Performance of a High-Accuracy PDE Solver on a
Self-Optimizing NUMA Architecture

Dan Wallin
Uppsala University, Information Technology,
Department of Scientific Computing

February 23, 2001

Abstract

High-accuracy PDE solvers use multi-dimensional fast Fourier trans-
forms. The FFTs exhibits a static and structured memory access pattern
which results in a large amount of communication. Performance analysis
of a non-trivial kernel representing a PDE solution algorithm has been
carried out on a Sun WildFire computer. Here, different architecture,
system and programming models can be studied. The WildFire system
uses self-optimization techniques such as data migration and replication
to change the placement of data at runtime. If the data placement is
not optimal, the initial performance is degraded. However, after a few
iterations the page migration daemon is able to modify the placement of
data. The performance is improved, and equals what is achieved if the
data is optimally placed at the start of the execution using hand tuning.
The speedup for the PDE solution kernel is surprisingly good.

Contents

1 Introduction 1
2 A generic PDE solver using a pseudospectral method 3
3 A self-optimizing cc-NUMA architecture 5

4 Theory of fast Fourier transforms 6
4.1 Discrete Fourier transform 0000 6
4.2 Fast Fourier transform 6
4.3 The Cooley-Tukey Algorithm 7
4.4 The Gentleman-Sande Algorithm 8
4.5 Bitreversal oL 8
46 Inverse FFT Lo 9

5 Optimizing the serial 1D FFT 10
5.1 Technique 1: Reduction of floating point operations 10
5.2 Technique 2: Breaking the iterativeloop 11

5.2.1 Matrix-vector multiplication 12
5.2.2 Matrix-matrix multiplication 12
5.2.3 Non-BLAS matrix-vector multiplication 12
5.3 Performance of the serial 1D FFT 12
5.4 Serial optimization conclusiono L. 15

6 Parallelization 16
6.1 Parallelization techniques 16
6.2 Multiprocessor architectures, system and programming models . 17
6.3 Parallelization of multiple 1D FFTs 19
6.4 Parallelization of the pseudospectral solver kernel 19

6.4.1 Impact of migration and replication 20
6.42 Speedup 21
6.4.3 Impact of problem size 22

7 Conclusions 24

A Code Excerpts 26
A1 Original Gentleman-Sande Algorithm 26

A2 Original Inverse Cooley-Tukey Algorithm 27

1 Introduction

The kernel in many important computational codes consists of multi-dimensional
fast Fourier transforms, i.e. 2D, 3D, or higher-dimensional FFTs. One area
where such computations arises is the numerical solution of partial differential
equations (PDEs) using spectral or pseudospectral discretizations. Such meth-
ods are used in a wide spectrum of applications, e.g. computations of turbulent
flows for optimization of aircraft performance, numerical weather prediction,
and ab initio computations for predicting the outcome of chemical reactions.

When using discretization methods employing structured grids, the data is
represented as large multi-dimensional arrays where the size is determined by
the number of grid points. Using many grid points generally yields a more
accurate solution. For multi-dimensional problems, the resolution is in practice
often limited by the amount of main memory available. The major advantage
of employing pseudospectral discretizations is that, for many problems, it gives
the best possible accuracy for a given number of grid points.

The time-consuming part in a PDE solution algorithm consists of comput-
ing approximations of the derivatives. Standard schemes with low or medium
orders of accuracy use a local finite difference or finite element approach, where
the derivative in a grid point is computed using only a small number of function
values in neighboring points. For all reasonable parallel computer architectures,
schemes of this type are very efficient. The arrays are distributed block-wise
over the nodes, and the processes/threads in a given node performs the com-
putations for the grid points in the local block. Remote accesses to memory
in other nodes is only required for points close to the block boundaries. Fur-
thermore, because of the surface-to-volume effect, the performance impact of
communication decreases as the number of grid points is increased.

In a pseudospectral scheme, approximations of derivatives are performed us-
ing multi-dimensional FFTs, which are global multi-stage grid operations. Each
stage has a specific communication pattern involving a large amount of data, and
every value in the solution array is updated using information originating from
all other grid points. At a first glance, this is a very difficult situation for par-
allel computations. However, since the communication patterns are static and
highly structured, efficient parallel implementations are possible. A number of
quite efficient parallel implementations for multi- dimensional FFTs have been
developed. For example, the FFTW package [9] includes both a multi-threaded
(Pthreads) and a message passing (MPI) implementation.

A multi-threaded implementation of a kernel representing a PDE solver em-
ploying a pseudospectral discretization [8] is studied in this report. The aim is
to examine the parallel performance of an important non-trivial algorithm with
significant inherent communication on a cc-NUMA system with SMP nodes [11].
For this realistic PDE solver problem, performance effects of self-optimizations
such as page migration and replication are studied. A similar investigation has
earlier been performed for a finite difference solver kernel [17], which only in-
volves local grid operations and very little communication. It is of great interest
for a programmer to know how successful the optimization techniques are. The
result determines the importance of performing careful hand tuning, considering
data allocation and thread scheduling policies.

The PDE solver algorithm based on a pseudospectral solver is described in
section 2. In section 3 the Sun WildFire computer system is introduced. The

theory behind the fast Fourier transform is given in section 4 followed by a
number of techniques of optimizing a serial 1D FFT in section 5. Finally, the
PDE solver is parallelized and several performance experiments are presented
in sections 6 and 7.

2 A generic PDE solver using a pseudospectral
method

The high-accuracy derivative approximation in a pseudospectral solver is per-
formed by a convolution, i.e. a transform to frequency space, a local multi-
plication, and an inverse transform back again. For a uniform grid, the FFT
and its inverse yield a very efficient tool for the transformations, resulting in
O(n?log, n) arithmetic complexity for computing the derivatives on a grid with
n? grid points. Normally, the computation is performed within an iterative
solver or a time-marching procedure. Hence, a representative kernel for a pseu-
dospectral solver is an iteration where the loop body consists of convolution
computations.

The standard implementation of a 2D FFT is to first perform 1D FFTs for
all the columns in the data matrix, and then do the same for all the rows. In a
convolution computation, this results in a five-stage scheme described in Figure
1.

B B 00000000 B, B
- 00000000 -
B B 00000000 B, B
- 00000000 -
B B 00000000 B, B
- 00000000 -
B B 00000000 B B
e, S 00000000 -

1. FFTsof thecolumns 2. FFTsof therows 3. Pointwise multiplication 4. FFTsof therows 5. FFTsof the columns

Figure 1: A single convolution computation for a 2D problem.

Each arrow In Figure 1 represents a 1D FFT. For a vector of length n, this
is a log, n-stage computation involving a rather complex but highly structured
communication pattern, described in Figure 2.

o o o o
o o 0 o0
o o o o
_ oo oo
o o o o
o o 0 o0
o o o o
o 0 o

Figure 2: Communication scheme for a 1D FFT, often referred to as a FFT
butterfly.

In general, it is sufficient to study 2D problems to get a picture of the perfor-
mance also for multi-dimensional pseudospectral solvers, since the FFTs for the
extra dimensions will be performed locally.

There are a number of different FFT algorithms available, for a review see,
e.g. [15]. In the experiments presented here, an in-place radix-2 Gentleman-
Sande version of the FFT, and a radix-2 in-place Cooley-Tukey version for the
inverse transforms, further described in section 4, have been used. This allows
for a convolution algorithm where no bit reversal permutations are required.
This is important, since the bit reversal permutation introduces a lot of com-
munication, and affects the performance significantly. Also, the FFTs should
be performed in situ. If workspace is used, the maximal number of grid points
is reduced, leading to a less resolved solution.

3 A self-optimizing cc-NUMA architecture

The Sun WildFire system [11] is a prototype architecture developed to evalu-
ate a scalable alternative to symmetric multiprocessors (SMPs). WildFire can
be viewed as a cache coherent non uniform memory architecture system (cc-
NUMA) with self-optimizing features, built from unusually large SMP nodes.
Up to four nodes, each with up to 28 CPUs, can be directly connected by a
point-to-point network between the WildFire Interfaces (WFI) in each node.
For a description of various parallel computer architectures see [13].

The experiments presented in this paper have been performed on the two-
node WildFire system Albireo at the Department of Scientific Computing, Up-
psala University. A schematic sketch of Albireo can be found in Figure 3. Each
SMP node has 16 processors (250 MHz UltraSPARC II with 4 Mbyte L2 cache)
and 4 Gbyte memory. Logically, there is no difference between accessing local
and remote memory, even though the access time varies: 310ns for local and
1700ns for remote memory. Coherence between all the 32 caches is maintained
in hardware, which creates an illusion of a system with 8 Gbyte shared memory.

A WildFire application can be optimized by explicitly placing data in the
node where is most likely to be accessed. In order to ease the burden on the
programmer, different forms of optimization are supported by the system. A
software daemon detects pages which have been placed in the wrong node and
migrates them to the other node. The daemon also detects pages used by threads
in both nodes and replicates them. WildFire’s cache coherence protocol keeps
the coherence between replicated memory pages with a cache line granularity.
This is called Coherent Memory Replication (CMR), but the technique is also
sometimes referred to as Simple COMA (S-COMA) [10]. The maximal number
of replicated pages as well as other parameters in the page migration and CMR
algorithms may be altered by modifying system parameters.

SMP SMP
CPU CPU

BOARD BOARD
WILDFIRE WILDFIRE
INTERFACE INTERFACE

BOARD BOARD
[|
L |
[|
[]

Figure 3: Schematic sketch of the Sun WildFire system Albireo.

4 Theory of fast Fourier transforms

The complexity of computing the discrete Fourier transform changed greatly
in 1965, when Cooley and Tukey [4] showed that a discrete Fourier transform
could be computed in O(n logn) operations. This was to become the fast Fourier
transform. Computing the discrete Fourier transform using a straight-forward
algorithm requires a much greater effort of O(n?) computations.

4.1 Discrete Fourier transform

The general formula for the Fourier transform of a continuous function is given
by

+oo
y(w) = / z(t)e Iwtdt . (1)

—00

The discrete Fourier transform is the counterpart of (1) in a n-dimensional
space,

n—1
yk22w2j$j k=0,...,n—1, (2)
=0

where

wki = ek (3)
Instead of expressing the formula as a sum, a matrix notation can be used,
y=Fyx, (4)

y is a vector of size n and Fj, is called the Fourier matrix, where the entries are
given by
[Flis =wif =™ %Mk j=0,.,n—1. (5)

n

4.2 Fast Fourier transform

The idea of the fast Fourier transform (FFT) is to find a relationship between
the Fourier matrices F;, and F},/, so that the problem of size n can be solved by
combining solutions of p smaller problems of size n/p. This is the same approach
as in many other applications, e.g. sorting and searching problems, normally
referred to as the “divide and conquer” technique. The benefit of this approach
is that the problem can be reduced to O(n logn) complexity. The focus will be
on so called radix-2 FFTs, that is FFTs with p = 2, dividing the problem into
two problems of half the size in each step.

The discrete formulation of the Fourier transform (2) can be split into two
smaller sums

no1 (n/2)-1 (n/2)-1
yp =y witzi= Y wltmyt+ Y Wy = 6)
3=0 3=0 3=0
(n/2)-1 (n/2)—1
k) k 7 n
= Z wﬁb/z,xgj + wfb Z w;/2332j+1 =y t+ wﬁyk . (7)
7=0 7=0

For k > n/2 the relation W/ = %y ik

implies that

ik — ok :
e'mwy = —w;, holds, which

+
a®
N
I

{%=%+%% .
Yn/ork = Yp — Whl -
In a matrix notation, the same relation can be formulated as

— _(Injz Qup F.p 0 even z; \ _
y == (Lijs —Qnyo 0 Fup odd z; | —

In/? Qn/2) < Fn/2 0 >
= Pz,
(In/2 _Qn/2 0 Fn/2 *

where I,,/5 is the identity matrix of size n/2 and

1 0 0 ... 0
0 wp, 0 ... 0
2
0 0 0 .. Mt

The matrix P, is a permutation matrix that reorders the vector z so that
all even vector elements are on top and all odd vector elements at the bottom
of the new vector; a so called bit reversal. The FFT is in this formulation well
suited for solving with a recursive algorithm.

4.3 The Cooley-Tukey Algorithm

The Cooley-Tukey algorithm is an iterative version of the FFT. It is based on
a factorization of the Fourier matrix Fj, described above. If n = 2!, the matrix
can be factorized as

F, = Ay . AyA PT . (8)

By applying each matrix A, to the input vector x in the order ¢ = 1,2, ..,t the
discrete Fourier transform can be computed iteratively. The matrix A, has the
form

By 0 ... 0
0 By ... O

All = . - . . Ll
0 0 ... By

where the number of block matrices Baq is given by 2¢=9. The block matrix Baq
is the same matrix as seen in earlier equations

Iyajs Qoayo)
Byq = .
> (Inajy —Qayn
The FFT can be computed in situ according to
r+ Pz
for q=1:t

x4 Agx
end

4.4 The Gentleman-Sande Algorithm

Another way of computing the fast Fourier transform is to transpose the factor-
ization of the Fourier matrix Fy,. This is the Gentleman-Sande algorithm, having
the same complexity as the Cooley-Tukey framework. In the Gentleman-Sande
algorithm, the Fourier matrix becomes

F, =P, AT AT . AT . (9)

This transposition does not change the matrix Fj,, since it is symmetric. Note
that, when transposing the factorization, the bit reversal step of the FFT can
be carried out as the last step.

Transposing A% leads to a transpose of the block matrices, which now will

look like
BT, — (Layy Inays) ‘
Qaajz —Qoayo
The algorithm is very similar to the Cooley-Tukey algorithm, differing only in
the inner-most loop of the FFT and in the order that the matrices are multiplied
with the input vector. The Gentleman-Sande algorithm can be programmed as

for q=t:-1:1
T 4 A5$

end

z + Pyx

4.5 Bit reversal

The fast Fourier transform based on the Gentleman-Sande algorithm contains
two major steps. In the first step the Fourier transform is computed using so
called butterfly operations (see Figure 2). The second step of is to rearrange the
elements to the initial positions, using a bit reversal algorithm. The bit reversal
algorithm is non-trivial and requires the same amount of integer arithmetic
operations as the butterfly requires floating point operations, O(n logn).

The name bit reversal comes from way the reordering can be computed. A
3-bit example can be found in Table 1. In the conversion from the input to the

input order | input order | output order | output order
(decimal) (binary) (binary) (decimal)
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Table 1: Bit reversal example

output vector, the bits are just rearranged with the most significant bit taking
the position of the least significant bit etc.

In an efficient implementation, the bit reversal is normally implemented very
similar to the FFT-algorithm described above. The permutation matrix P, can
be factorized as

P,=RiRy..R,, , (10)

where each R, matrix looks like

II,e 0 ... O
0 Ipe ... O
R, =) .)
0 0 ... Iy

The matrices Il»s are block matrices on the diagonal of the matrix R, called
“odd-even sort” matrices. These matrices contain ones in the odd positions in
the row vectors making up the top half of the matrix and in the even positions
in the row vectors making up the bottom half of the matrix, e.g.

I, =

S o O
o= OO
SO =O
= o OO

4.6 Inverse FFT

The inverse FFT is very similar to the forward FFT. The inverse of equation
(4) yields, in the Cooley-Tukey case, a factorization

The algorithm is unchanged except that the complex conjugate of the A
matrices should be used. At the end, the vector should also be normalized. The
Cooley-Tukey inverse FFT can be programmed in the following way

T+ P,x

for q=1:t
T+ Ay

end

x4+ zx/n

5 Optimizing the serial 1D FFT

The first step in designing efficient FFTs in a PDE solver is to obtain good
performance on a single non-parallelized problem.

The original code of the fast Fourier transform was written in Fortran 90
based on the Gentleman-Sande algorithm without the bit reversal phase. In the
one dimensional case the algorithm is applied once on a one dimensional array
of size n = 2!. The original code can be found in appendix A.1 and can in a
simple notation be written as

for q=t:-1:2
T Agx

end

z— ATz

The input vector z is operated on as
z=AT((A1(A))) . (12)

The last step, multiplication with Ay, is treated in a separate step. The final
result is stored in the same vector as the input vector, resulting in a non-bit
reversed Fourier transform performed in situ. The reason for treating the last
step, multiplication with A; separately is to avoid unnecessary operations. The
first position in the (2,-vector has the value 1.0 and it is therefore unnecessary
to multiply with this term. The block matrix Bs1, in the diagonal of A;, will in

this case look like
1 1
(L),

Each multiplication requires 6 floating point operations in this complex case.
By avoiding these multiplications, the number of floating point operations will
be reduced.

In this version of the Gentleman-Sande algorithm, the Q,-vector is computed
only once before the FFT-subroutine is called. This is also an efficient way of
reducing the number of operations. Another possibility would be to compute
the vector for each size inside the algorithm, but many of the computations
would be repeated in that case.

The number of floating point operations in the original code is (10t —6)-2¢~1.

5.1 Technique 1: Reduction of floating point operations

A very easy way of further reducing the amount of computational work is to
avoid all unnecessary multiplications with wg, having the value 1.0. This can
be done by modifying the code of the matrix-vector multiplication carried out
in the loop over all matrices A,. In each lap of the loop the multiplication with
the wg values is carried out separately. The number of computations can in this
way be reduced not only in the last matrix-vector multiplication but also in the
earlier multiplications. The total number of floating point operations can now
be computed as

2t(5t —6) +6 . (13)

10

5.2 Technique 2: Breaking the iterative loop

Running the program leads to a lot of overhead when performing the last matrix-
vector multiplications. The reason is that the non-computational work will
become demanding when the inner loops of the matrix-vector multiplication
has to be carried out many times for a small problem. This can be avoided by
breaking the loop at an earlier stage and multiply with a larger precomputed
matrix.

As described earlier the FFT, in the Gentleman-Sande formulation, can be
factorized as

y=Foo=P,ATAT .. Alo =RiRy... RRATAT .. Al . (14)

Given the size of the problem, the matrices AqT can be computed in advance
and will contain a constant block matrix Bas on the diagonal. The last matrices
to be multiplied with the input vector contain small block matrices and can be
precomputed and stored as a constant matrix in the program. For example, the
block matrices in A; and As look like

1 0 1 0

1 1 0 1 0 1

By = < 1 —1)andBQz = 1 0 -1 0
0 — 0 1

The multiplication of By1 and By2 with pieces of the input vector, correspond
to the two last laps in the loop. The smaller the size of the Baq-vector the larger
number of times the multiplication has to be performed.

Knowing the size of the problem, it is also possible to multiply the A; and A,
matrices to reduce the number of iterations. The resulting matrix A; » = A1 4>
has a block matrix Bsis2, that will look like

BlZ= . .
272 - =1 1

T =1 =i

—_— =

A problem of size n can now be computed by applying this Bsis2 matrix n/4
times to pieces of the input vector. Unfortunately this matrix is not symmetric,
which is the case with the original F,, matrix. The reason for this is that no bit
reversal has been carried out on these matrices. Performing a bit reversal is not
trivial in this algorithm.

The block matrices By1, Baig2, Bj2g232 and Bj2923242 have been precom-
puted, having the sizes 2 x 2, 4 x 4, 8 x 8 and 16 x 16 respectively. These
constant matrices were stored in an initialization stage of the FFT solver.

The number of floating point operations will be the same for all tested ways
of breaking the iterative loop, described in section 5.2.1, 5.2.2 and 5.2.3. The
number of flops can for a problem of size n = 2! be calculated with the formula

2! (10 (t—qq) +8-27 — 2) , (15)

where ¢ represents the stage at which the loop is broken, e.g. for ¢ = 2 the two
last laps of the loop are avoided and are replaced by multiplying with A ».

11

5.2.1 Matrix-vector multiplication

The first approach was to apply the block matrix of size p to n/p pieces of the
input vector. Each matrix-vector multiplication was carried out by a call to
the BLAS-2 subroutine, ZGEMV [5]. This routine multiplies a general matrix
with a vector with complex variables of double precision. Unfortunately, the
routine requires that the result is stored in a temporary variable of the same
size as the number of rows in the matrix, which leads to some extra operations.
Especially when the problem is large, the number of calls to the subroutine
increases rapidly.

5.2.2 Matrix-matrix multiplication

Another possibility was to rearrange the input vector into a matrix with pieces
of the vector stored row-wise in the matrix, according to Figure 4.

m| —
c 4an
D
-
n

Figure 4: The input vector of size m x n is reordered into a matrix of size
n/4 x 4m.

This gives two general matrices that can be multiplied with each other. Using an
efficient BLAS-3 subroutine, ZGEMM [6], good performance could be expected.
After the multiplication the resulting matrix has to be reordered once again into
a vector of size n, thus leading to some extra work.

5.2.3 Non-BLAS matrix-vector multiplication

The last approach was to implement an own matrix-vector multiplication routine
not based on a BLAS library. By doing this, work could be avoided by not calling
any subroutines.

5.3 Performance of the serial 1D FFT

In the following section results are presented for the different implementations
written for the serial 1D FFT. There are two kinds of graphs; graphs showing the
wall-clock time for solving a problem for different sizes of problems and graphs
showing the number of floating point operations per second (flops/s) that each
implementation yields. The different versions are compared to the original code
in appendix A.1.

12

The O(n logan) complexity of the FFT makes it difficult to compare the
timing results for problems of different sizes. The timing graphs show the time
divided by n log(n) on the y-axis to get a size independent value of the time
required for a single operation. All graphs have the logarithm of the size on the
X-axis.

The first test was to use technique 1 which reduces the number of floating
point operations by avoiding multiplications with the value 1.0 contained in the
vector Q.

x10° 15X 10

—— original FFT —+— original FFT
—e— FFT with reduced number of flops —e— FFT with reduced number of flops

t/nlog(n)
=3
e

flops/s

0.2r

10° 10 10 10 16 10
(a) Time (b) Flops/s

Figure 5: FFT with reduced number of floating point operations compared to
original FFT (technique 1).

As can be seen in the graphs in Figure 5 the new implementation was almost
equivalent in speed to the original code. The new code seems to be somewhat
faster for small problems of size smaller than 10'. The difference in number of
floating point operations is larger relative to the problem size for these problems.
Unfortunately, these problem sizes are too small for being of interest in a real
application. The performance gain is therefore limited using this technique.

All the three algorithms that break the loop at an earlier stage and multiply
with a precomputed matrix (technique 2) gave rather similar timing results.
None of the algorithms were faster than the original code. According to the
graphs in Figures 6 - 8, the number of flops/s becomes large when the loop is
broken at an early stage, that is the block matrix is large. Unfortunately many
of these extra operations are introduced in the matrix multiplications and are
unnecessary in the original implementation.

The non-BLAS multiplication was the fastest implementation of technique
2, even though the differences were small. The reason for this was probably
that this method caused the least amount of overhead when rearranging the
input vector and calling subroutines. The worst implementation was the matrix-
matrix multiplication. The rearranging phase described in Figure 4, takes a large
amount of time.

13

1 sx 10 x 10
' — original FFT — original FFT
—— matrix-vector FFT, break at q=1 —— matrix-vector FFT, break at q=1
—— matrix-vector FFT, break at q=2 2 —— matrix-vector FFT, break at q=2
—s— matrix-vector FFT, break at q=3 —e— matrix-vector FFT, break at q=3
—— matrix-vector FFT, break at g=4 —— matrix—vector FFT, break at q=4
1k
g 0
g 2
= o
0.5r 4
o 1 ’ 2 : 3 : 4 : 5 6
10 10 10 10 10 10

(a)

Figure 6: Technique 2, the loop is broken at stage ¢ and a multiple matrix-vector

Time

multiplication is performed.

(b) Flops/s

-6
15X 10 i _ oX 10 .
— original FFT — original FFT
—— matrix-matrix FFT, break at q=1 1.8 —— matrix-matrix FFT, break at g=1
—— matrix-matrix FFT, break at q=2 —— matrix-matrix FFT, break at q=2
—e— matrix-matrix FFT, break at q=3 1.6 —e— matrix-matrix FFT, break at g=3
—— matrix-matrix FFT, break at q=4 —— matrix-matrix FFT, break at q=4
1k]
= .
g g
5 o
0.51 1
0 1 ’ 2 : 3 : 4 : 5 6
10 10 10 10 10 10
n n
(a) Time (b) Flops/s

Figure 7: Technique 2, the loop is broken at stage ¢ and a matrix-matrix mul-
tiplication is performed.

14

1.2

— original FFT — original FFT

—— non-BLAS matrix-vector FFT, break at g=1 25 —— non-BLAS matrix-vector FFT, break atq=1 ||
1 —— non-BLAS matrix-vector FFT, break at q=2 || —— non-BLAS matrix-vector FFT, break at q=2

—e— non-BLAS matrix-vector FFT, break at q=3 —e— non-BLAS matrix-vector FFT, break at q=3

—— non-BLAS matrix-vector FFT, break at q=4 —— non-BLAS matrix—vector FFT, break at q=4

t/ nlog(n)
o o
() =)

I
IS

o
N

o
o

[
o
=
o
=
o
=
o,
=
o,
=
o,
=
o
=
o
=
o
=
o,
=
o,
=
1S)

(a) Time (b) Flops/s

Figure 8: Technique 2, the loop is broken at stage ¢ and a non-BLAS multiple
matrix-vector multiplication is performed.

The differences in time, compared to the original code, are smaller the larger
the problem size. This is an expected result, since the reason for multiplying
with a matrix was to reduce the large number of times the inner loop has to be
performed, which grows rapidly with the size of the problem.

The Figures 6 - 8 also show that the most beneficial stage to break the loop is
when ¢ = 3 for most problem sizes and multiplication techniques. The balance
between the number of matrix multiplications and avoided innerloop iterations
seems to be optimal for ¢ = 3.

5.4 Serial optimization conclusion

The original code shows a good performance compared to the new codes. A
somewhat better performance can be achieved for very small problems by avoid-
ing unnecessary multiplications with 1.0 contained in the Q-vector. The cost of
using this technique is a more advanced code. Because of the limited interest of
such small problem sizes, the original code is best suited for further studies.

15

6 Parallelization

To obtain considerable gain in performance compared to the implementations
in earlier sections, the problem was parallelized on the WildFire computer de-
scribed in section 3. In this section several approaches of obtaining efficient
implementations have been tested.

The codes were written in Fortran 90 using double precision complex (16
byte) data. The program was compiled and parallelized using the Sun Forte 6.1
compiler. All experiments were performed on a lightly loaded system using the
original FFT algorithms, presented in appendix A.

There exists many efficient implementations of FFTs. Sun Performance
library [19] contains highly optimized routines for both 1D and 2D FFTs. These
library routines outperform most of the algorithms tested here, but do not satisfy
the requirement of being performed in situ without bit reversal as mentioned in
section 2.

The first experiments were carried out on a simple 1D FFT. At a later stage
the more realistic PDE solve problem, involving 2D FFTs, were tested on the
computer.

6.1 Parallelization techniques

Two major paradigms of writing parallel code were used, OpenMP and MPI.
Both OpenMP directives and MPI bindings are supported by the Sun Forte 6.1
compiler. The Sun implementations supports version 1.1 of OpenMP [18] and
version 1.1 of MPT [14].

The main difference between the MPI and the OpenMP codes is the use of
processes and threads. In a MPI program a number of independent processes,
each having a private address space, is started. The processes can interact with
each other using MPI bindings that explicitly exchange data. OpenMP invokes
a single process that branches into several threads. The threads share the same
address space and therefore no interprocess communication has to occur.

The first efficient implementations of 1D FFTs were written using MPI run-
ning two processes. Each process was bound to a separate node on the WildFire

MPI MPI

process process
1 2

SN

OpenMP; OpenMP

Figure 9: Two MPI processes are bound to separate nodes. On each node the
FFTs are parallelized with OpenMP.

16

system and branched into a number of threads using OpenMP directives, see
Figure 9. The reason for this nested parallelism was that with separate MPI
processes, it was easy to explicitly allocate data on the two separate nodes of
the WildFire system. There are no OpenMP directives for explicit memory
allocation on a cc-NUMA system.

Unfortunately, these MPI implementations are not working well on a 2D
problem. The reason for this is that intense communication has to occur be-
tween the two processes in the matrix transpose phase of the 2D FFT. This
communication is not parallelized and therefore yields limited performance.

Further studies showed that explicit memory placement could be done in
the OpenMP implementations. Inserting OpenMP directives is usually rather
simple in an already existing serial code compared to writing an efficient parallel
MPI program. The shared memory model of OpenMP also makes it easy to
solve 2D problems where the communication is performed in parallel. Another
advantage of using OpenMP in this problem is that MPI parallelization is later
to be used on higher levels of the solution of a pseudospectral PDE problem.
All results presented below is therefore generated with OpenMP programs.

6.2 Multiprocessor architectures, system and program-
ming models

The WildFire system can be used to test a number of different architecture
models, thread placement strategies and memory allocation models.

Data allocation

The allocation of data normally uses a first-touch policy. The allocate statement
reserves virtual address space, and the physical memory is allocated on the node
where the thread first touching the data resides.

Binding of threads to a node

The threads normally stay on the processor they are spawned at. The default
scheduling policy is to, if possible, confine the threads to a single node. Only if
the number of threads is larger than the number of processors in the first node,
threads are spawned also on the other node.

Threads can be explicitly bound to a specific SMP node using the system
call pset_bind. A short C-function omp_bind has been written and can be called
by the Fortran program.

#include <sys/pset.h>
#include <stdio.h>

#include <stdlib.h>

void omp_bind_(int *cabinet){

if (xcabinet == || *cabinet == 2)
pset_bind(*cabinet,P_LWPID,P_MYID,NULL) ;
else if (*cabinet == 0)
pset_bind (PS_NONE,P_LWPID,P_MYID,NULL);
else

fprintf(stderr,"Argument in omp_bind must be 0, 1 or 2");

17

The program takes an integer as an input. In case of 1 or 2, the thread is bound
to a specific node. If the input argument is 0, the thread is released and can
move freely between the nodes.

Migration and replication

The page migration and CMR algorithms briefly described in section 3 detects
data that is frequently accessed and located on a remote node and moves it to
a local node. These optimization strategies can be turned off on the WildFire
system with the command amctl.

Tested multiprocessor configurations

By employing the first-touch policy and thread binding, it is possible to examine
the performance effects of where threads are spawned and where the data is
initially placed. If both page migration and CMR are disabled, the code will
run in pure cc-NUMA mode. The configurations listed below has been used.
Here, thread matched allocation means that the data is allocated such that the
vertical FFTs in phase 1 of the PDE solver can be computed without introducing
any remote accesses:

1. Single node SMP - Data is allocated on one node. The threads are
bound to the same node. Migration and replication are turned off.

2. Single node allocation WildFire - Data is allocated on one node. The
threads are not bound, and the WildFire default scheduling algorithm is
used. Migration and replication are turned on.

3. Thread-matched allocation WildFire - Data is allocated using thread
matching. The threads are not bound, and the WildFire default scheduling
algorithm is used. Migration and replication are turned on.

4. Single node allocation balanced WildFire - Data is allocated on one
node. The threads are evenly distributed between the two nodes and
bound. Migration and replication are turned on.

5. Thread-matched allocation balanced WildFire - Data is allocated
using thread matching. The threads are evenly distributed between the
two nodes and bound. Migration and replication are turned on.

6. Single node allocation balanced cc-NUMA - Data is allocated on one
node. The threads are evenly distributed between the nodes and bound.
Migration and replication are turned off.

7. Thread-matched allocation balanced cc-NUMA - Data, is allocated
using thread matching. The threads are evenly distributed between the
nodes and bound. Migration and replication are turned off.

18

6.3 Parallelization of multiple 1D FFTs

The first problem to study was to iteratively computing multiple 1D FFTs of
the columns in a matrix, i.e. phase 1 in Figure 1 only. The computation is
embarrassingly parallel, and each 1D FFT is local to a thread. A number of
tests to study possible performance gains were made, e.g. the constant {2-vector
was copied to the two nodes and different OpenMP parallelization directives
were used. These tests did not show any significant gain in performance.

30

T
—— Reference

—+— (3) Thread—-matched allocation WildFire

—o— (5) Thread—-matched allocation balanced WildFire

25

i i i i i
0 5 10 15 20 25 30
number of threads

Figure 10: The speedup for configurations (3) and (5), compared to the execu-
tion time of a single thread. The grid size is 2048 x 2048.

For memory bound algorithms, spawning many threads on a single SMP node
leads to a high load on the SMP bus. Distributing the threads in a balanced way
on more than one SMP introduces a few remote accesses, but the performance
may still improve because of the larger bus bandwidth available. In Figure
10, the speedup for computing a large number of iterations using the WildFire
configurations (3) and (5) is shown. For both cases, the speedup is optimal.
Also, the multiple 1D FFT computation reuses data in caches to some degree,
and there is no apparent gain in balancing the thread distribution.

6.4 Parallelization of the pseudospectral solver kernel

As mentioned in section 2, the 1D FFTs in the convolution algorithm are first
carried out for the columns of the data matrix, and then for the rows. For large
number of grid points, experiments show that applying the FFTs directly to the
matrix rows is not efficient. Using this type of implementation leads to extremely
poor cache utilization, and the performance and the speedup for large problems
is not acceptable. If the threads reside in both nodes, optimizations like page
migration and CMR are not able to detect and adapt to the changing access
pattern fast enough, and in practice almost no migration/replication occurs.
Hence, a large amount of remote accesses further degrades the performance.
To improve cache utilization and to allow for more efficient communication
between the nodes, experiments show that a better scheme is to explicitly trans-
pose the data matrix, and again apply the FFTs to matrix columns. However,

19

recall that after applying the 1D FFTs in one direction, FFTs in the other
direction should be computed. If the threads reside on more than one SMP
node, some data will always be located on a remote node when the transpose is
performed. On a two-node system with evenly distributed data, the lower left
and the upper right matrix blocks will have to be exchanged between the nodes
in the transpose operation, see Figure 11.

n

Z) Z3

22’/24

Figure 11: The n X n matrix z consists of the blocks z1, 22, 23 and z4. If the
data is evenly distributed between the two SMP nodes, the 22 and z3 block will
travel across the WFI when the matrix transpose is applied.

Half of the data matrix will bounce back and forth between the two nodes, still
causing a large amount of communication over the WFI. The parallel transpose
operation is in this implementation performed using the ZTRANS routine in
the Sun Performance Library [19].

6.4.1 Impact of migration and replication

The time per iteration for the PDE solver kernel for several configurations using
24 threads is shown in Figure 12(a).

The performance results for the finite difference algorithm presented in [17]
are derived using the single node allocation WildFire configuration (2). Us-
ing the same setting, the results for the pseudospectral solver kernel are similar.
There is a significant decrease of the time per iteration during the first 6-7 itera-
tions, and then the curve levels out. The WildFire optimizations move/replicate
data from the remote to the local node, and remote accesses become more and
more rare. Hence, the time per iteration decreases to a steady-state. Further
investigation shows that the amount of replicated pages is small. The number
of pages migrated is large at the beginning but decreases over time. The same
phenomena is also present for the single node allocation WildFire with balanced
thread scheduling (4), but here it is less pronounced. The reason could be that,
when all processors on a single node are computing as in configuration (2), the
bus is heavily loaded in this node, and the bandwidth available for page migra-
tion will be small. The page migration daemon will suffer from this, and the
migrating pages will be unaccessible for a longer time.

Using all the threads in a single node for computations leads to large vari-
ation in iteration times, probably because activities of other users stall the
computations. This is most apparent in the WildFire configurations with the
default scheduling policy (2,3).

20

Single node allocation WildFire

—=— (3) Thread-matched allocation WildFire

—+— (4) Single node allocation balanced WildFire
—6— (6) Single node allocation balanced cc-NUMA

— (7) Thread-matched allocation balanced cc-NUMA ||

"(2

w

iteration time (sec)

15
iteration number

(a) Iteration times for the first itera-
tions on different computer configura-

@
N

w
5

—— no migration or replication
—e— replication

—+— migration

—— migration and replication

Ind
©

g
)

iteration time (sec)

N
i

0 10 20 30 40 50 60 70 80
iteration number

(b) Iteration times for the single node
allocation balanced WildFire (4) con-

tions. figuration using different optimization
techniques.

Figure 12: Results for a 2048 x 2048 grid using 24 threads.

For the other configurations shown in Figure 12(a), the behavior is different.
The first iteration takes longer time, but after this, a steady-state is immedi-
ately reached. Here, the relatively slow first iteration can be explained by cache
effects. For the cc-NUMA configurations (6) and (7) the result is natural, since
the adaptive optimizations are shut off. For the single node allocation balanced
cc-NUMA configuration (6), one of the nodes perform exclusively remote ac-
cesses, leading to unbalanced execution times and a significantly larger time per
iteration in steady-state.

The performance is almost the same for the thread-matched allocation Wild-
Fire (3) and cc-NUMA configurations (7). The memory is initially optimally
placed for the first FFT, and in the matrix transpose a minimal amount of com-
munication takes place. The WildFire optimizations are not activated, but it is
also clear that they do not introduce any performance degradation.

Figure 12(b) shows an interesting, but not yet fully understood, result. Here,
the single node allocation WildFire (4) configuration has been tested with dif-
ferent optimization strategies. With no migration and replication, the configu-
ration is equivalent to the cc-NUMA case (6). The default setting is to enable
both optimizations. Interestingly, the best results are achieved when only mi-
gration is enabled. Similar results have been observed also for a number of
different problem sizes.

6.4.2 Speedup

Speedup results for a 2048 x 2048 grid are shown for a number of different con-
figurations in Figure 13. The graphs show the average time per iteration when
steady-state has been reached, c.f. Section 6.4.1. The results are normalized by
the execution time of a single thread.

In general, the results are remarkably good. As mentioned before, the al-
gorithm uses global operations, and involves heavy communication. The single
node SMP (1) and the WildFire configurations using the standard scheduling

21

T
— Reference — Reference

—e— (1) Single node SMP —e— (5) Thread-matched allocation balanced WildFire
—*— (2) Single node allocation WildFire

—+— (3) Thread-matched allocation WildFire

—— (6) Single node allocation balanced cc-NUMA
—+— (7) Thread-matched allocation balanced cc—-NUMA

0 5 10 15 25 30 0 5 10 15 25 30
number of threads number of threads

Figure 13: The speedup for different configurations, compared to the execution
time of a single thread. The grid size is 2048 x 2048

policy (2,3) show very similar behavior up to about 14 threads. This is natural,
since for these cases only one SMP node is involved in the computations. For 16
threads, the first SMP node is filled, and for the WildFire configurations (2,3),
it is possible that one of the threads have been moved by the OS scheduler to
the other (almost idle) SMP node. This is not possible for the SMP configura-
tion (1), where the threads are bound to a single node. Again, the problem of
computing on a filled SMP node results in a degradation of performance.

There is a short plateau in the speedup curve around 16 threads for the
WildFire configurations (2,3). Here, the threads begin to be spawned on the
other SMP node. For the balanced configurations (5,7), there is a more even
growth in speedup as the number of threads is increased. The amount of com-
munication causing remote accesses is constant, which should result in a smooth
speedup curve. Note that, for less than 16 threads, the communication now re-
sults in that it is favorable to use the default thread scheduling, compared to
spawning the threads in a balanced way on the two nodes, c.f. the results for
multiple 1D FFTs in Section 6.3.

The speedup is considerably smaller for the single node allocation cc-NUMA
configuration (6) than for the other configurations. The reason is again that a
large amount of remote accesses are being performed by threads in one of the
nodes.

6.4.3 Impact of problem size

For the single node allocation WildFire configurations, the number of iterations
performed before steady-state is reached grows as the number of grid points is
increased. This result is consistent with the results in [17]. The number of grid
points used influences the speedup significantly. As the number of grid points
grows, the computation/communication ratio increases, and the speedup grows.
As seen in Figure 14, there is no performance gain in using more than one
SMP node for a small problem. However, as the problem size grows, the slope
of the speedup curve once again approaches the ideal speedup ratio when the

22

— Reference
—— 512 x 512
—e— 1024 x 1024
—+— 2048 x 2048

; ; ; ; ;
0 5 10 15 20 25 30
number of threads

Figure 14: Thread-matched WildFire configuration (3) speedups.

“WildFire-plateau” mentioned in Section 6.4.2 has been passed. For a very large
grid, possibly more than two dimensions, the performance gain from using more
than one SMP node will be large. Note that, for such problems, the memory of
the additional SMP nodes will probably also be needed.

23

7 Conclusions

The original code based on the Gentleman-Sande algorithm shows good per-
formance for a serial 1D FFT problem. Replacing a number of iterations with
a multiplication with a precomputed matrix, leads to longer run times due to
added unnecessary computations.

The speedup on the WildFire system is very close to ideal for a perfectly
parallelizable problem, like the multiple 1D FFTs in Section 6.3. Also for the
pseudospectral solver kernel, which implements a non-trivial algorithm with
heavy communication, the results are surprisingly good. Using 28 OpenMP
threads distributed over two SMP nodes, the speedup is approximately 21. For
problems of interest in application, the number of grid points will be even larger
than used in the experiments, and the scalability will probably be further im-
proved.

The WildFire system will perform page migration if the initial distribution
of data over the SMP nodes is not optimal. After some iterations, a steady-state
is reached where no further migration occurs. For all configurations where the
data is optimally distributed in steady-state, the difference in performance is
very small. The WildFire migration optimization makes up for programming
errors and/or deficiencies in the programming model, without introducing a
performance loss when the data is optimally placed from the beginning. Note
that, if the data is allocated on only one of the nodes and the optimizations are
disabled, i.e. the code is executed in pure cc-NUMA mode (configuration 6),
the performance is significantly reduced.

The WildFire system using the default configuration exhibits a typical speed-
up behavior for a problem involving communication, e.g. the pseudospectral
solver kernel: Until the number of threads is almost equal to the number of
processors in an SMP node, the performance is identical to that of the SMP.
When the number of threads is further increased, there is a short plateau in the
speedup curve before it starts to grow again. If the problem is large enough,
the slope of the speedup curve will again be close to optimal.

The speedup curve becomes smoother using a balanced thread scheduling
policy. For the pseudospectral solver this implies a small performance loss when
the number of threads is small, because of the large amount of communication
over the WFI. However, distributing the threads in a balanced way over the
SMP nodes might yields improved performance for a memory bound algorithm
with a small amount of communication.

Note that the initial distribution of data has a large effect on the execution
time if the convolution in the pseudospectral solver is only performed a small
number of times. The goal of algorithm improvements, e.g. preconditioning, is
to reduce the number of iterations in the computational scheme. It is important
to make sure that the data is optimally distributed from the beginning if only
a few iterations are required. There is currently discussion whether directives
for data distribution should be included in OpenMP [16, 1]. Without such
directives great care has to be taken when writing or porting the code in these
situations.

24

References

[1] Bircsak J. et al., Extending OpenMP for NUMA Machines, Proceedings of
Supercomputing 2000.

[2] Cobby M., University of Strathclyde,
http://www.spd.eee.strath.ac.uk/“interact/fourier/dft.html

[3] Cobby M., University of Strathclyde,
http://www.spd.eee.strath.ac.uk/“interact/fourier /fft.html

[4] Cooley JW., Tukey JW., An Algorithm for the Machine Calculation of
Complex Fourier Series, Math. Comp. 19, 1965.

[5] Dongarra J. et. al., An extended Set of Fortran Basic Linear Algebra Sub-
programs, Argonne National Laboratory, 1986.

[6] Dongarra J. et. al., A Set of Level 8 Basic Linear Algebra Subprograms,
Argonne National Laboratory, 1988.

[7] Falsafi M., Wood D. A., Reactive NUMA: A Design for Unifying S-COMA
with CC-NUMA, Proceedings of ACM/IEEE International Symposium on
Computer Architecture 1997.

[8] Fornberg F., A Practical Guide to Pseudospectral Methods, Cambridge Uni-
versity Press, 1998.

[9] Frigo M., Johnson S. G., FFTW: An Adaptive Software Architecture for
the FFT, 1998 ICASSP proceedings (vol. 3, p. 1381).

[10] Hagersten E., Saulsbury A., Landin A, Simple COMA Node Implementa-
tions, Proceedings of Hawaii International Conference on System Science,
1994.

[11] Hagersten E., Koster M., WildFire: A Scalable Path for SMPs, Proceedings
of 5th International Symposium on High-Performance Architecture, 1999.

[12] Ttzkowitz M., The Forte Developer 6 update 1 Performance Tools, Sun
Microsystems.

[13] Lenoski D. E., Scalable Shared-Memory Multiprocessing, Morgan Kaufmann
Publishers, San Francisco, 1995.

[14] A Message-Passing Interface Standard, Message Passing Interface Forum,
University of Tennessee, June 1995.

[15] van Loan C., Computational Frameworks for the Fast Fourier Transform,
Society for Industrial and Applied Mathematics, Philadelphia, 1992.

[16] Nikolopoulo D. S. et al., Is Data Distribution Necessary in OpenMP?, Pro-
ceedings of Supercomputing 2000.

[17] Noordergraaf L., van der Pas R., Performance Ezperiences on Sun’s Wild-
Fire Prototype, Proceedings of Supercomputing 99, 1999.

[18] OpenMP Fortran Application Program Interface, Version 1.1, Nov 2000.
[19] Sun Performance Library Reference, Revision A, SunSoft Inc., Dec 1996.

25

A Code Excerpts
A.1 Original Gentleman-Sande Algorithm

subroutine gentleman_sande_fft(fft,z)

type(fast_fourier_transform), intent(in) :: fft
complex (kind=cfp), dimension(0:,1:) :: z
integer :: m,n,lm,nbl,mbl,nbu,ibe,ibo,ie,io,1,bl,bu,i

complex (kind=cfp) :: e,o0

m = fft)m
n = size(z,2)
if (m>1) then
Im = fft%lm
do i=1,n
nbl = 1
mbl = m
do 1=0,1m-2
nbu = mbl/2
ibe = 0
do bl=0,nbl-1
ibo = ibe + nbu
do bu=0,nbu-1
ie = ibe + bu
io = ibo + bu
e = z(ie,i) + z(io,1)
o = fftlomega(nbl*bu)*(z(ie,i) - z(io,i))
z(ie,i) = e
z(io,i) = o
end do
ibe = ibe + mbl
end do
nbl = 2*nbl
mbl = mbl/2
end do
ibe = 0
do bl=0,nbl-1
ibo = ibe + 1
e = z(ibe,i) + z(ibo,i)
o = z(ibe,i) - z(ibo,i)
z(ibe,i) = e

z(ibo,i) = o
ibe = ibe + 2
end do
end do

end if
end subroutine gentleman_sande_fft

26

A.2 Original Inverse Cooley-Tukey Algorithm

subroutine cooley_tukey_ifft(fft,z)
type(fast_fourier_transform), intent(in) :: fft
complex(kind=cfp), dimension(0:,1:) :: z
integer :: m,n,lm,nbl,mbl,nbu,ibt,ibb,it,ib,1,bl,bu,i
complex (kind=cfp) :: t,b

m = fft¥m
n = size(z,2)
if (m>1) then
Im = fft)1lm
do i=1,n
nbl = m/2
mbl = 2
ibt = 0
do bl=0,nbl-1
ibb = ibt + 1
t = z(ibt,1i)
b = z(ibb,1i)
z(ibt,i) =t + b
z(ibb,i) =t - b
ibt = ibt + 2
end do
nbl = nbl/2
mbl = 2*mbl
do 1=1,1m-1
nbu = mbl/2
ibt = 0
do bl=0,nbl-1
ibb = ibt + nbu
do bu=0,nbu-1
it = ibt + bu
ib = ibb + bu
t = z(it,1)
b = conjg(fftomega(nbl*bu))*z(ib,i)
z(it,i) =t + b
z(ib,i) =t - b
end do
ibt = ibt + mbl
end do
nbl = nbl/2
mbl = 2*mbl
end do
end do
end if
end subroutine cooley_tukey_ifft

27

