
Miss Penalty Reduction Using Bundled Capacity Prefetching in Multiprocessors

Dan Wallin and Erik Hagersten
Uppsala University

Department of Information Technology
P.O. Box 337, SE-751 05 Uppsala, Sweden�

danw, eh � @it.uu.se

Abstract

While prefetch has proven itself useful for reducing
cache misses in multiprocessors, traffic is often increased
due to extra unused prefetch data. Prefetching in multipro-
cessors can also increase the cache miss rate due to the
false sharing caused by the larger pieces of data retrieved.

The capacity prefetching strategy proposed in this paper
is built on the assumption that prefetching is most benefi-
cial for reducing capacity and cold misses, but not commu-
nication misses. We propose a simple scheme for detect-
ing the most frequent communication misses and suggest
that prefetching should be avoided for those. We also sug-
gest a simple and effective strategy for reducing the address
traffic while retrieving many sequential cache lines called
bundling.

In order to demonstrate the effectiveness of these ap-
proaches, we have evaluated both strategies for one of
the simplest forms of prefetching, sequential prefetching.
The two new strategies applied to this bandwidth-hungry
prefetch technique result in a lower miss rate for all stud-
ied applications, while the average amount of address traf-
fic is reduced compared with the same application run with
no prefetching. The proposed strategies could also be ap-
plied to more sophisticated prefetching techniques for better
overall performance.

1. Introduction

Building an optimized computer system is a minimiza-
tion effort spanning over many properties. As a designer,
you want to minimize the number of cache misses, number
of address transactions and the data bandwidth consumed
by a wide variety of applications, while keeping the imple-
mentation complexity reasonable.

An important first step in this optimization effort is to
choose the key design parameters, such as cache line size,

degree of subblocking, cache associativity, prefetch strat-
egy, etc. The problem in finding an “optimum setting” for
these design parameters is that, while improving one prop-
erty, some other may become worse. For example, a slightly
longer cache line often decreases the cache miss rate and
address traffic, while the data bandwidth increases. Enlarg-
ing the cache line can also result in increased data traffic,
as well as increased address traffic, since misses caused by
false sharing may start to dominate. A further complication
is that application behaviors differ greatly. A setting that
works well for one application may work poorly for others.

Ideally, one would like to dynamically select the best
strategy for each application. Better yet would be dynami-
cally selecting the best strategy for each class of data within
each application. While the complexity of such a proposal
may be prohibitive, it would be compelling to at least select
different strategies for handling the two largest classes of
cache misses in an application: capacity misses and com-
munication misses.

It is well known that large cache lines are often benefi-
cial to data that cause capacity misses due to spatial locality.
However, the access pattern of communication often does
not take advantage of larger cache lines and may suffer from
false sharing. We propose a simple method for distinguish-
ing between communicating and non-communicating cache
lines. Extra data are prefetched for non-communicating
misses, but not for communicating misses. Prefetching nor-
mally introduces a lot of extra address traffic. By bundling
the prefetching requests with the original request the ad-
dress traffic can be largely reduced.

The proposed strategies cause the number of cache
misses to decrease while keeping the data and address traffic
under control compared with a non-prefetching protocol. In
our study, we have applied the bandwidth-reducing strate-
gies to a sequential prefetching protocol with a prefetch dis-
tance of 7 and shown that the strategies can improve the
protocol significantly. The intention of this paper is not to
recommend a sequential prefetch protocol as a final solution
for prefetching, but rather to show the potential of separat-



ing prefetching for communicating and non-communicating
data. A rather large prefetch distance has been chosen to
clearly distinguish between prefetching for communicating
and non-communicating data.

2. Background

Many studies looking for the optimum cache line size
were performed in the early nineties. It was discovered that
small cache lines increased the amount of capacity misses
while too large cache lines could ruin the effectiveness of a
cache. For caches in coherent shared-memory multiproces-
sors, this effect is even more pronounced. Here, a large
cache line may not only make the cache less efficiently
used, but will also increase the amount of false sharing. For
each application, there is an optimum size resulting in the
“best” performance [16]. Studies have been carried out for
sequential hardware prefetching schemes, where the cache
line size is kept small but a number of subsequent cache
lines are prefetched on each cache miss to yield a behav-
ior similar to a large cache line [8]. Also here, the “best”
prefetch distance can be decided on a per-application basis,
which also changes at run-time.

2.1. Choosing the Cache Line Size

In uniprocessors, a very simple and usually efficient
method of decreasing the cache misses is to enlarge the
cache line size [4], [14], [23]. However, the number of
capacity misses increases because unnecessary data are
brought into the cache for large cache line sizes. Torrellas
et al. showed that larger cache lines in multiprocessors do
not decrease the cache misses as efficiently as in uniproces-
sors due to false sharing and poor spatial locality in shared
data [25]. The optimum cache line size is therefore usually
smaller for multiprocessors than for uniprocessors.

Several papers have investigated the effects of cache
line size on miss rate and traffic in multiprocessors [10],
[12], [16], [27]. In Figure 1, we have carried out a simi-
lar cache miss and traffic analysis for the four SPLASH- 2
kernel applications [27] on 16 processors, each with 1 MB
of cache. Also the miss ratio, indicating the percentage of
cache misses of all cache accesses can be found in the fig-
ure. The U-shaped curve is especially pronounced in the
Radix-application. The number of false misses increases
with large cache line size due to the false sharing in all ap-
plications.

2.2. Prefetching in Multiprocessors

Several researchers have studied prefetching in multipro-
cessors as a method of reducing the miss penalty. The pro-
posed prefetching schemes are either software-based [21],

[22], [26] or hardware-based [5], [8], [9], [15], [17], [19],
[24]. While software approaches often introduce an instruc-
tion overhead, hardware approaches often lead to increased
memory traffic. Chen and Baer [7] therefore propose using
a combination of hardware and software prefetching.

Hardware approaches to prefetching in multiprocessors
are usually based on either stride prefetching or sequential
prefetching. While sequential prefetching prefetches the
consecutive addresses on a cache miss, stride prefetching
prefetches addresses a certain distance away from the pre-
vious cache miss. Stride prefetching has a certain learning
time during which the prefetcher computes which address
to prefetch next. The efficiency of sequential and stride
prefetching depends largely on the access pattern behav-
ior [13]. Dahlgren and Stenström showed that sequential
prefetching normally reduces cache misses more than stride
prefetching. This is caused by the learning time and that
most strides fit into a single cache line [9]. However, stride
prefetching protocols often consume less memory band-
width than sequential prefetch protocols since they in gen-
eral are more restrictive about issuing prefetches.

Baer and Chen [5] proposed to predict the instruction
stream with a look-ahead program counter. A cache-like
reference predictor table is used to keep previous predic-
tions of instructions. Correct branch prediction is needed
for successful prefetching. Several authors have studied
the behavior of adaptive protocols in multiprocessors that
vary the degree of prefetching at run-time. Dahlgren et
al. presented an implementation which detects whether
prefetched data has been used or not by tagging cache lines
and varies the degree of prefetching on the success of pre-
vious prefetches [8]. Other adaptive protocols introduce
small caches which detect the efficiency of prefetches based
on the data structure accessed [15], [17], [24]. These ap-
proaches require complex hardware and have problems de-
tecting irregular strides. Koppelman presented a prefetching
scheme that can be seen as a compromise of stride and se-
quential prefetching called neighborhood prefetching [19].
It uses the instruction history to compute an area around the
demanded data, which can be prefetched.

2.3. Effects of Sequential Prefetching

The behavior of sequential prefetching for the SPLASH-
2 kernel benchmarks running on a 16 processor system with
one level of 1 MB caches can be studied in Figure 1. For
the sequential prefetching configuration, the cache line size
is 32 B. On each cache miss the consecutive 7 cache lines
are prefetched. As can be seen, the miss rate is substan-
tially reduced in three of the four applications, while both
the address and data traffic increase compared with the 32 B
non-prefetching scheme. The sequential prefetching config-
uration has a similar miss rate to the protocol with a 256 B

2



(a) Cache misses (b) Address and data traffic

Figure 1. Influence of cache line size on the kernel SPLASH-2 applications. The simulations are run on 16 processors,
each with 1 MB 4-way associative caches. The 32sq7 configuration uses a cache line size of 32 B and sequentially
prefetches the consecutive 7 lines on each cache miss. The cache misses, address traffic and data traffic are normalized
relative to the 32 B configuration. The miss ratio for each application is indicated for the 32 B configuration.

cache line for most applications, since enlarging the cache
line size is basically a simple form of prefetching. However,
a much higher address bandwidth is required.

For the Radix application, the miss rate is somewhat
lower for the sequential prefetch scheme than for the 256 B
configuration. The reason for the lower cache miss rate is
that, with a longer cache line size, only a single processor
can reply to requests for the entire 256 B of data. Also, the
sequential prefetch scheme always prefetches subsequent
blocks on a cache miss. The data traffic drops somewhat
because prefetch requests are only generated if the cache
line is not already available in the cache.

3. Miss Penalty Reducing Prefetching Schemes

Sequential prefetching schemes introduce a large amount
of data and address traffic compared with a non-prefetching
coherence protocol. We propose two new schemes for low-
ering the bandwidth requirements while taking advantage
of a low cache miss rate: capacity prefetching and bundled
capacity prefetching.

3.1. Capacity Prefetching

One problem with previous prefetching schemes in mul-
tiprocessors is the increase in false sharing misses for large
cache line sizes. Would it be possible to distinguish between
lines causing false sharing and other cache lines? The idea
of the capacity prefetching algorithm is to prefetch only if
the cache line causing the miss has been replaced from the
cache or is being upgraded from the Shared to the Modified
state. These kinds of cache misses can be identified without
the need for any more state information in the cache. We

simply distinguish between cache lines present in the cache
in the Invalid state and cache lines not present in the cache
(which are also interpreted as Invalid by normal cache co-
herence protocols).

Since non-communicating cache lines do not cause any
false sharing misses, it should be beneficial to make them
longer to take better advantage of spatial locality. How-
ever, communicating lines are more likely to be involved
in false sharing situations and should be kept shorter. On
a cache miss, two possible actions can be taken in capacity
prefetching. Either the cache line has been replaced or has
never been accessed before, in which case prefetching will
be performed, or the cache line has been invalidated and
only the missing cache line will be fetched into the cache.
So, in capacity prefetching, the actual cache line size will
effectively appear longer for non-communicating lines.

3.2. Bundled Capacity Prefetching

For sequential prefetching, not only will the cache line
that caused the miss be fetched into cache, but a number of
other cache lines will as well. The static prefetching dis-
tance decides the number of lines to fetch on each miss.
The prefetched lines are brought into the cache or upgraded
by generating another Read, ReadExclusive or Upgrade re-
quest on the bus for each prefetch. Obviously, this in-
troduces a lot of extra address traffic, especially for large
prefetch distances.

The extra address traffic caused by the prefetches could
be largely reduced by bundling the original Read, ReadEx-
clusive and Upgrade request together with the prefetch re-
quests. An easy way to do this is to extend the requests with
a bitmap indicating which lines beyond the original request
to prefetch to the cache. However, while this would reduce

3



the number of address transactions on the bus, it would not
reduce the number of snoop lookups each cache has to per-
form. Also, it may create a multisource situation, where a
single address transaction would result in data packets being
transferred from many different sources. This would violate
some of the basic assumptions of state-of-the-art implemen-
tation of cache coherence [6].

Therefore, we propose a more restrictive approach to
the bundling principle. The first limitation is not to bun-
dle ReadExclusive requests. Since these transactions may
cause changes to any of the snooping caches, they would
still require a snoop lookup in each cache for each bundled
cache line. The second limitation is that only the owner
of the originally requested line will supply data on a Read
prefetch request. The owner will only reply with data if it
is also the owner of the requested prefetch line. This way,
only the owner may have to snoop the bundled cache lines.
As a consequence not only will the address traffic decrease
for Read prefetches but also the number of snoop lookups.

4. Simulation Environment

All experiments were carried out using execution-driven
simulation in the full-system simulator Simics modeling the
SPARC v9 ISA [20]. An invalidation-based MOSI cache
coherence protocol extension to Simics was used. In all
experiments, a bus-based 16 processor system with one
level of 1 MB 4-way associative unified data and instruction
caches per CPU were modeled. Since our goal is to reduce
the level 2 cache misses and we assume an inclusive cache
hierarchy, we have chosen to model only one cache level.
We have further selected to only report the traffic produced
at different levels rather than simulatı́ng the contention that
may arise from the traffic. While this will not allow us to
estimate the wall clock time for the execution of the bench-
marks, which would be highly implementation dependent,
it will isolate the parameters we are trying to minimize.

Many different classification schemes for cache misses
in multiprocessors have been proposed [10], [11], [25]. The
cache miss characterization in our paper is influenced by
Eggers and Jeremiassen [11]: The first reference to a given
block by a processor is a cold miss. Subsequent misses to
the same block by the same processor are either caused by
invalidations and/or replacements. All misses caused by re-
placements are classified as capacity misses. The invali-
dation misses are either classified as false or true sharing
misses. False sharing misses occur if another word in the
cache line has been modified by another processor during
its lifetime in the cache. All other invalidation misses are
true sharing misses. Conflict misses are included in the ca-
pacity miss category.

4.1. Benchmark Programs and Working Sets

The studies have been carried out on the SPLASH- 2 pro-
grams [27] and two commercial workloads, SPECjbb2000
[3] and ECperf [1] (a slightly modified version has lately
been adapted as SPECjAppServer2001 [2]). The SPLASH-
2 programs are mainly scientific, engineering, and graphics
applications and have been used extensively as multipro-
cessor benchmarks the last few years. However, SPLASH-
2 does not provide realistic results for computer designers
since the server market is entirely dominated by commercial
applications such as databases and application servers.

ECperf and SPECjbb2000 are both Java-based mid-
dleware benchmarks. ECperf is a benchmark modeling
Java Enterprise Application Servers that uses a number
of Java 2 Enterprise Edition (J2EE) APIs in a web ap-
plication. ECperf is a complicated multi-tier benchmark
that runs on top of a database server and an application
server. SPECjbb2000 evaluates the performance of server-
side Java. It can be run on any Java Virtual Machine.
Both are commercial benchmarks that put heavy demands
on the memory and cache system. More information on
SPECjbb2000 and ECperf can be found in [18].

The SPLASH-2 workloads have been chosen according
to the default values specified in the SPLASH-2 release [27]
with some minor changes: the Cholesky benchmark was op-
timized for 1 MB caches, the FFT benchmark was run with
65536 data points, the Raytrace benchmark allocated a to-
tal of 64 MB global memory, and the Radiosity benchmark
used the small test scene provided in the distribution instead
of the default room scene in order to limit the simulation
time. All benchmarks were run using 16 parallel threads,
and the measurements were started right after the child pro-
cesses had been created in all applications except Barnes
and Ocean, where the measurements were started after two
time steps.

ECperf models the number of successfully completed
“benchmark business operations” during a time period. The
operations include business transactions such as a customer
making an order, updating an order or checking the sta-
tus of an order. The ECperf transactions take long a time,
and a total of 10 transactions were run with a 3- transac-
tion warm-up period. SPECjbb2000 transactions take much
less time, and we simulated 50,000 transactions, including
10,000 transactions of warm-up time.

5. Experimental Results

The efficiency of capacity prefetching is presented in
Figure 2. In the experiments, the cache line size is set to
32 B for all prefetching configurations. As a comparison,
miss rate and bus traffic are also presented for the basic
32 B and 256 B cache line configurations without prefetch-

4



(a) Cache misses (b) Address and data traffic

(c) Cache misses (d) Address and data traffic

(e) Cache misses (f) Address and data traffic

(g) Cache misses (h) Address and data traffic

Figure 2. Effect of capacity prefetching in the SPLASH-2 and JAVA-server benchmarks. The non-prefetching proto-
cols have cache line sizes of 32 and 256 B. The prefetching protocols include the sequential prefetch protocol, 32sq7,
the capacity prefetch protocol, 32c7, and the bundled capacity prefetch protocol, 32bc7. The cache misses, address
traffic and data traffic are normalized relative to the 32 B configuration. The miss ratio for each application is indicated
for the 32 B configuration.

5



ing. The results are presented for sequential prefetching,
capacity prefetching and bundled capacity prefetching, all
with a prefetch distance of 7 cache lines. The reason for
prefetching 7 consecutive cache lines is to get an actual be-
havior similar to a long 256 B cache line and at the same
time keep a short baseline cache line size.

A comparison between capacity prefetching and the se-
quential prefetching scheme shows that address and data
traffic is reduced for capacity prefetching in all applications.
The data and address traffic is further reduced using bun-
dled capacity prefetching for all applications. Bundled ca-
pacity prefetching is especially efficient in traffic reduction,
which is not surprising, since the method combines several
bus requests. The reason for the reduction of the data traf-
fic is that only the owner of the original cache line replies to
the prefetch requests. Bundled capacity prefetching reduces
the data traffic with about 50 percent and the address traf-
fic by 75 percent compared with the sequential prefetching
scheme as an average of all studied applications.

The data traffic is reduced in all prefetching schemes
compared with a 256 B cache line size. Compared with
the 256 B configuration, bundled capacity prefetching re-
duces the data traffic by about 70 percent on the average for
all SPLASH- 2 benchmarks and about 55 percent for the
JAVA-servers. On the average, the address traffic increases
a few percent for bundled capacity prefetching compared
with a 256 B cache line size and is similar to the 32 B cache
line address traffic.

All prefetching schemes, except capacity prefetching in
Barnes, manage to reduce the number of cache misses com-
pared with the non-prefetching 32 B version for each appli-
cation. Only three of a total of fourteen benchmarks show a
worse miss rate for the bundled capacity prefetching scheme
than the 256 B scheme: FFT, LU and Water-Nsq.

The average miss statistics from both the SPLASH- 2
benchmarks and the JAVA-server benchmarks show that se-
quential prefetching reduces the miss rate most. The dif-
ference in misses between capacity prefetching and bun-
dled capacity prefetching is very small on the average and
is caused by the owner reply limitation described in Sec-
tion 3.2. Some applications, e.g., Barnes, FMM, Radix and
Water-Nsq, show rather large differences in cache miss rates
between the three prefetching configurations. In Barnes and
FMM, bundled capacity prefetching is more efficient than
capacity prefetching in two ways, by reducing cache misses
and traffic. This is because no ReadExclusive prefetches are
generated by Upgrade requests in the bundling, which hurts
the miss rate in these applications.

Capacity prefetching and bundled capacity prefetching
manage to reduce the number of capacity and cold misses
(non-communication misses) while keeping the upgrades,
false and true sharing misses (communication misses) un-
der control. The applications with the largest false shar-

ing problems for large cache line sizes (Barnes, FMM, Ra-
diosity, Radix, Water-Sp, ECperf) gain the most by capacity
prefetching. Some applications (Barnes, Radiosity, Water-
Nsq, Water-Sp) introduce more false sharing when prefetch-
ing than could be found in the 32 B configuration. How-
ever, these applications experience even more false sharing
misses for the 256 B non-prefetching configuration.

As can be seen in the applications with a large amount of
capacity misses (Specjbb2000, ECperf, Volrend), the data
traffic is not reduced as much as in applications with few
capacity misses. This is not surprising since the prefetching
takes place when a line is replaced in the cache. Despite
this fact, the data traffic is reduced significantly compared
with the 256 B cache line configurations.

Capacity prefetching only distinguishes between com-
munication and non-communication cache lines. No dis-
tinction is made between false and true sharing misses. The
prefetching is therefore suppressed not only for capacity
misses but also for true sharing misses. However, for most
of the studied benchmarks, this does not seem to increase
the number of cache misses compared with the sequential
prefetching protocol, which prefetches on all cache misses.
Water-Nsq is the benchmark that is most influenced by this
lack of prefetching. The application evaluates forces and
potentials in water molecules. Each molecule has a record
of data saved in an array. The size of the record is larger
than 32 B. When a new processor updates the record, the
whole record has to be transferred. Thus, in this application
it would be advantageous to communicate large chunks of
data, which is not the case in capacity prefetching. Since
communication misses are handled the same way as in a
non-prefetching protocol, the capacity prefetching proto-
cols perform equally to the 32 B non-prefetching protocol.

6. Implementation Issues with Capacity
Prefetching

The results presented in the former section showed that,
with the bundled capacity prefetching protocol, it would be
beneficial to reduce the cache line size for communicat-
ing lines and use a rather large prefetch distance for non-
communicating lines. Shorter cache lines introduce a higher
memory overhead in the cache implementation. A common
way to reduce the overhead is to use subblocked caches. In
a subblocked cache, a single address tag is associated with
several cache lines, while each cache line has its own state
tag. Subblocked caches yield more capacity misses than
non-subblocked caches since the number of replacements
increases with a less efficient use of the cache. A sounder
comparison would therefore be to compare the bundled ca-
pacity prefetch protocol with cache implementations having
the same cache tag size.

With a subblocked version of bundled capacity prefetch-

6



(a) Cache misses (b) Address and data traffic

(c) Cache misses (d) Address and data traffic

(e) Cache misses (f) Address and data traffic

(g) Cache misses (h) Address and data traffic

Figure 3. Effect of subblocked bundled capacity prefetching. All configurations have an address tag with 256 B reso-
lution, resulting in a larger degree of subblocking for configurations with smaller cache line size. The non-prefetching
protocols (32s, 64s, 128s, 256) have cache line sizes of 32, 64, 128 and 256 B respectively. The subblocked bundled
capacity prefetching protocols (32sbc, 64sbc, 128sbc) have cache line sizes of 32, 64 and 128 B. All results are normal-
ized relative to the 256 B configuration. The miss ratio for each application is indicated for the 256 B configuration.

7



ing, it would be easier to prefetch the lines that are avail-
able in the subblocks sharing the same address tag, rather
than sequentially prefetching the lines with consecutive ad-
dresses. As a consequence, the subblocked version of the
bundled capacity prefetching scheme becomes less com-
plex to implement since the exact data to prefetch do not
have to be specified. The prefetched lines are aligned with
the addresses that have the same cache tag. On a non-
communication miss, the bus request demands the owner
of the cache line for all available lines that have the same
cache tag.

6.1. Evaluation of the Subblocked Prefetching
Schemes

The behavior of the subblocked prefetching schemes can
be studied in Figure 3. To make a fair comparison, all con-
figurations have a similar memory overhead cost. The cache
tag size has a resolution of 256 B size in all configurations.
A total of seven configurations has been tested. The con-
figurations 32s, 64s and 128s are ordinary non-prefetching
subblocked schemes having 32, 64 and 128 B cache lines
respectively. The 32s configuration has 8 subblocks per tag,
the 64s configuration 4 subblocks per tag and the 128s con-
figuration 2 subblocks per tag. The protocol with a 256 B
cache line 256 is not subblocked at all. The remaining three
configurations 32sbc, 64sbc and 128sbc are also subblocked
to varying degrees and use the subblocked version of bun-
dled capacity prefetching.

Since subblocking results in a larger number of cache
misses due to an increase in capacity misses, the config-
urations with a small cache line size are more heavily sub-
blocked than the ones with longer cache lines. For example,
cache misses and traffic will increase more for the 32s and
32sbc configurations than for the 64s configuration due to
subblocking. A possibility would be to subblock less, but
that would lead to an increased cache implementation cost.
The subblocking results in less beneficial results for shorter
cache line sizes and is therefore the main reason why a sub-
blocked capacity prefetching configuration with a very short
cache line is not suggestible.

On the average it seems like the lowest number of cache
misses occurs when the cache line size is 64 B and sub-
blocked bundled capacity prefetching is used. Compared
with the non-prefetching 256 B configuration, the address
traffic is somewhat increased (10 percent), while data traf-
fic is lowered by more than 50 percent. The reason for the
good results with the 64 B cache line size could be that all
the benchmarks were optimized at compile time to run on
machines with this cache line size.

Applications with a large amount of capacity misses ex-
perience a larger increase in traffic in subblocked bundled
capacity prefetching than applications with less capacity

misses. This is almost entirely caused by a larger number of
write-backs, which generate more address and data traffic.
The effect is more pronounced in subblocked caches.

7. Conclusion

This paper presents a method to simply categorize cache
lines in communicating or non-communicating. The op-
timization proposed is to issue prefetch requests for non-
communicating lines. No optimization has been carried out
for communicating lines.

We have demonstrated how the strategies of capacity
prefetching and bundling can be used to improve the effec-
tiveness of static sequential prefetch schemes, while vastly
reducing the overhead in address and data communication.
The strategies reduce the capacity and cold misses by se-
quentially prefetching lines without causing problems with
false sharing. The strategies create virtually longer cache
lines for all non-communicating data and keep the cache
lines short for communicating data. The hardware imple-
mentation cost of the prefetching scheme is very low. By
combining the messages generated at each prefetch for all
Read and Upgrade requests, the address traffic can be sig-
nificantly lowered using bundled capacity prefetching.

This should not be viewed, however, as the ultimate re-
sult of these two methods, but rather an indication that they
should be studied in the context of many more coherence
schemes.

8. Future Work

Several authors have studied how to adaptively fetch data
into a cache. Dahlgren et al. studied how to adaptively
determine the prefetch distance in a multiprocessor [8]. An
interesting study would be to combine an adaptive protocol
with a capacity prefetch protocol.

It also would be interesting to use a separate dynamic
prefetching strategy for communication data. That way, dif-
ferent effective cache line sizes would be applied to commu-
nication and capacity misses according to what seems to fit
the running application best.

9. Acknowledgement

We would like to thank Jim Nilsson for providing us with
the original version of the cache coherence protocol model
for Simics and Martin Karlsson who helped us set up the
commercial benchmarks. We also would like to express
gratitude to the Department of Scientific Computing, Up-
psala University, for letting us borrow their SunFire 15K
server for simulation.

8



This work is supported in part by Sun Microsystems,
Inc., and the Parallel and Scientific Computing Institute
(PSCI), Sweden.

References

[1] http://ecperf.theserverside.com/ecperf/.
[2] http://www.spec.org/osg/jappserver2001/.
[3] http://www.spec.org/osg/jbb2000/.
[4] A. Agarwal, J. Hennessy, and M. Horowitz. Cache Perfor-

mance of Operating System and Multiprogramming Work-
loads. ACM Transactions on Computer Systems (TOCS),
6(4):393–431, 1988.

[5] J.-L. Baer and T.-F. Chen. An Effective On-Chip Preloading
Scheme to Reduce Data Access Penalty. In Proceedings of
the 1991 Conference on Supercomputing, pages 176–186,
1991.

[6] A. Charlesworth. The Sun Fireplane System Interconnect.
In Proceedings of the 2001 Conference on Supercomputing,
2001.

[7] T.-F. Chen and J.-L. Baer. A Performance Study of Software
and Hardware Data Prefetching Schemes. In Proceedings
of the 21st Annual International Symposium on Computer
Architecture, pages 223–232, 1994.

[8] F. Dahlgren, M. Dubois, and P. Stenström. Sequential Hard-
ware Prefetching in Shared-Memory Multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, 6(7):733–
746, 1995.

[9] F. Dahlgren and P. Stenström. Evaluation of Hardware-
Based Stride and Sequential Prefetching in Shared-Memory
Multiprocessors. IEEE Transactions on Parallel and Dis-
tributed Systems, 7(4):385–398, 1996.

[10] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and
P. Stenström. The Detection and Elimination of Useless
Misses in Multiprocessors. In Proceedings of the 20th An-
nual International Symposium on Computer Architecture,
pages 88–97, 1993.

[11] S. J. Eggers and T. E. Jeremiassen. Eliminating False Shar-
ing. In Proceedings of the 1991 International Conference on
Parallel Processing, pages 377–381, 1991.

[12] S. J. Eggers and R. H. Katz. The Effect of Sharing on the
Cache and Bus Performance of Parallel Programs. In Pro-
ceedings of the Third International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 257–270, 1989.

[13] M. Garzaran, J. Briz, P. Ibanez, and V. Vinals. Hardware
Prefetching in Bus-Based Multiprocessors: Pattern Charac-
terization and Cost-Effective Hardware. In Proceedings of
Parallel and Distributed Processing 2001, pages 345–354,
2001.

[14] J. R. Goodman. Using Cache Memory to Reduce Processor-
Memory Traffic. In 25 Years of the International Symposia
on Computer Architecture (selected papers), pages 255–262,
1998.

[15] E. H. Gornish. Adaptive and Integrated Data Cache
Prefetching for Shared-Memory Multiprocessors. PhD the-
sis, University of Illinois at Urbana-Champaign, 1995.

[16] A. Gupta and W.-D. Weber. Cache Invalidation Patterns
in Shared-Memory Multiprocessors. IEEE Transactions on
Computers, 41(7):794–810, 1992.

[17] E. Hagersten. Toward Scalable Cache-Only Memory Archi-
tectures. PhD thesis, Royal Institute of Technology, Stock-
holm, 1992.

[18] M. Karlsson, K. Moore, E. Hagersten, and D. A. Wood.
Memory System Behavior of Java-Based Middleware. In
Proceedings of the Ninth International Symposium on High
Performance Computer Architecture, 2003.

[19] D. M. Koppelman. Neighborhood Prefetching on Multipro-
cessors Using Instruction History. In Proceedings of Inter-
national Conference on Parallel Architectures and Compi-
lation Techniques, pages 123–132, 2000.

[20] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2):50–58, 2002.

[21] T. Mowry and A. Gupta. Tolerating Latency Through
Software-Controlled Prefetching in Shared-Memory Multi-
processors. Journal of Parallel and Distributed Computing,
12(2):87–106, 1991.

[22] T. C. Mowry. Tolerating Latency in Multiprocessors through
Compiler-Inserted Prefetching. ACM Transactions on Com-
puter Systems (TOCS), 16(1):55–92, 1998.

[23] S. Przybylski. The Performance Impact of Block Sizes and
Fetch Strategies. In Proceedings of the 17th Annual Inter-
national Symposium on Computer Architecture, pages 160–
169, 1990.

[24] M. K. Tcheun, H. Yoon, and S. R. Maeng. An Effective On-
Chip Preloading Scheme to Reduce Data Access Penalty.
In Proceedings of the International Conference on Parallel
Processing, pages 306–313, 1997.

[25] J. Torrellas, M. S. Lam, and J. L. Hennessy. False Sharing
and Spatial Locality in Multiprocessor Caches. IEEE Trans-
actions on Computers, 43(6):651–663, 1994.

[26] D. M. Tullsen and S. J. Eggers. Effective Cache Prefetch-
ing on Bus-Based Multiprocessors. ACM Transactions on
Computer Systems (TOCS), 13(1):57–88, 1995.

[27] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24–36, 1995.

9


