
set is used to make this selection. There can now be up to n different data blocks,
mapped to the same set, in use at the same time without any conflict occurring.

However, this improvement comes at a price. Since a requested data item can be
in one of several different blocks, there is a need for additional hardware to test all
these blocks and detect the correct one. The replacement information also needs to
be stored. This adds to the cost in terms of extra logic and chip real-estate as well
as longer cache access latency. The higher the degree of associativity, the higher is
the cost. Also, the potential gain decreases with higher associativity.

Nevertheless, in some cases, conflicts can become a real performance bottleneck.
What is needed is a cache that utilizes a low degree of associativity and still reduces
conflicts well. Such a cache is the skewed-associative cache described in section 3.

2.3 Classification of Cache Misses

The most used classification scheme for misses that occur in a cache, is the “three
C’s” model [4]. There, the distinction is made between Compulsory, Capacity and
Conflict misses. Compulsory misses are the ones occurring when a block is accessed
for the first time. A capacity or conflict miss occurs whenever a previously evicted
block is brought back into the cache again. If the block was evicted because of a
mapping conflict it is classified as a conflict miss, otherwise it is a capacity miss.
In general, it is not possible to classify an individual miss as either capacity or
conflict. Instead, the difference in miss rate between the cache in question and a
fully associative cache (no conflict misses) of the same size, is used as measure for
the conflict miss rate.

2 CACHES AND CONFLICTS 2.4 Different kinds of Conflict Misses

The “three C’s” model does not cover misses that occur because of the replace-
ment policy used for the cache. A better model, that also considers these, is the
OPT model [12]. There, the optimal (OPT) replacement is used as norm and con-
flict misses are further subdivided into mapping and replacement misses.

2.4 Different kinds of Conflict Misses

The OPT model [12] can be used to further characterize conflict misses. Assume
a cache that has the ability to map any memory address to any cache block. Such
a fully associative cache has no mapping restrictions and cannot therefore cause
any mapping misses. Nevertheless, it can cause misses that are neither compulsory
nor due to limited capacity. These occur because of limitations on the replacement
policy used and are therefore called replacement misses. Now, consider a direct-
mapped cache. Since there are never any questions about which data to replace
(always only one possibility) there can be no replacement misses. But it is already
known that direct-mapped caches can suffer heavily from mapping misses instead.

While increasing the associativity in a cache lowers the number of mapping
misses, it might increase the number of replacement misses and vice versa. This
is because the increased freedom of choosing a victim also increases the possibility
of making a bad choice. Usually, the reduction of mapping restrictions that results
from higher associativity more than makes up for the potential increase in misses
due to a suboptimal replacement strategy. But for some applications—for which the
replacement policy used is ill suited—a higher degree of associativity can actually
yield worse performance.

3 SKEWED-ASSOCIATIVE CACHES

3 Skewed-Associative Caches

The association between the address space and the individual blocks in the cache is
done via an indexing function that maps each memory address to its corresponding
set in the cache. For a set-associative cache this is usually a trivial mapping, taking
the lowest bits of the address and using them as the index. All n alternate positions
in an associative set will then have the same index. A cache with a slightly different
structure is the skewed-associative cache. This cache is the basis for the work in
this thesis and is described in more detail below.

3.1 Principle of the Skewed-Associative Cache

Instead of trying to average out hot-spots by joining blocks into associative sets,
it is possible to change the mapping to avoid such hot-spots from forming in the
first place. Hashing has been proposed as a solution to this problem by giving a
better statistical distribution of the cache accesses over all blocks in the cache [14].
Nevertheless there is likely to remain some random hot-spots (and cold-spots). An
improvement to that idea is to organize the cache into two or more banks and use
different hashing functions for each of the banks. By doing this, accesses that maps
into hot areas in one bank have a good chance of hitting a less frequented area in
one of the others, thus spreading the accesses more evenly across all the blocks in
the cache and thereby reducing the overall number of conflicts.

This is the principle of the skewed-associative cache. The difference between
a skewed-associative and a set-associative cache is illustrated in Figure 1. Three
data items A, B and C, all in active use, are mapped via the indexing functions f
and fi1 respectively, into the same position in the first cache bank. In the two-way
set-associative cache, all three datums are also mapped into the same position in
the second bank, creating a conflict since there are only two possible positions in
total. In the skewed cache on the other hand, the hashing- or skewing-functions
maps each of the items into a different position in the second bank, so they can all
be placed without conflict.

Tag Data Tag Data Tag Data Tag Data

N B C AL B,
ABC
Bank | Bank Il Bank | Bank 1|
(a) Set-associative cache. (b) Skewed-associative cache.

Figure 1: Two-way set- vs skewed-associative cache.

3.2 Deficiencies of a Skewed Cache

There are a number of problems associated with skewed caches. First of all, the
skewing-functions used for the memory-to-cache mapping increases the memory la-
tency for accessing the cache. It might be possible to hide this latency by applying
the skewing function during the address computation at an earlier pipeline stage.

3 SKEWED-ASSOCIATIVE CACHES 3.3 Replacement Policies

Seznec [9] presents efficient skew-function implementations using permutations and
XOR-operations. Second, the skewing-functions must make use of a larger part of
a memory address for indexing, which makes it difficult to implement caches using
virtual indezing—physical tagging [4]. Page coloring can be used to solve this prob-
lem.

Example: Page coloring for skewed cache.

32 KB two-way skewed-associative cache with 64 byte blocks.
Bits needed to identify a byte within a block: 6 (26 = 64).
Blocks in the cache: 512 blocks divided into two banks.

8 bits needed for a index in one bank (256 = 2%).

8 additional bits needed for the skewing functions.

Total: 22 lowest bits of the address needed for indexing.

Thus to avoid page aliasing pages must be shared with an even 222 =
4 MB-multiple address offset.

Another problem is to decide which block to replace. In a set-associative cache
all potential victims can be found in the same set. To enforce a least-recently-used
(LRU) policy the cache only needs to keep track of the relative order of the accesses
that occurs within each set. In a skewed-associative cache the possible placements
for a new cache block in each bank is different for each address due to the separate
skewing-functions. To achieve LRU replacement it is therefore necessary to keep a
global ordering of accesses to all blocks in the cache. This is infeasible in most cases
so some kind of approximative method must be employed instead. Such a method,
the NRUE replacement, is discussed in the next section.

3.3 Replacement Policies

Seznec [10] has made an analysis of several different replacement policies for skewed
caches. One policy presented there is the enhanced-not-recently-used (NRUE).
NRUE tries to determine if the cache block has been accessed recently, very recently
or not recently, by setting two bits, ‘recently’ and ‘very recently’, every memory
access. These sets of access-bits are then cleared in a regular manner. For a cache
consisting of N blocks the ’very recently’ bits are cleared when N/4 block have been
accessed and the ’recently’ bits are cleared when N/2 blocks have been accessed.
Thus, a block that has the ‘very recently’ bit set has been accessed more recently
than a block with only the ‘recently’ bit set and, a block with the ‘recently’ bit set
has been accessed more recently than a block without any bit set at all. By testing
the bits the cache can make a choice if a block is a good candidate for replacement.
The major drawback with this scheme is that just after the access-bits have been
cleared, the replacement policy degrades into a simple random replacement.

4 THE ELBOW CACHE

4 The Elbow Cache

Assume that datum X is to be inserted into a skew-associative cache. X is mapped,
by two separate skewing-functions, into positions X; and X5 in bank one and two
respectively. This situation is illustrated in Figure 2a. There is a choice of replacing
either data item A, currently residing in bank one, or item B in bank two. However,
by allowing data to be reallocated between the banks, this choice can be broadened
to also include data items C and D. By moving A to its alternate bank-two position,
replacing C, space can be freed to insert datum X without evicting A (Figure 2b).

Tag Data Tag _ Data Tag Data Tag Data
A
A, cC L A
X A
7 X X = .-
2
D |s, D X
X?
Bank | Bank II Bank | Bank II
(a) Possible placements for new (b) Evicting item C by reallo-
data item X. cating item A.

Figure 2: The elbow cache.

Alternatively, if item D is deemed to be a good candidate for replacement, B
can be moved to replace D instead. In effect, the degree of freedom in the choice of
replacement has increased from two to four. As long as there are no loops formed
by the movements (or transformations) the data reallocations can continue on until
a suitable victim is found. This is the principle of the elbow cache.

4.1 Finding the Victim

An elbow cache needs a method for finding a suitable victim. Assuming that there
is a way of ranking existing cache blocks, how will the cache find the best block to
replace? Two simple methods seem possible. The first is to test the blocks along all
possible replacement paths and make a decision based on the information collected.
This straightforward scheme gives an optimum placement,? but the implementa-
tion in hardware is nontrivial at best, impossible at worst. This method may be
used during evaluation to estimate an upper bound for the effectiveness of elbow
replacement. It will be used as such in this work, and called lookahead, since the
replacement decision is made after all information is collected.

The other method is to first place the new data in its most optimum immediate
position and then test the victim against its possible alternative placements, replac-
ing a suitable new potential victim if such is found. This process can be iterated
until there are no good new victims. This method is called feedback since it can
be implemented by feeding the victim back into an already existing write buffer.
Note that this method is more restricted then lookahead, since it only makes use
of local information that is immediately available. It might also stop prematurely,

LA new datum makes room for itself among other, frequently used data blocks, by forcing this
data to reallocate instead of replacing it. Metaphorically speaking, it is “using its elbows”, pushing
other data aside. Hence the name.

2By “optimum placement” is meant the best possible placement with regard to the replacement
policy used.

4 THE ELBOW CACHE 4.2 Choosing the Hash Functions

before reaching a globally optimal placement, if a local optima is discovered on the
replacement path.

4.2 Choosing the Hash Functions

In order to obtain good performance the hashing-functions used to index the cache
banks must exhibit certain properties. These criteria are only listed here, for a more
thorough discussion see the papers on skewed caching [3, 9, 10, 11]:

e Equitability

e Inter-bank dispersion

e Local dispersion in a single bank
e Simple hardware implementation

To reduce the time needed for running the cache simulations, it would also be of
value to have skewing-functions that are easy to compute in software. For this
reason, and because the specific choice of functions is of less importance for perfor-
mance [10], the functions suggested by Bodin and Seznec [3] were used. Consider
a cache with up to four distinct cache banks holding 2" cache blocks of 2¢ bytes
each. An m-bit memory address A can be represented as a tuple {As, A2, A1, Ao}
with A = 4326127 A,9n+¢ 4 A4,2¢ + Ajy. Let o be the one bit rotational shift on
an n-bit number. The four hashing-functions can now be written®

fo(A) = A1 @ Ay

fi(A) =0(41) ® A,
fa(A) = 0% (A1) @ A
f3(A) =0 (A1) ® Ay

for banks 0 to 3 respectively.

Although these functions were chosen for the sake of convenience, the results in
this paper are also valid for any other set of functions that fulfill the requirements
listed above.

4.3 Reconstructing the Address

In an elbow cache it must be possible to, given a set of data in one bank, calculate
the index for that data in another bank. To move data from bank n to m the
full address is first recreated by applying the inverse skewing-function f;!. Then
the new index is found by applying skewing-function f,,. Assume that the address
A = {A3, A2, A1, Ap} of the data kept at index A;4,, in bank n is to be found.
Block offset Ag is always identical to 0 since it addresses the beginning of a block.
The tag field, containing the tuple {43, A>}, and the index is combined to yield the
full address

A=f0 1(A37A27 idzo
A=fr I(A Az, Aide,
A:fz 1(A Az, Aide,
A:fB (A3’A2a idrs

of the data in the respective banks 0 to 3.

{As, A2, Ajaz, © A2, 0}

{A3, A2, 0 (Aigs,) ® A2,0}
{As, A2, 07 (Aige,) ® Az, 0}
{A3, 42,03 (Aide,) ® As,0}

~— N N
1

3In a more general case, two permutation functions ¢ and ¢’ can also be applied to A; and Aj
respectively, but these have been omitted here to increase simulation speed.

5 REPLACEMENT METRIC

5 Replacement Metric

The Elbow caches increased ability to select a victim emphasizes the need for a good
replacement strategy. Least-recently-used (LRU), is commonly considered to be the
best general such strategy [4]. But a perfect LRU policy would demand a unreason-
able cost in terms of hardware and a NRUE policy, as discussed in section 3.3, do
not provide enough information for this purpose. It is therefore necessary to find
a technique that approximates LRU better then NRUE does, and is implementable
at a low cost. But what makes LRU a good choice in the first place?

5.1 Least-Recently-Used Replacement

An optimal replacement policy (OPT), that gives the lowest possible miss ratio, is
the one that replaces the block that will remain unreferenced for the longest period
of time. LRU instead replaces the cache block that has been unreferenced for the
longest period of time. But due to the principle of locality, a recently used cache
block is more likely to be reused again within a short while than a not recently
used block. If the least recently used block is chosen for replacement, the chance of
removing a block not recently used is maximized. Note the distinction made here
between least recently used and not recently used.

Assume that the replacement mechanism have to make a choice between two
blocks that both have been accessed recently. The LRU policy would replace the
block accessed least recently. But in this case, random replacement (RND) might be
a better choice since both blocks were recently used. The same would be true for two
blocks not recently referenced. Their internal access ordering is of less importance,
the important fact here is that they are both very ‘old’ and therefore unlikely to be
accessed again in the near future. Once again RND replacement might be preferred
over LRU.

The above discussion suggests that a replacement scheme that can differentiate
between ‘older’ and ‘younger’ cache data might perform as good as or maybe even
better than LRU. This is basically what NRUE tries to achieve. Another way is to
use timestamps.

5.2 Timestamps

To approximate LRU a scheme that tags each block with a timestamyp for the latest
access made to that block is proposed.

A global counter (also called timer) is kept inside the cache. An n-bit timestamp
field is also associated with every cache block. This timestamp is updated on access
with the n most significant bits of the current counter value. By increasing this
counter at regular intervals, the timestamps will reflect whether a block has been
recently accessed or not. This is done by calculating the distance between the
timestamp for the block and the ‘current time’ T, (the n most significant bits of
the global counter). A block with a small distance has been recently accessed and
vice versa. Since the global timer has finite number of bits, counter overflows must
be taken into account. The distance d for a timestamp T is then calculated as
follows

Algorithm 1 Calculating the timestamp distance.

d= Tcu’r'r - Tst Tcurr 2 Tst
Tcu’r'r + 2" — st Tcurr < Tst

10

5 REPLACEMENT METRIC 5.2 Timestamps

where n is the number of bits in the timestamp.

The counter needs to have a sufficient number of bits to avoid aliasing effects. If
a cache block resides unused in the cache long enough it might ‘wrap around’ and
become young again. This happens if the distance becomes greater then 2.

One remaining question is what time unit to use as a ‘tick’ for the global timer.
Different applications exhibit different memory access patterns and miss-ratios and
any scheme must take that into account. It seems natural to chose cache allocations
as ‘ticks’ since:

1. The time between replacements is inversely proportional to the miss ratio.

2. An upper bound for the probability of a cache block surviving unused for
a given number of such ticks can be easily estimated by statistical means
(Appendix C).

As is shown by Karlsson and Hagersten [6], this normalizes the replacement-behavior
between different applications. From the estimates made in Appendix C it can be
concluded that the vast majority of all unused cache blocks has been evicted from
a N-block cache after about 4N replacements, and this is therfore a suitable upper
limit for the timer. Very few blocks will then survive unreferenced long enough to
experience aliasing. So, the global time counter needs to be m = log2(4N) bits
long. For a m-bit timestamp this results in a resolution of 2™~" cache allocations
per time unit or tick.

Example Timestamp resolution.

16 KB cache with 32-byte blocks, 6-bit timestamp.
214-5 = 29 — 512 blocks
m = loga(4N) = loga(4 = 512) = 11 bits

Resolution: 2!176 = 32 allocations per time unit.

It is believed that such timestamps, with a high enough resolution (enough bits),
will approximate a proper LRU-ordering of the cache blocks close enough to be
useful as replacement metric in a skewed or elbow cache. A replacement strategy
based on timestamps would replace the block with the longest distance. If two or
more blocks have the same distance the victim is chosen at random among these.

11

6 CACHE MODELS

6 Cache Models

This section presents the actual elbow-cache models evaluated in this thesis.

6.1 n-step Lookahead Cache

The lookahead elbow cache selects the most optimal placement possible according
to the replacement policy used (i.e. replacing the block with the oldest timestamp).
If the cache considers all locations that can be reached by moving data up to n
times it is called an n-step lookahead elbow cache. By starting at zero and stepwise
increasing n, the influence of the increased freedom of replacement on the overall
miss-rate, is examined.

A zero-step lookahead cache is identical to an ordinary skewed-associative cache
using timestamp replacement. Because the lookahead model uses information gath-
ered earlier on, and utilizes several transformations for each replacement, it may
be difficult to implement for two or more steps. However, a one-step lookahead
is feasible for a non-blocking, pipelined cache. The timestamps of the alternative
victims are read during a second cycle and the data transformation is then made in
parallel with the loading of the new data when that is available. This single-step,
pipelined, lookahead cache is now described. Figure 3 show the constituent parts
and the different pipeline stages during a replacement. Item X is to be inserted
into the cache. In the first stage the possible placements in each bank are indexed
by skewing functions f; and fo (not shown) into X;4,, and X;q4,, respectively. The
bank contents in the corresponding positions (A and B) are loaded into two tem-
porary registers R; and R», and their tags are checked to see if they contain the
data requested. Since this is not the case in this example, a request for X is sent
to the underlying memory hierarchy. If the cache features prefetching [5], X might
also be found in one of the prefetch registers.

In parallel with the cache lookup, the alternative indices (the indices of A and
B in their opposite cache banks), are calculated as described in section 4.3. Also,
the associated timestamps are loaded into temporary registers 71 and T>. The
second stage can last for one or more clock cycles depending on the time needed to
retrieve X from the memory subsystem. In this stage the timestamps of A and B
and the timestamps of their alternative placements C' and D, are compared in the
combinatoric net N. Once X is available the last stage loads it into place based on
the information given from N. At the same time A or B can also be moved to the
other bank if either C or D is chosen as victim.

The combinatoric net N has two outputs b (bank) and m (move), that controls
the loading of data. b decides in which bank to place the new data and m controls

| Victim || b [m || channel, | channely | load; | load, |
A 0 0 X A 1 0

B 110 B X 0 1
C 0|1 X A 1 1
D 1] 1 B X 1 1

Table 1: Control of data loading.

whether the old data in that position should be reallocated or not (see Table 1).
The new data X 4,4, is inserted into one of the caches load channels via multiplexers
that also inserts either Agj,;4 Or Bggai, in the channel for the opposite bank. Control
signals b and m are combined into load; and loads that signals whether or not to
load the bank with the data in the corresponding load channel. Also the bank index
and the timestamp for each cache block is feed into the load channel.

12

6 CACHE MODELS 6.2 Feedback Cache Model

Tag Data TmSt % Tag _ Data Tmst 3
-1 3 - §
— ¢ lCe T
X/dx —
> @ A > a9 | Xy -
HE > @ B » b
—d]e]
A
ht") !
T1‘V RZ T2
B/X
7

N 21 A 5 21

Load channel 1 X. X

idxy idxy

load,

Load channel 2

Figure 3: A single-step lookahead elbow cache.

The result is a loading of X and an optional movement of A or B at the same
time.

6.2 Feedback Cache Model

In the feedback model the victim is put back into the write buffer and might later
be reloaded into another cache bank if deemed valuable enough to keep in the cache.
It is necessary to be able to identify an entry in the write buffer as a victim instead
of a regular write. This is done with an extra flag bit together with a field marking
in which bank the data used to be. Once the write occurs, all the other alternative
positions are checked to see if they contain a more suitable victim (i.e with a longer
timestamp distance) than the current. If so, the old victim is reloaded into the cache
and the new victim is inserted into the write buffer. If not, the entry is discarded.

An interesting side effect of this scheme is that the write buffer will effectively
act as a victim cache [5].

Two problems might occur: first, the write buffer might be filled to the limit. In
this case, flushing one or more victims is a possible solution. The other problem
is that loops might form in the replacement path. If so, the original write might
be overwritten by a victim. A solution to this is to assure that any victim is
always strictly worse, measured in the replacement metric, than the entry to be
loaded. This way any loops cannot be formed. Unfortunately, such a restriction

13

6.2 Feedback Cache Model 6 CACHE MODELS

) \4
write o l
E 2:1
X, X,
b Step Data+Tag FDatﬂTag TmSt Data+Tag TmSt
0I001 A Armst [|
0looo Y i A k-]
0[000] Brmst A B E
0lo11 D .
) 0|000 o —
1]o10] C = X o
Buffer c 5
c P =
Sty ~ Bankl Bank Il
= =8t
b k 22
read,..,

Figure 4: A 7-step feedback elbow cache.

on replacement is likely to give less optimal results. Since the probability of a
loop occurring is small, another possibility is to apply the ostridge algorithm [13],
ignoring the problem altogether. However, in such a case, limiting the maximum
number of transformations is necessary to stop any loops from looping forever. Such
a limit will also reduce the problem with limited write buffer space. Therefore, an
extra step field, that contains the number of transformations made so far for this
replacement, is kept in the write buffer.

The whole layout is depicted in Figure 4. To the left is the write buffer into
which the datum Y has been recently written. A request for item X has missed in
both of the cache banks and the datum has just been fetched from the underlying
memory hierarchy. X maps into the blocks currently occupied by data A and B in
banks one and two respectively. The combinatoric net N reads the timestamps for
A and B and makes an allocation decision based on this information. In this case
A is selected as victim. Since this is a fresh insertion, A is moved into the write
buffer and the b (bank) and step fields are set accordingly (0 | 001—victim from
bank 1, first transformation step). Note that a victim can be identified by OR:ing
all bits in this field, so there is no need for an explicit victim flag in this case. The
output of N; i, j and k controls if a datum should be feed back into the write buffer,
which cache bank to read from and/or write to, and if an earlier victim should be
reinserted into the cache. The next item in line in the write buffer is the datum
C. The b and step fields show that it is a second order victim, and that C used to
reside in bank two (b bit set). This is signaled to N via the b and v (victim) signals.
When the wite occurs, N will check if the timestamp distance for C is shorter than
that for the item currently residing in C’s bank-one position. If so, C' is moved
into the position (indicated in the figure) and, unless the s (stop) signal indicate
that the maximum number of transformations (7) has been reached, the new victim
is again inserted into the write buffer. If the distance for C is longer then for the
potential new victim, C is evicted from the cache.

14

7 EVALUATION SETUP

7 Evaluation Setup

The evaluations were made using the system simulator SIMICS 7], simulating an
UltraSPARC-IT machine running Solaris 7. This setup allows a full system simula-
tion including the operating system. The benchmarks were started from a standard
shell on an otherwise unloaded virtual machine. By the use of SIMICS’ trace mod-
ule, traces of the memory accesses made by the benchmark programs were produced.
These traces were compressed with a trace compactor program and saved to disk.
The traces were then feed into a cache simulator program, simulating the different
cache configurations.

This work considers level-1 data caches for uniprocessor systems and assumes a
write back - no allocate on write strategy and a perfect (infinite) write buffer. This
means that writes to the cache can be ignored for all practical purposes.

7.1 The SPLASH-2 Benchmark Suite

Most of the test applications were taken from the Stanford SPLASH-2 benchmark
set [8]. Although primarily meant for multiprocessor research, the length of these
benchmarks also makes them well suited for computer architecture design in general.
It contains a total of 12 kernels and applications and yields 14 benchmarks:

Barnes This is an application that simulates interaction between a system of bodies
in three-dimensional space using the Barnes-Hut method.

Cholesky This kernel factors a sparse matrix into a product between a lower tri-
angular matrix and its transpose. It is similar to the LU kernel but operates
on sparse matrices.

FFT Fast Fourier Transformation kernel.

FMM Like Barnes but simulates interaction between bodies in two dimensions
instead, using Fast Multipole Method.

LU Kernel that factors a dense matrix into the product of a lower and an upper
triangular matrix. Contiguous and non-contiguous versions.

Ocean Studies large-scale ocean movements based on eddy and boundary currents.
This benchmark exists in two versions, contiguous and non-contiguous where
the latter uses a simpler, less efficient implementation.

Radiosity Computes the equilibrium distribution of light in a scene using the
iterative hierarchical diffuse radiosity method.

Radix Integer radix sort kernel.
Raytrace Renders a three-dimensional scene using ray-tracing.
Volrend Renders a three-dimensional volume using a ray casting technique.

Water-Nsquared Evaluates forces and potentials that occur during time in a
system of water molecules, using an O(n?) algorithm.

Water-Spatial Solves the same problem as Water-Nsquared but uses a different,
O(n), algorithm.

The parameters used and the resulting trace-length for each benchmark is given in
Table 2.

15

7.2 The reduced SPEC 2000 Benchmark Suite 7 EVALUATION SETUP

| Benchmark | Name | Parameters | Read accesses |

Barnes BARNES < barnes_input 810,144,285
Cholesky CHOLESKY CHOLESKY_INPUT 108,297,727
FFT FFT -m16 11,464,509
FMM FMM < fmm.input. 16384 1,729,059,329
LU LU_C 25,930,229

LU _NC (non-contiguous version) 153,827,897
Ocean OCEAN_C 136,025,825

OCEAN_NC (non-contiguous version) 307,465,336
Radiosity RADIOSITY -room -ae 5000.0 -en 0.050 -bf 0.10 -batch 625 s 864,891
Radix RADIX 53,297,034
Raytrace RAYTRACE | -m64 -pl RAYTRACE_ car.env 377,501,122
Volrend VOLREND 1 VOLREND_head 22,530,034
Water-Nsq | WATER N 169,628,504
Water-Sp WATER _S < WATER-SPATIAL_input 162,278,521

Table 2: Parameters used for the SPLASH-2 benchmarks.

7.2 The reduced SPEC 2000 Benchmark Suite

This is a set of benchmark based on the SPEC 2000 benchmark suite, but with much
reduced running time to allow them to be used for computer architecture analysis
and design [2]. Six of the long-length benchmarks, both integer and floating-point,
in this suite were used (the others were to long):

AMMP Computational Chemistry. Floating-point benchmark.

Equake Seismic Wave Propagation Simulation. Floating-point benchmark.
MCF Combinatorial Optimization. Integer benchmark.

Parser Word Processing. Integer benchmark.

VPR FPGA Circuit Placement and Routing. Two sub-benchmarks; VPR PLACE
and VPR ROUTE. Integer Benchmarks.

The input sets used and the resulting trace lengths are given in Table 3.

| Benchmark | Name | Parameters | Read accesses
AMMP AMMP < ammp_lgred.in 149,311,204
Equake EQUAKE -Q < quake_lgred.in 164,396,815
MCF MCF mcf_lgred.in 149,285,010
Parser PARSER 2.1.dict -batch < parser_lgred.in 693,783,085
VPR VPR _PLACE | place_lgred.net ref_arc.in | 314,304,850
VPR_ROUTE | route_lgred.net ref_arc.in | 220,486,334

Table 3: Input sets for the reduced SPEC 2000 benchmarks.

16

8 RESULTS

8 Results

The results obtained from the simulations are presented here. The main results
were generated by simulating a 16 KB, level-1 (L1) data cache with 32-byte block
length. Today it is not uncommon with caches that uses block length of 64-byte or
more. However, for the purpose of this evaluation it is more interesting to study a
cache with a larger amount of (smaller) blocks.

Also 8 and 32 KB caches were tested for comparison.

The metric miss rate reduction is used to measure the performance of different
cache configurations. The reduction norm is taken from a simple two-way set-
associative cache of the same size. Miss rate reduction is calculated as shown in
Algorithm 2 below.

Algorithm 2 Miss rate reduction.

Miss _rateporm — Miss_rate

Miss rate reduction = -
- - Miss_ratenorm

Here Miss_rateporm is the miss rate of the reference cache.

8.1 Lookahead Cache

This model was tested by simulating n-step lookahead caches with n ranging from 0
to 8 transformation steps. This gives a rough indication of the performance increase
that can be achieved by reallocating data up to n number of times during each new
allocation. From this the performance of a simple skewed cache with timestamp
(TS) replacement is found in the 0-step column, and the performance of the simple
lookahead cache described above, in the 1-step column (Figure 5). Four different
resolutions were used with 8-, 6-, 5-, and 4-bit timestamps, plus perfect LRU for
comparison. Both the SPLASH-2 and SPEC 2000 reduced benchmark suites were
tested. A typical result is shown in Figure 5—the CHOLESKY benchmark from
SPLASH-2.

CHOLESKY

Elbow lookahead

Miss rate reduction

Skewed

Skewed LRU

O}Q,Q O}Q,Q O}Q,Q O}Q,Q O}Q,Q O}Q,Q O}Q,Q O}Q,Q O}Q,Q
TONT ¥y N 4 ¢ A W
Transformations

Figure 5: Lookahead cache miss rate reductions for the CHOLESKY benchmark
compared with a 2-way set-associative cache.

There is a relatively steep increase in miss ratio reduction for the first few steps,
but then the curve soon reaches a plateau. This is just as expected: the cache
benefits from the increased freedom of replacement selection, but the probability
of finding another even better victim decreases quickly with each additional step.

17

8.1 Lookahead Cache 8 RESULTS

Note that for this particular benchmark, lower resolution timestamps give better
results then higher resolution and LRU. This is not an unusual result and shows
the imperfections of LRU as discussed in section 5.1.

The complete set of graphs for the two benchmark suites is found in Appendix A.
Averages are shown in Figure 6.

750% —
7.25% |

< 7.00% -

2 6.75% _|

(&)

2 650% |

Q

2 g05% |

Q

S 6.00% |

@ 5.75% —|

S 550% |
5.25% _|
5.00%
4.75%

16.00%
15.75%
15.50%
15.25%
15.00%
14.75%
14.50%
14.25%
14.00%
13.75%
13.50%
13.25%

Miss rate reduction

e C}Q,Q B R R R R B R R R R R C}Q,Q &R
& F W AT o & W o o W AT o
(a) SPLASH-2 (b) Reduced SPEC 2000

Figure 6: Average miss rate reductions vs a 2-way set-associative cache for a looka-
head cache and different replacement metrics.

It is clear from these graphs that the timestamps (for this particular cache
configuration) needs to be at least 5-bits long, since the performance of the 4-bit
length timestamps are noticeably worse for many of the benchmarks. For a block
length of 32 bytes, the 5 extra replacement information bits results in a memory
overhead of less than 2% .

From the data, the results for a two-way skewed cache with 5-bit timestamp
allocation (TS), and a two-way, single-step, lookahead elbow cache (LA), also with
5-bit timestamps are extracted and used for comparison with other caches. To get
a good comparison, the results are plotted against miss ratio reductions for other
alternative cache configurations with the same cache size and block length; a four-
way set-associative, a fully associative, and two skewed (perfect LRU and NRUE
replacement) caches.

The results for a 7-step feedback (FB) cache discussed in the next section, is
also included. The results are shown in Figure 7 and 8.

As expected the fully associative cache reigns supreme and outperforms all the
other caches in 15 out of the 20 benchmarks, with an average miss rate reduction of
14.5% for SPLASH-2 and 9.5% for SPEC 2000. The competition for second place is
tougher, but the elbow cache wins the SPLASH-2 race with a margin of around 0.8%
over skewed-LRU and 1.1% over skewed-TS (ignoring the feedback cache for now),
obtaining a total reduction of 12.3%. For reduced SPEC 2000, the elbow cache wins
the silver medal once again with a narrow margin of 6.7% total reduction over the
four-way set-associative cache’ 6.6%.

Note however, that a few benchmarks, especially LU NC, gives a dispropor-
tionately large contributions to the total average due to some peculiar properties in
those benchmarks.* A short discussion of some benchmarks is found in section 8.4.
The results also show that using timestamps as replacement metric, as suggested
in section 5.2, gives good results. In particular, a skewed cache using timestamp
replacement with a resolution of only 5-bits, yields a performance very close to that

4Specifically, LU NC is the main reason that the 8-bit and LRU average SPLASH-2 graphs
in Figure 6a actually show a decrease in miss ratio reduction for increased number of lookahead
steps.

18

Miss rate reduction compared with 2-way set-associative cache

8 RESULTS 8.2 Feedback Cache

90% —
i [4-w Assoc
80% — M Fully Assoc

il [skew LRU
20% | ["] Skew NRUE

= I Skew TS 5-bit

I Elbow LA 5-bit
[Elbow FB 5-bit-7

60% —|

50% |

40% —

30%

20% |

10% |

0% —

-10% —

-20% —

-30% T T T

SaNdvd
144
B
N1

ON N1
Xiavy

2 Nv3I00

ON NV3ID0

N Y3ILYM

AMSITOHD
ALlsolavy
JOVHLAVY
ANIHTOA
S HILYM
afelany

Figure 7: SPLASH-2 suite miss rate reduction results for different 16 KB cache
configurations.

of a similar skewed cache using perfect LRU, for almost all of the benchmarks.

8.2 Feedback Cache

The attention is now turned towards the feedback variant of the elbow cache. Unlike
the lookahead cache, the feedback cache is easily implementable, even for more than
one replacement step. A three bit step counter can record up to seven consecutive
transformations during a replacement. This should be enough to catch most po-
tential performance improvements. In fact, a two-bit, three-step maximum variant
might do almost just as well. Like before, averages for the two suites are presented
(in Figure 9).

As shown in the bar-charts presented in Figure 7 and 8, the overall performance
is comparable to the lookahead cache. The average result for the 5-bit, 7-step
feedback cache is approximately 11.9% and 6.7% in miss rate reduction, compared
with a two-way set-associative cache, for the SPLASH-2 and reduced SPEC 2000
suites respectively.

19

8.2 Feedback Cache 8 RESULTS

30.00% —

[4-w Assoc
27.50% — M Fully Assoc

[J skew LRU
25.00% —| [[] Skew NRUE

[Skew TS 5-bit
22.50% — [X Elbow LA 5-bit

[Elbow FB 5-bit-7

20.00% —

17.50% —

15.00% —

12.50% —|

10.00% —

7.50% —

5.00% —

Miss rate reduction compared with 2-way set-associative cache

2.50% —

0.00% —

~2.50% ‘ ‘ ‘
AMMP EQUAKE MCF PARSER VPR_PLACE ~ VPR_ROUTE Average

Figure 8: Reduced SPEC 2000 suite miss rate reduction results for different 16 KB
cache configurations.

15.40% _ 6.75%
6.50%
o
_ 1620% i
f=
2 15.00% 2 6.00%
3 14.80% S 575%
g 1 B 550%
£ 1460% | @ 525%
©
2 S 5.00%
B 1440% — B 4.75%
= 1420% | = 450%
14.00% 425%
Rty 4.00%
1880% L 3.75%
K K K K KL K K K KR K K K K K K K K R
b/é\ \/é\ q//é\ ‘b/é\ b\/é\ (O/é} Q)/é\ /\/é\ oo/é\ b/é\ \/é\ q//é\ %/é\ b\/é\ (O/é} Q)/é\ /\/é\ oo/é\
(a) SPLASH-2 (b) Reduced SPEC 2000

Figure 9: Average miss rate reductions vs a 2-way set-associative cache for a feed-
back cache with different timestamp resolutions.

From the graphs in Appendix A it is apparent that, although the feedback
method gives less reduction in miss rate per transformation step, it can reach the
same total levels of miss reductions as a single-step lookahead cache by repeatedly
applying these transformations.

The full set of results are plotted in Figures 13b and 15, Appendix A. Note the

volatile behavior of the low-resolution timestamp traces.? This is different from the
lookahead cache.

5There seems to be some kind of ‘sawtooth’-effect evident in some of the results. This is
possibly due to loops in the replacement path that cause the newly inserted item to be evicted
again immediately, nullifying the effect of the cache. This can easily be avoided by limiting the
maximum number of transformation steps to an odd number since such an eviction can only
happen after an even number of transformations.

20

8 RESULTS 8.3 Different Cache Sizes

8.3 Different Cache Sizes

It is probable that many of the benchmarks might behave differently if the size of
the cache is changed. This is especially true since the measurements, so far, have
used a relatively small 16 KB cache. Therefore, the same comparisons as previously,
but with cache sizes of 8 and 32 KB, were made. The block length was the same,
32 bytes, as before. Also, the same number of bits was used for the timestamp (5),
although this results in a different number of cache allocations per tick (16 and 64
instead of 32, for the 8 KB and 32 KB caches respectively).

For the 8 KB cache there was an average increase in miss ratio reduction com-
pared with the 16 KB case. This is as expected since the smaller size means more
potential conflicts that can be avoided by the improved cache architectures.

For the same reason, there is a lower average miss rate reduction in the bigger
32 KB cache. There are also some anomalies for certain benchmarks with regards to
their earlier performance. BARNES, for example, suddenly gives large reductions for
all architectures, while WATER N starts to penalize the skewed and elbow caches
while still benefiting from increased associativity. Also AMMP from the reduced
SPEC 2000 suite starts utilizing the more advanced architectures at 32 KB.

Some of the benchmarks are discussed in the next section. A table summarizing
all results can be found in Appendix B.

8.4 Benchmark Properties

As was noted in previous sections, some benchmarks exhibit properties that differs
from the mainstream behavior. Some of the benchmarks are examined here.

LU_NC From the SPLASH-2 suite. This benchmark seems to suffer heavily from
conflict misses, with many blocks competing for only a few sets. The miss
rate reduction for this benchmark is therefore very large for the caches that
greatly reduces conflicts, like the fully associative cache and skewed caches,
while the four-way set-associative cache gains very little. It has a relatively
small working set that would mostly fit in the cache if there were no conflicts.
LU _NC has a very volatile behavior in some of the tests performed in this
thesis.

Barnes For small sizes, the fully associative cache is severely penalized in this
benchmark, indicating a very large number of replacement-misses. Obviously,
LRU is a bad policy to use here. Skewed caches on the other hand, benefits
from the reduced number of mapping conflicts. Elbow caches increases the
degree of replacement freedom and performs worse than a plain skewed cache
on this benchmark since it more closely resembles a fully associative LRU
cache. Also OCEAN _NC and WATER _ N exhibit similar, but less pronounced
behavior.

AMMP This benchmark from the reduced SPEC 2000 suite stands out as being
the only one where the elbow cache (together with the fully associative cache)
is actually the worst architecture in the 16 KB cache test. It also has the by far
largest overall miss ratio (=50%) of all the benchmarks. The problem is likely
to be the reductions made to shorten the execution time for the benchmark.
In fact, the reduced AMMP benchmark does not seem to compute anything,
only initializing the computation. Thus the access patterns produced is likely
to be very different from that of the real AMMP benchmark. Nevertheless,
it is interesting as an example of an application that does not benefit from a
high degree of associativity and (close to) LRU replacement.

21

Miss rate reduction compared with 2-way set-associative cache

Miss rate reduction compared with 2-way set-associative cache

8.4 Benchmark Properties

8 RESULTS

85%
80%
75%
70%
65%
60%
55%
50%
45%
40%
35%
30%
25%
20%
15%
10%
5%
0%
-5%
-10%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

-10%

-20%

-30%

[4-w Assoc

Il Fully Assoc

] Skew LRU

[] Skew NRUE

I Skew TS 5-bit
[Elbow LA 5-bit
[Elbow FB 5-bit-7

w (@) n T — (@) O X X X < >
> I T E< c c 9] o > > > o} ;% ;% 5
by} = I I < C @
o < = m m g =) 3 3 =
nom 5 2 z o x 3 @& © @ &
< 0 =< m
(a) 8 KB cache size
i [4-w Assoc
_ i M Fully Assoc
i [] skew LRU
| ["] Skew NRUE
B Il Skew TS 5-bit
B [Elbow LA 5-bit
i [Elbow FB 5-bit-7
T T T T T T T T T T T T
w @] jul ul — — @) @) b3 T b3 < >
> I i = c c e} e} > > > e} § ;% H
T o = 'a I m m o) =< = 3 3 o
i m o Z Z o) X 3 = m m 8
CI [[) b z ~° * o
= [¢] z = @] o z (]
< [9) < m

(b) 32 KB cache size

Figure 10: Miss rate reductions for SPLASH-2.

22

8 RESULTS 8.5 Ranking the Cache Configurations

35.00% —

[4-w Assoc
82.50% M Fully Assoc

[J skew LRU

[] Skew NRUE
27.50% Il Skew TS 5-bit
[Elbow LA 5-bit
25.00% 7 I Elbow FB 5-bit-7

30.00% —

22.50% —

20.00% —

17.50% —

15.00% —|

12.50% —|

10.00% —

7.50% —

5.00% —

Miss rate reduction compared with 2-way set-associative cache

2.50% —

0.00% —

-2.50% . . .
AMMP EQUAKE MCF PARSER VPR_PLACE VPR_ROUTE Average

(a) 8 KB cache size

50.00% —

[0 4-w Assoc
45.00% | Il Fully Assoc
' [] Skew LRU
2) [skew NRUE
g 4000% I Skew TS 5-bit
2 [Elbow LA 5-bit
£ 35.00% — M Elbow FB 5-hit-7
2
¢
L 30.00% —
%
S
g
T 25.00% —
&
£
§ 0/
g 20.00% —|
g
g
£
8 15.00% —
5
é 10.00% —|
°
o
8
g 5.00% —
s

0.00% —

-5.00% ‘ ‘ ‘
AMMP EQUAKE MCF PARSER VPR_PLACE VPR_ROUTE Average

(b) 32 KB cache size

Figure 11: Miss rate reductions for SPEC 2000-reduced.

8.5 Ranking the Cache Configurations

An obvious problem is the large difference in magnitude of the obtained results.
Because of this, some benchmarks affects the averages much more than others,
somewhat obscuring the relative merits of each cache design. Therefore, as a com-
plement to averaging the miss rate reductions, each cache configuration was also
ranked with respect to the others for every benchmark. Table 4 shows the results
of this ranking. Ten different configurations were tested and the best configuration

23

8.5 Ranking the Cache Configurations 8 RESULTS

for each benchmark got 10 points, the second best got 9 points and so on down
to the worst configuration that only got 1 point. Since there are 20 benchmarks,
the maximum possible score is 200 points and the minimum is 20. Half points are
awarded for equal results. Figure 12 shows a summary of the average miss rate
reductions compared with the average ranking score for each configuration. In the
ranking chart, an average score of 10 points means ‘always best’ (best configuration
for all of the benchmarks) and a 1-point average means ‘always worst’.

Cache Architecture [8KB |16 KB | 32 KB |

2-way set-associative 47.0 53.0 35.5
4-way set-associative 94.0 104.0 106.0
8-way set-associative 110.0 138.0 147.0
16-way set-associative || 125.0 147.0 165.0

Fully associative 146.0 | 155.0 | 166.0
Skew LRU 112.5 93.5 88.0
Skew NRUE 85.0 74.0 57.0
Skew TS 5-bit 106.5 86.5 80.0
Elbow LA 5-bit 139.0 | 129.0 | 129.5

Elbow FB 5-bit 7-step || 135.0 | 120.0 | 126.0

Table 4: Total ranking scores for 10 different cache architectures applied to 20
benchmarks from the SPLASH-2 and reduced SPEC 2000 suites.

Average miss rate reduction Average ranking
25.00% 9 [0 2-w Assoc
22.50% 8 [4-w Assoc
[18-w Assoc
20.00% 7 [[]16-w Assoc
S 0, M Fully Assoc
% 17.50% g 6 [skew LRU
S 15.00% S [l Skew NRUE
° o a 5 [Skew TS 5-bit
; 12.50% — = . M Elbow LA 5-bit
® 10.00% — § I Elbow FB 5-bit-7
@ 7.50% — g 37
= 500% 2
2.50% — 1
0.00% - 0 -
8 KB 16 KB 32KB 8KB 16 KB 32KB
Cache size Cache size

Figure 12: Comparison between miss rate reduction and relative ranking aver-
ages for the different cache architectures on the combined SPLASH-2 and reduced
SPEC 2000 benchmarks.

The ranking system gives similar results to the previously shown results for
the miss rate reductions. Higher associativity gives better performance, the times-
tamped skewed cache almost reaches similar performance as a LRU skewed cache,
and the elbow caches compares very favorably to ordinary skewed and set-associative
caches. The only difference is that both 8-way and 16-way set-associativity ranks
better than elbow caching for the 16 and 32 KB sized caches.

24

9 CONCLUSIONS

9 Conclusions

This thesis have introduced the elbow cache, a design to further reduce the number
of conflicts in a skewed-associative cache by dynamically reallocating conflicting
data.

In order to achieve good performance it is essential to have a better replace-
ment policy than the ones used in skewed caches so far. Therefore, a replacement
policy based on timestamps to approximate LRU replacement is suggested. To test
whether this idea works or not a timestamp-based cache was compared to caches
with traditional replacement policies. This comparison showed that a skewed cache
that uses a 5-bit timestamp generally outperforms an otherwise similar skewed cache
based on NRUE, and approaches the performance of a skewed cache with full LRU
ordering.

The elbow cache comes in two flavors: the lookahead cache and the feedback
cache. While both are based on the same idea, the actual way of finding what block
to replace is different. The lookahead cache is better in theory, but a realistic imple-
mentation can only reallocate one data item each replacement, while the feedback
design can apply cache transformations repeatedly by storing temporary victims in
the write buffer.

The test results, summarized in the table in Appendix B, compares the two
types of elbow caches and a skewed cache using timestamps against other, more
traditional, cache architectures. Two benchmark suites; SPLASH-2 and parts of
the reduced SPEC 2000 was used as test data. Caches of 8, 16, and 32 KB sizes
were simulated.

Both the (single-step) lookahead and the (7-step) feedback caches showed similar
performance, with the lookahead having a slight advantage. In the total average,
they both outperform all but the fully associative cache for 8 and 16 KB cache sizes,
and is beaten only by the fully associative and the 16-way set-associative cache for
a cache size of 32 KB.

The lookahead design is slightly more expensive in terms of hardware but gives
better performance and does not use up any space in the write buffer. It is also
easier to model since the implications of limited buffer space do not need to be
considered. A feedback design is cheaper but might loose performance if the number
of replacement steps gets reduced because of write buffer overflows. To fully evaluate
such design a more fine-grained model that takes the timing of instruction issues,
memory latencies and write buffer depth, into account must be employed. A decision
which cache design to choose should be based on architectural and implementation
considerations as well as expected performance. Issues regarding the resolution
and length of the timestamps and what limit to use for the maximum number of
transformation steps etc, depends on parameters such as cache size, block length
and write buffer depth. These issues should be decided for each configuration based
on simulations of a representative set of applications.

The elbow cache suffers some of the same limitations as a standard skewed-
associative cache does, but gives better performance at only a slightly higher cost
in hardware complexity. A final recommendation must therefore be that the el-
bow cache should be regarded as a viable alternative whenever a skewed cache is
considered for use.

25

10 SUGGESTIONS FOR FUTURE WORK

10 Suggestions for Future Work

The work presented in this thesis focuses on evaluating a level-1 data cache typical of
many current CPU:s. Though an important special case, it could also be interesting
to test this theory against other types of caches like instruction caches, TLB:s and
level-2 caches. Also different configurations with regard to cache and block size,
associativity and write policy, might be tested as well. An interesting idea is to use
the elbow cache on a NUMA-architecture and tag remote memory cached with an
extra ‘remote’-bit, marking that block as extra precious. This will cause the elbow
cache to quickly move all such blocks out of any hot-spots forming.

To use timestamps as a general metric for measuring distance to the last access
seems to be useful in many ways such as in the RASCAL algorithm [6]. This thesis
has shown that they can be used as a viable alternative to LRU replacement in
skewed and elbow caches. It would also be possible to use timestamps in more
conventional, highly associative caches.

Acknowledgments

Many thanks go to the people in the UART-group (UPPSALA ARCHITECTURE
RESEARCH TEAM) at Uppsala University that helped me with this thesis. Espe-
cially my advisors: team-captain Erik Hagersten and Martin Karlsson. Erik Berg
helped me get SIMICS up and running and Zoran Radovi¢ assisted me solving some
PTEX/IyX issues. Dan Wallin spotted a bug in one of the SPLASH-2 traces and
supplied me with an endless stream of irrelevant—but funny—e-mails.

26

REFERENCES REFERENCES

References

[1] A. Agarwal and S. D. Pudar. Column-Associative Caches: A Technique for
Reducing the Miss Rate of Direct-Mapped Caches. In Proceedings of the 20th
International Symposium on Computer Architecture, pages 179-190, May 1993.

[2] AJ KleinOsowski, J. Flynn, N. Meares, and D. J. Lilja. Adapting the SPEC
2000 Benchmark Suite for Simulation-Based Computer Architecture Research.
In Proceedings of the Third IEEE Annual Workshop on Workload Characteri-
zation, pages 73-82, 2000.

[3] F. Bodin and A. Seznec. Skewed associativity improves program performance
and enhances predictability. In IEEE Transactions on Computers, May 1997.

[4] J. L. Hennessy and D. A. Pattersson. Computer Architecture - A Quantitative
Approach. Morgan Kaufmann, second edition, 1996.

[5] N. P. Jouppi. Improving Direct-Mapped Cache Performance by the addition
of a Small Fully-Associative Cache and Prefetch Buffers. In Proceedings of the
17th International Symposium on Computer Architecture, 1990.

[6] M. Karlsson and E. Hagersten. Timestamp-based Selective Cache Allocation.
In Proceedings of the Workshop on Memory Performance Issues, June 2001.
held in conjunction with the 28th International Symposium on Computer Ar-
chitecture (ISCA28).

[7] P. S. Magnusson, F. Larsson, A. Moestedt, B. Werner, F. Dahlgren, M. Karls-
son, F. Lundholm, J. Nilsson, P. Stenstrém, and Hiakan Grahn. SimICS/sun4m:
A Virtual Workstation. In Proceedings of the Useniz Annual Technical Con-
ference, pages 119-130, 1998.

[8] S. Woo, M. Ohara, E. Toorie, J.P. Singh, and A. Gupta. The SPLASH-2 Pro-
grams: Characterization and Methodological Considerations. In Proceedings
of the 22th International Symposium on Computer Architecture, pages 24-36,
1995.

[9] A. Seznec. A case for two-way skewed associative caches. In Proceedings of the
20th International Symposium on Computer Architecture, pages 169-178, May
1993.

[10] A. Seznec. A new case for skewed-associativity. Internal Publication No 1114,
IRISA-INRIA, 1997.

[11] A. Seznec and F. Bodin. Skewed-associative caches. In Proceedings of PARLE
’98, Munich, pages 305-316, 1993.

[12] R. A. Sugumar and S. G. Abraham. Efficient Simulation of Caches under Op-
timal Replacement with Applications to Miss Characterization. In Proceedings
of the 1993 ACM SIGMETRICS Conference, 1993.

[13] A.S. Tanenbaum. Distributed Operating Systems. Prentice Hall, international
edition, 1995.

[14] N. Topham and A. Gonzalez. Randomized Cache Placement for Eliminating
Conflicts. Technical Report ECS-CSG-37-98, 1998.

27

A SIMULATION RESULTS FOR A 16 KB CACHE

A Simulation Results for a 16 KB Cache

Figure 13, 14, and 15 shows the detailed graphs of the 16 KB cache simulations for
0 to 8 transformation steps.

AMMP EQUAKE
0.20% _, 5.00% 1.20% —
0.00% 4.75% — 110%
- 50 | 1.00% |
S -020% | ; 0.90% |
é 0.40% 425% — 0.80% _|
® - 7 4.00% — 0.70% —|
& -060% | 4\ 3.75% — 0.60% |
© \
& -0.80% —| 350% — gig: —
= 00w 825% 0.30%]
-1.00% | 30%]
| 0% 3.00% — 0.20%
-1.20% — 2.75% oi| 0.10% |
“140% T 280% AT T 1 0-00% g7 I
K & & & K K & & & K & & K KK K KK R R R L& L& L& R R R
&
F W AT FAF A A e’é@ x’é@ q/é@ ‘b’é@ ot o AT o
PARSER VPR_PLACE VPR_ROUTE
6.00% 25.00% 10.00%
575% | 24.00% | e 9.50% |
< A 9.00% |
2 550 23.00% | — 0
5 550% / SR 850% |
S oo | 2200% | [, - 8.00% _|
2 2100% | ff 750% _|
S 5.00% |
PR ,/ 20.00% | 700% |
S 475%] 19.00% _| 6.50% g
a0 6.00%
ﬁ/ 18.00% | p 550% |
AR AT 1 1700% AT 800% 1
PN O O AN O O O o SV O AT O O O N
YN A Y W o ¢ AT e N e W o o ATy Y N o W o o AT
(a) Lookahead cache
AMMP EQUAKE MCF

4.25% _
4.00% | G bl 0.40% _|
3.75% |)'/ /7 AT 0.30% _| —
350% — /) @ o /‘/

0.20% |
8.25% — ///// 0.10% - 2
300% — Jj/ / 0.00% /
275% _| g 7
2.50% 4 // ~010%
205% §/ / -0.20% — /
2.00% | -0.30% ¢
1.75% —|
150% —|

Miss rate reduction

~040% _|//
-0.50%
-1.20% T 1 1T T T 1 1% T -060% T T T T T T 1
K KR K KR K R KRR K R &K K K KRR KRR K K R R K K KRR
AV AV AN N ANV N o N AN N A W SV W
PARSER VPR_PLACE VPR_ROUTE
5.60% — 23.00% — 9.00% —
5.40% _| P 22.00% 8.50% _| - =
= 21.00% —
2 5.20% | 8.00% —|
5 / 20.00% |
S 5.00% — / / 19.00% _| 750% |]
% 4.80% —|/ / 18.00% —{ 7.00% —| /
@ 460% | / 17.00% —4 650% /|
= 16.00% —t /
4.40% — 6.00% —y
/ 15.00% —3 /
420% 14.00% | 550% |/
4.00% 13.00% 5.00%

T T

R K K K K KR K K K R R KR R KR KR KR KR K K K K K K K K K
Q’{’@ \'L;@ qfé@ %’é@ \x’é@ h’é?’ Wé@ «’ég q{é@ m’é& \'5@ qfég %’é@ v\"’@ @’ég ‘b’é@ «’L}g q{é& Q’L;@ \'L;@ qf;@ nf}? wé@ h’ég b’é@ «’é@ ﬂ,{é@

(b) Feedback cache

Figure 13: Miss rate reduction of the reduced SPEC 2000 benchmark suite for
n-step two-way elbow caches compared with a two-way set-associative cache.

28

A SIMULATION RESULTS FOR A 16 KB CACHE

BARNES CHOLESKY FFT
20.00% — 6.50%
17.50% —* 6.00%
g 1500% 550%
S 1250% | 5.00%
§ 10.00% | 4.50%
8 750 0%
g 0% 3.50%
; 250% — :
2 _0.00% S 3.00%
: \’\M*‘b‘b—b
=2 5% | 2.50%
-5.00% —| 2.00%
-7.50% —| i s e ey e R
10.00% T 1.00% L — [—
K R & R & K K KK R & R LK & K & K K
FELFLF (0/4@ F %;;‘? J;‘? AL TS
FMM LU_NC
20.00% — 67.50% —
e — === = |
17.50% | /;’;,_/. 65.00% 4 e
<
S 62.50% | \
5 15.00% | 7/ \
3 60.00% | \X
@ 1250% | i/ \
o) 57.50% _| \
€ 10.00% | \
i 55.00% —| \ ol
= 750% 52.50% | \\\‘\“‘A_‘
5.00% | 50.00% —| \\&
280% AT T B e e e HEL B
R | | | R R R R
LA O O O o O AN O O O o S O AN O O O N
N Y W W o AT oS N Y o WY o AT e YN ¥ o W o o AT
OCEAN_C OCEAN_NC RADIOSITY
-2.50% 56.00% —
-0.25%
-0.50% -3.00% 54.00% | =
S -075% -3.50%
g _1 .ggz/s _4.00% 52.00% |
3 -1 .50°/: -4.50% 50.00% — /
o
s -1.75% -5.00% 48.00% —|
2 -2.00% _5.50%
< -225% R 46.00%
—2.50% -6.00%
-2.75% 44.00%]
Toon -6.50%
8% L -7.00% 4200% 11
R & & & & & LK KK R & & R LR KRR KRR & & & & & & & &K K
e’L}(? \"} q,’é@ ‘b”;@ b\"} ‘9'5& ?{é? N’é\ %’é& Q’{’@ \'L;@ f\/é\ %’5& »(z} fo’é\ @'L}? N’z} 9)’{9& m’é\ \'L;@ q/z} f&’{’\ \x’é@ fr_{é\ ‘b’[’@ \’L;@ ‘b’é\
RADIX RAYTRACE VOLREND
17.00% —, 11.75% 25.00% —
16.00% 11.50% —| 24.50%
- " 24.00%
S 15.00% 11.25% — 23.50%
é 14.00% 11.00% —| 23.00%
2 13.00% 10.75% _| 22.50% —
2 22.00%
g 12.00% 10.50% — 21.50%
% 11.00% 10.25% | 21.00% %
10.00% 10.00% & 20.50%
20.00%
9.00% 9.75% —| 19.50%
8.00% .
L e s A L A s s e L s s By S B B E RN
K R R R R R KRR R R R R R R R R SRR
o F A NEF L F SELLS TS
WATER_N
14.00%
13.00% 5.00%
S 12.00% 4.00%
S 11.00% 3.00%
2 10.00% 2.00%
% 9.00% 1.00% —}
» 800% 0.00%
£ 7.00% -1.00% 1
6.00% -2.00% |
5.00% -3.00% —
_4.00%
#00% T T T 400 T
B R BB R R R RS BB R R R R R R R
O N A o W o AT o TN o W o o AT

Figure 14: Miss rate reduction of the SPLASH-2 benchmark suite for n-step two-
way lookahead elbow cache compared with a two-way set-associative cache.

29

A SIMULATION RESULTS FOR A 16 KB CACHE

17.50% —
15.00% —|
12.50% —
10.00% —|
7.50% —|
5.00% —|
2.50% —|
0.00%

Miss rate reduction

BARNES

-250% —|

-5.00%

19.00%
18.00%
17.00%
16.00%
15.00%
14.00%
13.00%
12.00%
11.00%
10.00%

9.00%

Miss rate reduction

K R R R R R R R R
S F LA T LSS

-0.75%
-1.00%
-1.25%
-1.50%
-1.75%
-2.00%
-2.25%
-2.50%
-2.75%
-3.00%
-3.25%
-3.50%

Miss rate reduction

OCEAN_C

,;@Q é@Q

&

14.00% —

13.00% —

12.00% —

11.00% —|

10.00% —

Miss rate reduction

9.00% —|

8.00% I

7.00%

R R KR K KR KRR
N fvfé@ ‘b’z}e u’{’@ @”? b’é@ «’4@ "o’é@

RADIX

K R R R R R R R R
A W W

14.00%
13.00%
12.00%
11.00%
10.00%
9.00%
8.00%
7.00%
6.00%

Miss rate reduction

WATER_N

e S 1

5.00%

BB R R R R R SRR
N o W o AT

CHOLESKY

550% —
5.00%
4.50%
4.00%
3.50%
3.00%
2.50%
2.00%
1.50%
1.00%
0.50%
0.00%

P

R R KR K K K K
S

of

LU_C
17.00%
1650% _|
16.00% _|
1550% |
15.00% —|
1450% _| /
14.00% _|
13.50% —| / |
1800% —
1250% _|
12.00% 3
1150%
11.00%
10.50%

T T T T T T T
9@9 (,!@Q e,@Q 9@9 é@Q a,@Q (,!@Q é@Q
v W o o AT

NG

g,@Q
%

OCEAN_NC

-3.50%

-4.00%

-4.50%

-5.00%

-5.50% —|

-6.00%

-6.50%

-7.00%

R R R KRR R KRR
a’é@ *é@ fv/é? ‘b’é@ w"@ @’é@ b’é@ «’é? "o’é&

RAYTRACE

10.75% —
1050% |
10.25% _|
10.00% —|
9.75% _|
9.50% 1
9.25% _|
9.00% |
8.75% |
8.50%

T T T T T T T
2B R F R R R R R R
¥ N ¢ W o o AT

WATER_S

5.50%
5.00%
4.50%
4.00%
3.50% |
3.00%
2.50%
2.00%

1.50%

& &
AV

BB R R R R R
Ve W o o AT

FFT
350%
3.00% | B
/
250% _| e
2.00% _|
150% |
1.00% |
050% _|
0.00% 11
R R LR R R R R R R
0’4@ \’L’& q/é? ‘bﬁ& W @’é\ o '\’é ﬂo’é\
LU_NC
70.00% _
68.00%

66.00% T<.::'\k_\\/é\\\

64.00% — \ \
62.00% I /’\
e
60.00% —
58.00% —|
56.00%
54.00% 1
B gF B R R R R R R
AV AN A o o
RADIOSITY
5450% —
54.00% —| P

48.50%

23.50%
23.00%
22.50%
22.00%
21.50%
21.00%
20.50%
20.00%
19.50%
19.00%

53.50% | T
53.00%

5250% _| /”\‘
52.00% |

5150% | // /\/\(

51.00% | /

5050%

50.00% —
49.50% —|
49.00% —|

LA L N B
K R R R R R R R R
& \'49 q/é@ ’b’é\ u’é@ g’é\ o «’é@ ﬂo’é\

VOLREND

E//\-/“ :
¥/
i

K R R R R R R R R
SFELL T TFF

Figure 15: Miss rate reduction of the SPLASH-2 benchmark suite for n-step two-
way feedback elbow cache compared with a two-way set-associative cache.

30

B RESULTS SUMMARY

B Results Summary

Cache architecture

do1s-2-110-G 84 ModI3|peEL 95 [%20°0- [%ST'ET [%65°E %026 [%€0'G8 [%62T°0 [%rseT [0095°€E [%857TZ %19 2T |%g8'9T |%96'S2{%ze 2 [0066 2T|0se v |0over w650 |w8s v [%09°2€ [w62s |6t [posrsT
0-G V1 MOGI3 | DeSH'SS (%200 (%96°ZT (66'E %956 (%I6'ES (%920 |%T6ZT %GOEE [%S0TZ %LL LT [%BEOT (%8BT 9T{%8Y'L [%6.7'8T|H8Z'S |%6EY [%SSO |%V9V |%LV'OF [%ES'S [%ES6 [p66L°ST
< SLPamaS |pev2 Tl %OV~ (%V6'L |%TTT |%E6'L |%TET8 [%06°0- %Z9TT [%9T'6Z [%G0'9T (%rZ'ST %8 ZT [HZEST6L6'y [HGT'ST|%689'8 |%O0SE (%260 (%ZIE [WIEBZ [N96E [WET'S |HrOET
o
S NN PamaYIS (POT8'TY (%18°9- [UET'L |%VZ'E~ [%68°L |(%0ZES [%ZTZ- (%198 [%TE'BZ |WTIZT [UET TT |%Z00T [%SS 9T %ZLE [WLZET |ov00T [%EST %050 [%0SZ (%9862 [%98'Z %882 |B6SITT
=
[
alg N POMAXS P6L0'ZY (%962~ (%VS'6 [%LV'0 |%LV'8 (%ZZZ8 [%V60- %6 TT %9608 [%T0'LT (%LZ'ST [%SO'ET %6L LT-%85'9 [%Zh'ST|%958 |%BE'E (%680 %ESE |%v9'ZE (WBEV [%V6'8 [P68YET
©
S 60782 (%ZT'0- |GLOZ (WTV'L |%6V'6 (%EZ'B8 [%SS0 |%EY'S |%STOE [%GE TE [ZTEZ [%09°0Z |%0I'EY %59'ST [%0Z 22 |M0ET |%96'S [%628'0- (%629 [%60L 6V (HEYL [%ES TT |65 22
8
= 6TZ'0L (%000 |%S6'8T [Ykh'L |%0V'6 %OETT [%ESO |%ET VT [%96'SE (%629 LT (%rb TZ [%EY OF |NSTEE [%EV'S [%00°0Z|%669Z |(%0V'S [WOEE |%LL'G [%O0E LY (HTEL [%696'TT |65 LT
6ZTTS [%VT'0 (%09°9T [%0T'L %956 (%900 |%ESO |%ET'LT [%Y0°VE %28 T [%ES 6T %02 6T |%8Y'ZZ [%EB'S [%08'ST|M662°0 |%L0'S |%6LZ |%8ZS (%6 'Sy (HESD [%6ZT TT|H6E VT
M- |POEI'6Z |HVED [%L9°TT (%LTS |%TS6 (HTTO [%Sr'0 |[W6T'ST (%SL LT |%86°0T [%ZZ vT |%GZ'ST [%0T'SZ (%928 [%8V'ZT %820 (%86'E (%.0T [%SB'E %LLOE [%0Z'S %692 |BovOTT
arel SSIN m-z|pZ9T |%r9'S [%8Z0 |%68T |%Z8'0 |%L9TT [WOZET [H9SL [%9V'0 |WOET [%LV'T |%6V0 (%S0 |%VZO |[WTSE |WEZ0S |%8TY |WELET (%98 |%OTT |%8L'S [%Z9'ST|BovTL
dors-2-110-G 84 ModI3|poL90- %627 (%8BT %522 %G5 9T %9299 [06z8 0~ [%9T 9~ [%698°ES [%8S €T [%29°0T [Tz ez [wbz's |w6rs [Tz aT|00T- |09ty w0 |wess |wtezz [woss |wose [peoszt
N0-G V1 MOGIZ|De0L'T (%867 (%69 (%LL'E %0 9T [T L9 %6V 0~ (%05 G- (%V6°ZS [%8SET (WIT'TT [%09'EZ [%Z9'S (%T8'Y (460G 'ST| %680~ (%ITy (%80 %69°S (%69°TZ (%LL8 [%TL9 [r98ZT
s SL PamaS |p666'9T (%EZT (%86'S [%VO'T (%6 TT (%LP'SO (%662~ %GZE- (%69'PY (%088 (%266 [%TZ 0T [%66°ZT %85 0~ [HZ8ET %6500~ (%69°Z |%BED (%8Y'y (%ZZ LT %809 [WET'S |WTZTT
S NN PaMaYIS |PH0EIT |%GE 6~ (6’8 (%65 (%806 (%8BT L9 %L T'S- [%G6 7~ [%EB'SY (%007 [%66'S (%Z99T [%L8'PT %LLT |%68TT|M8Z0 [%8T0 |%SET- [%6Z'E (%VEET [%ESY |%ISE |B6SES
[
alg N1 PamaS peSh 9T (6T T |%TEL |%OE'0 |%60°CT [YTE 99 %062 [%L5 E~ (%ZG Y [%08'8 (%G00 [%EETZ (WIT'ET (%6Z'E [WTET|%0T0- (%VSZ (%900 (%I8Y |%ZT'LT [%ZG9 [%9T'S [r695TT
©
9|z -005SY AIINd (p692°02-(%6T9'6 |%6T LT [%.G'T |%8Z'6T (%288 (%86T |%96L~ (%209 [%ST'ZZ [%6L°ST [%00'ZE (NOV'Z [%S8'y %292 |MEE T~ (%LY'S |%O8'T |%STL (%S LT [%9L0T %6858 |T6VT
8
= M-9T |P6LS 2T~ (%L2°0T %28 LT [%TTL |%89'8T [%ET TT |%E0 T~ %95 6~ %8885 (%S9'6T [%O0E VT [%96°LZ [%SZTZ (%0S'S [%6LTZT|%6ZT- (%09'S [%.8'C %089 |%ZT9Z [%IEOT [%0v'8 [p6v0'TT
m-8|poOv 2~ %056 (%TV'8T (%LvZ |%0L°8T [%STT (%6610~ 9T 0T-{%6TY 9SG |%60°LT [%TV'ET |%EZ'IZ [%90'Z |%Tr'S [USTTT|WT60- (%02'S |%ZvZ (%8T'9 |WEL'EZ (%626 |WELL |B6OZOT
M-y |PoTTZ- (%688 [%T6'9T (%80 |%8V'8T (%80 (%122~ (%28 [%ESZE [%LT0T (%8BT TT |%0STZ [%8Y'T |%8LY [%99'8 [M6T0 [%6TV (%06T [%L97 |%TSOZ %808 [%65°9 |B6v0'8
arel SSIN M-Z|DOV'E (WSEL HEVO (GTV'E |WEEO [%TBTT |%O0YET [UESE (%L60 (WIT'E %L0T (6690 6/ST (%ZEQ [9TV |l 0S %69V |%ETOZ %BEOT [%0SZ (%6ZL PoS6 9T [6008
dons--110-G 84 ModI3|pe99 T~ [%98°0- [%660°9€ [%660°8T |%EE 9T %685 Zr [%8T'9 [%es ™y %Sz 6E [9se |%z6'9 |%9e8T [wss'9 |%0s:ee [vovyoT|ezoT- |wwese [wiTe |wes9 |0tz [weTsTleTie [pozriT
0-G V1 MOGIZ | DSV T~ (%S8'0~ (%08"LE [%EZ'BT |%WTL'ST [%LT LY (%969 [%VS'S (%BL'GE [USV'E (%V6'9 |%T6LT [%E'D |%08'6Z [%60L 9T |%09T- (%T0L |[%0V'E %ES' |%8Z'LZ [WEE VT [%65°6 [p695+T
s SLPamaiS |M6ET [%ST'S (%6V°LZ [WTO'ST [%G6L |%ET LY [%ZT'O (%99S |%68'SE %L T'T |%SS'S [%OL VT (%667 (%868 [WZvET |06y T- |(%Z8T |WEEE |%LLV [%ST'ZZ [%zh 0T [6r8'9 |povb Tt
E 3NN PamaYIS (96T |TO'E %8V LZ (WIZET [WTV'd |%v68Y [%rTy (%907 [%ZL'SE |%VZT- [%09'E |%ZEVT [YOET |%VTVZ [99'ET [povy T- 96650~ [%rLT [%EV'E |%6L°9T [%90'8 %629 |B696°0T
[
gl MY POMAXS [PSE'T [%V8'Y |%68'8Z [%S0'ST [%8S'6 [%T8'8Y (%69 [%SE'D |%IZ'SE (%90 T (%V6'S |%L8'9T (WIS |%SLZZ [%G6 VT | %Ly T-|%vTZ [%8V'E (%ZZ'S |%6TTZ (%28 0T [%06'9 [reesZT
©
w|” DGEL'E~ (Y6E S |HEETO (%669 VT |%ZZ TT [%TOW8 (%62 [WOV'E |%6STY [WZT'y (%958 (%Z9°0Z [%V6L (%ZS B |%6E0Z |P6LL T~ (%ZT 0T [%I0'S (%098 [%660°EE (%66°LT 62T 2T |0e6 LT
2
= GG E~ (YET V- |WEBT (%O0E'ST | %8BT [%BETT [%0Z'E~ [%66'E (%6L9F [%BL'E (%ZT'8 (%IO'EZ [%0SL [%ST'8E |WEETT|M60L T~ %90°0T %950 |%ZT'8 [%E0ZE |%SE LT [%620'TT |G TT
T2 E~ (%8 E~ |%0SZT %6 ST |%6SEZ (WGL'E |WIEE- [W6B'E |H6TZE [WZO'E (%069 [%LTZZ %669 (%L1 9 |%ZZ TT |69 T~ (%G6'8 (%6670 [%OEL (%VE6Z [%0v"9T [YET OT |p606"0T
M |PoSZZ- %8BT E- %9V ET |%ES'ST [USE'SZ [HEV'E [TV E~ (T80 [%SE'BZ (%6 [%86'S (%L0°BT [%60'S |%ISEE [UvZ 0T 6221~ %029 |%0L0 [%IT'S %99°2T [%S9°ZT [%26'9 |B6vT'6
arel ssIN M-Z|po99y |WLETT [WITT |%Zr'S |%rTT |%0ZZT (%S LT (%80T (%822 |%Tv'y [%9I8ZT |WEED |[%ELT (%I9S0 [.S'S |M6V'TS |%SS'S |%GL 0E [%SSZT (%V8Y (%926 [%L0°6T|B6z9'6
w [}
>) w) o
ol & o 2% E - w « 303 &
w w z z Q = 5 @ @ 9 X x] Q g [
u o o Q 2 Z o x = hd i i @ [<] & | I <
EENEEEEEE R EEEEEENEEEE D
> >
@ o) g i 2 2 ol ol o x o 2 < i s g S S 2 2
¢-HSV1dS Padnpal-000¢Z O3dS
slewyouag

1Z€S

Table of miss rate reductions for different cache architectures and s

compared with a two-way set-associative cache of similar size.

Table 5

31

C ESTIMATING BLOCK SURVIVAL TIME

C Estimating Block Survival Time

A timestamped block that remains unused for a long time might cause aliasing. To
avoid this and to find a good trade-off for timestamp resolution, is is necessary to
estimate an upper bound for how long a block might reside unused in the cache.
Since cache allocations are used as time unit, there is one allocation per timer
tick. By assuming that the replacements occur randomly® throughout the banks,
statistical means can be used for such an estimation.

Using probability theory, the probability function is (geometrical distribution)

pk)=q¢p p=q-1,

where p is the probability for a specific block to be replaced each tick and p(k)
is the probability of exactly & number of replacements before this occurs. The
distribution function

F(k)=1- Zp(i)

is then the probability for an unused block to remain in the cache after ¥ number
of replacements. For a cache consisting of NV blocks the probabilities are
1 _N-1
P=N 177N
and the distribution function becomes

Example: Probability of a block surviving 2N replacements.

Assume an N = 512 block cache and calculate the probability of a cache block
surviving for more than 2N replacements;

1024

2N i i
1 N-1 1 511

To avoid aliasing the timer must contain enough bits. With the formula above
it is easily shown that very few cache lines will survive untouched for more then
4N (F(4 % 512) ~ 1.9%) replacements.” Therefore logs(4N) bits can be considered
enough. In the 512 cache block example this is equivalent to log2(2048) = 11 bits.

6This is generally not true in a cache even though the elbow cache, by using hashing functions,
comes closer to random. However, since a cache usually is biased towards replacing old blocks and
an upper bound for the survival time is to be found, the result from the calculation will probably
be overly conservative anyway. The real survival times are likely to be much shorter.

7"While running applications that have a small working set that fits entirely in the cache -
e.g. only conflict misses occurs, blocks may stay unused in the cache for a long period of time
experiencing aliasing. This problem is not very severe however, since these blocks are rarely used
anyway.

32

Master theses from the Uppsala Architecture Research Team

UPTECF 00093 Zoran Radovic: DSZOOM - Low Latency Software-Based Shared
Memory

UPTECF 01017 Dan Wallin: Performance of a High-Accuracy PDE Solver on a Self-
Optimizing NUMA Architecture

UPTECF 02033 Mathias Spjuth: Refinement and Evaluation of the Elbow Cache

UPPSALA
UNIVERSITY

Department of Information Technology, Uppsala University, Sweden

