
VASA: A SIMULATOR INFRASTRUCTURE WITH ADJUSTABLE FIDELITY

Dan Wallin, Håkan Zeffer, Martin Karlsson and Erik Hagersten
Department of Information Technology

Uppsala University
P.O. Box 337, SE-751 05 Uppsala, Swedenfdan.wallin, hakan.zeffer, martin.karlsson, erik.hagersteng@it.uu.se

ABSTRACT
This article presents Vasa, a configurable high-performance
multiprocessor simulation package for the Virtutech Sim-
ics full-system simulator. Vasa includes models of multi-
level caches, store buffers, interconnects and memory con-
trollers and can model complex out-of-order SMT/CMP-
processors in great detail. However, it can also be run in
two less detailed simulation modes being up to 287 times
faster on average.

We compare the simulation results from a 16-way
cache coherent multiprocessor system with four 4-way
SMT/CMP processors in the three simulation modes. Our
results indicate that for many architectural studies, it isjus-
tifiable to run the simulations in a faster less detailed mode
as long as it is not the behavior of the processor itself or the
first level caches that is being studied.

KEY WORDS
Vasa, Simics, Full-System Simulation, Multiprocessor

1 Introduction

Computer architecture studies rely on accurate simulation
models. Due to simulation slowdown, architectural studies
are often restricted to either downscaled datasets or to study
only parts of an application. Approximations that jeopar-
dizes result reliability. It has for example been shown that
reduced benchmark data sets can lead to very different re-
sults compared to reference datasets [1, 2]. Since faster
simulation enables increased application coverage, a trade-
off arises between experiment reliability and model fidelity.

As chip-multiprocessors become commonplace and
an increasingly popular simulation target, the importance
of simulator speed is exacerbated. Since multiprocessor
system simulation is difficult to parallelize and has largely
remained sequential, simulation slowdown grows linearly
with the number of modeled processors.

In this paper we present the Vasa1 simulator frame-
work, which is a modular simulator infrastructure that is
tightly integrated with the Virtutech Simics full-system
simulator. It was designed to enable rapid prototyping of
new architectural ideas. The framework includes processor
and memory system models enabling simulation of large-

1Vasa is named after the 90 km cross-country ski race Vasaloppet,
http://www.vasaloppet.se, which all authors successfully have completed.

scale multiprocessor computer system. To address the sim-
ulation slowdown problem, Vasa provides three different fi-
delity modes representing different levels of detail and sim-
ulation speed.

It is important to select the appropriate level of sim-
ulator fidelity because of the significant slowdown in de-
tailed simulation. In this paper we show that a very de-
tailed simulation mode with a pipelined out-of-order pro-
cessor often can be avoided unless we study the processor
itself or the behavior of the first level caches.

The contribution of this paper is threefold:� We describe the approximations and trade-offs made
in the design of the Vasa simulator framework, includ-
ing the concepts of downstream timing and instant co-
herence.� We present a simulator speed evaluation of the three
different fidelity levels provided by Vasa.� We quantify the effect on the experimental results
when using the different fidelity levels.

2 Simics Overview

Virtutech Simics is a commercial full-system simulator [3]
that can deterministically simulate multiprocessor systems
with enough accuracy to boot unmodified operating sys-
tems. Simics guarantees that each instruction of the simu-
lated machine is executed correctly from an ISA perspec-
tive and provides a timing interface to user modules such as
Vasa components. Instruction fetches and data accesses are
forwarded to the timing interface, allowing user models to
model the corresponding memory system effect and timing
of an access. For example, a module modeling a cache can
stall the execution of an instruction for an arbitrary number
of cycles on a cache miss. Hence Simics provides a simpli-
fied approach to execution driven simulation, where model
writers can ignore ISA correctness issues.

When simulating a multiprocessor system in Simics,
each processor is simulated in a round-robin fashion. The
number of cycles executed in each time slot,cpu-switch-
time, is variable allowing the coarseness in the thread in-
terleaving to be scaled. This can have a significant ef-
fect when simulating multithreaded applications with con-
tended locks. Throughout this study we have employed a

cpu-switch-time of one, however all Vasa memory system
components can be run with a highercpu-switch-time.

Simics has the ability to checkpoint a simulation,
which allows users to run an application to an interest-
ing point and then save all states of the entire simulated
machine to disk. Checkpointing can save simulation time
since for example an application initialization phase only
need to be run once. All later simulations can then be
started from the checkpoint. For commercial benchmarks
such initialization or warmup phase can require weeks of
simulation [4].

Starting with release 2.0 Simics provides a Micro-
Architectural Interface (MAI), which was designed to en-
able microarchitectural processor modeling. Through the
MAI, users can overcome the in-order execution limitation
of baseline Simics and write out-of-order execution mod-
els. In MAI mode, Simics still ensures that each instruction
is executed correctly, but leaves it to a user model to deter-
mine when each instruction should pass phases like fetch,
decode, execute and commit. This allows very detailed pro-
cessor timing modeling. The Micro-Architectural Interface
allows the processor model writer to focus on timing and
leaves the ISA correctness to Simics.

3 Vasa Overview

Vasa is a new execution-driven simulation framework that
enables full-system simulation of an entire multiprocessor
computer system at various fidelity levels. The Vasa frame-
work contains both processor and memory system compo-
nents. Three different processor modes are supported, two
in-order modes and one MAI enabled out-of-order mode.
Each of the processor modes provides a different level of
detail and speed. Vasa contains a single memory system
model designed to handle all three processor modes.

The simulation infrastructure includes the following
components:� Processor: SMT-support, out-of-order execution,

speculative execution, branch prediction, configurable
number of pipeline stages and functional units, store
buffer support etc.� Caches: Write-through/write-back, variable cache
size, cache line size, associativity and latency,
LRU, random and NRU replacement policies, MOSI-
coherence protocol between caches or shared caches,
multiple banks and miss status holding registers.� Interconnect: Support for a generic directory based
protocol with variable latency and bandwidth for vari-
able network topologies. The interconnect is built up
from modules called coherence agents and links.� Memory controller: Two different memory con-
trollers, one simple with static access time to mem-
ory, the other advanced modeling bursts, channels, de-
vices, banks and DRAM timing in detail.

Each component in the Vasa framework is built from
Simics modules and connected using Simics interfaces.
Setting up a model system, thus involves creating modules
for each object to model, e.g., a cpu module, a store buffer
module and a cache module and then connecting them to-
gether with Simics interfaces.

Vasa models are set up using the Simics configura-
tion system which can be controlled through Simics built-
in Python runtime environment. A system configuration
is therefore simply created by a Python script, which sim-
plifies varying and scaling the architectural features of a
system.

Vasa also supports checkpointing. That is, at a cer-
tain time most of the memory system states can be stored
to disk. However, the Vasa checkpointing facility does
not capture outstanding instructions or transactions, hence
some information is lost. Through checkpointing, memory
system warming can be performed once and is thereafter
avoided. The checkpointed states can be loaded in different
simulation modes which makes it possible to fast-forward
the simulation using a faster simulation mode and then use
a more detailed mode at certain times. This is useful since
it has been shown that it is common that not all parts of an
application have to be modeled in great detail and still yield
accurate results [1].

4 Time Modeling in Vasa

One of the largest challenges in simulator design is to strike
a balance between the level of detail and flexibility in the
model. One of the design goals of Vasa has been to create
a framework that is as simple and easily modifiable as pos-
sible. To reduce model complexity we have employed two
simulator strategies which we calldownstream timing and
instant coherence. We have found that these strategies lead
to large simplifications and model clarity.

4.1 Downstream Timing

The main idea behinddownstream timing is to model band-
width and latencies for a transaction on its way down the
memory system. Once the piece of data is found and la-
tency has been modeled the memory system state is mo-
mentarily updated.

In Vasa there are two kinds of memory system mes-
sages,requests andactions. Requests are memory access
messages passed on from the processor down the memory
hierarchy until the requested piece of data is found. On
the way through the memory hierarchy the memory request
can be stalled multiple times. For example in a cache with
N cycles access time, the lookup is performedN cycles af-
ter the request was forwarded from the previous level. If
the access is a miss, the request is then forwarded to the
next level in the hierarchy, where it again is stalled until
the access time of the next cache has passed. In addition to
modeling access time, the requests allocate bandwidth on

the way through the hierarchy. This is performed by using
a configurable number of Miss Status Handling Registers
(MSHRs). Each cache can only handle a fixed number of
outstanding requests. If all MSHRs are occupied the re-
quest cannot enter the cache and forces it to stall. Once the
piece of data is found, a fill action is carried out by anac-
tion message that is sent from the memory side of the hier-
archy in the direction towards the processors. Actions take
place momentarily in the entire cache and memory hierar-
chy and free the MSHRs that was allocated by the request.

The principle of downstream timing is to model the
timing of messages that are passed down the memory hier-
archy while upstream messages are performed instantly.

4.2 Instant Coherence

Instant coherence is a multiprocessor extension of down-
stream timing. When simulating coherence among multi-
ple nodes, a module called the pseudo directory is used.
The pseudo directory is Vasas internal directory, without
counterpart in the modeled hardware, that keeps track of
which nodes and states a certain piece of data is cached.
The pseudo directory determines and sets up all coherence
messages that would be necessary for a real directory co-
herence mechanism to satisfy a request. Depending on who
is the requester, the owner or the home node, this can re-
quire a large number of messages. All messages have a
certain size in bytes and are sent vialink modules with ad-
justable latency and bandwidth. Time is modeled for all the
messages that are sent across the simulated network. As
soon as the requested piece of data has been been received
by the requester, we can finish model timing. Now, actions
are sent in the direction towards the processors, which mo-
mentarily update the entire cache/memory hierarchy. At
the same time, we also update the pseudo directory to guar-
antee correct coherence throughout the modeled system.
We call this method of using a centralized directory and
momentary updates,instant coherence, since the messages
required by a request is determined instantly.

Instant coherence in combination with downstream
timing makes it possible to model realistic network la-
tencies and bandwidths without introducing intermediate
transition states in the coherence protocol. This simplifies
the model significantly and makes it easier to verify and
use. Instant coherence also has the benefit of separating
the modeling of time from the coherence modeling, which
makes it easier to modify either part.

5 Vasa Simulation Modes

Vasa can be run in three different modes, depending on
what level of detail or speed that is required. The three
modes provided are functional simulation (FUNC), timing
simulation without a detailed processor model (STALL)
and timing simulation with a detailed processor model
(MAI).

5.1 Functional Simulation - FUNC Mode

In the functional simulation mode (FUNC), no timing is in-
cluded. That is, all instructions take exactly one cycle and
no timing feedback is provided from the memory system.
Functional simulation is useful for studying application be-
havior in general but not for studies requiring the inclusion
of timing sensitive behavior such as contention and thread
interleaving. The main advantage of functional simulation
is its superior speed. Since functional mode does not in-
clude timing feedback, exactly the same trace of instruc-
tions is observed between simulations of different systems.
Hence scheduling effects cannot interfere with simulation
results.

5.2 Timing Simulation without a Processor
Model - STALL Mode

Many architectural studies require the inclusion of timing.
To get an accurate thread interleaving in a multiprocessor
simulation, the timing of each memory system access must
be modeled. Time modeling in STALL mode is handled
in an event driven manner. Simics provides a processor
clock cycle-indexed event queue for each processor that al-
lows models to post callbacks arbitrarily many cycles in
the future. The Simics event queue is used in Vasa to post
events such as cache lookups after a certain access time de-
lay. This ensures that a request reaches the right level in the
memory hierarchy at the right time.

5.3 Timing Simulation with a Processor
Model - MAI Mode

The drawback with the previous modes is that they do not
simulate complex deeply pipelined processors and there-
fore do not capture the effects of out-of-order and wrong-
path execution. To be able to study modern systems with
these features, Vasa can be run in a more accurate mode
with a complex processor module. This mode is based on
the Micro-Architecture Interface (MAI) mode described in
Section 2. The cache hierarchy is simulated in the same
way as in the STALL mode, except that instead of using the
Simics event queue, we connect a module called the cycle
handler to each object. The cycle handler steps all modeled
objects forward each cycle. The reason for having the cy-
cle handler module connected instead of using the Simics
event queue mechanisms is that it enables randomization
of the order time is advanced among the objects. By this
randomization, we can avoid arbitration modeling and still
prevent specific hardware threads from being favored.

6 Taking Advantage of the Simics Simulator
Translation Cache

Simics uses a built-in software cache to speed up the sim-
ulations, the Simulator Translation Cache (STC). The STC

stores addresses for each processor that can be accessed
without side-effects. A STC hit guarantees that an instruc-
tion fetch or a data access will not cause, e.g., an align-
ment exception or a TLB miss. The STC is divided into
a data STC (dSTC) and an instruction STC (iSTC) which
can be enabled and disabled independently. The simulator
performance speedup provided by the STCs can be signif-
icant. However instruction fetches and data accesses that
hit in the STCs are not forwarded to the timing interface
and will therefore be missed by Simics user models such as
Vasa. Hence, STCs are normally turned off to get a com-
plete memory access trace.

The Simics API provides methods to force addresses
to be evicted from the STCs. Vasa exploits this feature
in order to provide a method of running Simics with the
STCs turned on. Addresses that will not affect the memory
system state can be allowed in the STC. For example in a
system with first level caches that use a random or FIFO
replacement, a fetch or data access that hits in the first level
cache will not affect the state and can be allowed in the
STCs. Similarly in a LRU cache, addresses residing in the
MRU set of the L1 caches can be safely kept in the STCs.
Once an address is evicted or invalidated, the correspond-
ing entry in the STC must be flushed to make sure that an
access to the same address is not filtered out the next time.
Because of the principle of locality exposed in most pro-
grams many instructions can be safely kept in the STCs
and thereby provide a simulator speedup. Note that using
Vasa with the STCs turned on will yield incorrect cache ac-
cess statistics. However, the number of cache misses will
still be correct since all cache accesses that lead to a cache
miss is modeled.

A similar simulation technique based on the STC have
previously been explored by Ekman [6] in a uniprocessor
context. STC simulation gains more speed in uniprocessor
than multiprocessor simulations since uniprocessor simula-
tions does not involve cache coherence invalidations.

7 Comparing Simulation Modes

In this section, we compare the experimental results in
terms of memory system statistics and execution time be-
tween the different simulation modes in order to identify
and quantify the differences between various fidelity lev-
els.

7.1 Case Study

In this case study, we simulate a SPARC V9 system config-
ured to resemble a scaled down IBM Regatta system with a
total of 16 threads [7]. The system has two SMT threads per
processor core, two cores per chip (2-way CMP) and a total
of four chips. Each core has separate instruction and data
L1 caches and shared L2 and L3 caches. Table 1 contains
the simulated system parameters for the out-of-order pro-
cessor model. The cache line size is the same in all caches

Processor 2- way SMT, dual core
Frequency 3 GHz
Pipeline stages 12
Fetch/Issue/Retire Width 16/6/8
Instruction window 256 entries
Branch predictor 36864 bits YAGS
Store buffer 32 entries/thread
L1 data cache 32 KB, 2-way, 2 cycles,

32 MSHRs
L1 instr cache 64 KB, 2-way, 2 cycles

32 MSHRs
L2 Shared cache 1 MB, 16-way, 11 cycles

128 MSHRs
L3 Shared cache 8 MB, 16-way, 81 cycles

128 MSHRs
Cache line size 64 B/128 B/256 B

(varied in the experiments)
Interconnect Fully connected
Bandwidth 3 GB/s per link
Local Mem Latency 200 cycles
Remote Mem Latency 600 cycles

Table 1. Simulated Target System Parameters

in the system, but is varied between 64, 128 and 256 byte in
different experiments. The model system is set up in Vasa
according to Figure 1.

The core model in the MAI mode works as follow:
Each thread in the processor core fetches 8 instructions
from the instruction cache. The instructions are selected
using the ICOUNT fetch policy [8]. The decode and re-
name stages are 6-way superscalar before the insertion into
the issue queue. Instructions can be issued and executed
out-of-order but are committed in-order. The threads share
the same branch predictor and branch-target buffer but have
individual return address stacks.

The STALL mode has exactly the same cache and
memory system parameters. This mode cannot model a
SMT-processor since it would require the modeling of the
entire processor pipeline, which is not supported in base-
line Simics. Therefore, we simply let two processors share
the same L1 caches. Each core in the STALL configuration
is from an architectural point of view a 2-way CMP instead
of a 2-way SMT processor. The FUNC mode is identical
to the STALL mode except that all memory accesses com-
plete in exactly one cycle.

7.2 Benchmarks and Warming

The simulations were run with a total of ten dif-
ferent benchmarks. Eight of the benchmarks were
taken from the SPLASH2 parallel benchmark suite [9].
The eight SPLASH2 benchmarks were BARNES, FFT,
LU continuous (LUC), LU non-continuous (LUNC),
OCEAN continuous (OCEANC), RADIX, WATER spa-

(a) The chip-configuration in the MAI mode of the modeled
case study system. In the STALL and FUNC modes, each
2-way SMT core is replaced by a 2-way CMP core.

(b) The 16-way case-study system is built from four 4-way
SMT/CMP chips.

Figure 1. Case study system configuration

tial (WATER S) and WATER nsquared (WATERN). These
SPLASH2 benchmarks were run with the default input
sets specified in the SPLASH2 code release except that
OCEAN C was scaled up to 258 times 258 data points. The
caches were warmed according to Woo et al [9].

In addition to these benchmarks, we also modeled
two commercial workloads, SPECJBB2000 and APACHE.
SPECJBB2000 (JBB2000) is a commercial JAVA-based
middleware benchmark which evaluates the performance
of server-side JAVA [10]. APACHE is a benchmark mod-
eling the Apache open source Web server to which URL-
requests are sent by a client [11]. SPECJBB2000 was run
for 4000 transactions after a warmup period of 100000
transactions. APACHE was run 400 transactions with 1000
transactions warmup period.

7.3 Model Verification

The Vasa simulation framework has been verified in func-
tional mode against the simulator used in the SPLASH2
characterization article [9] and the SUMO-simulator [12].
The verification was made in terms of cache miss ratios,
coherence and data traffic at variable cache line sizes. Un-
fortunately we have not been able to verify the more de-
tailed modes of Vasa against other simulators or real hard-
ware. The task is complicated by simulator model differ-
ences making apple to apple comparisons difficult. Hence
we are unable to quantify the effects of the downstream
timing and instant coherence simplifications. However for
comparative simulation studies, i.e., an optimized model is
compared against a baseline model, we believe that these
simplifications is likely to affect both models equally and
still provide the correct relative performance trends.

7.4 Simulation Performance

In this section we present the relative difference in simula-
tion speed between the different modes. All runs are carried
out on the same Opteron-based system. Compared with the
most accurate MAI mode, the STALL mode is about 42
times faster and the FUNC mode about 164 times faster on
average according to Table 2.

MAI STALL FUNC
no-STC iSTC no-STC iSTC

BARNES 1.00 27.9 35.2 67.4 134
FFT 1.00 47.1 71.6 54.8 142
LU C 1.00 60.4 98.6 114 242
LU NC 1.00 54.8 103 84.6 198
OCEAN C 1.00 44.6 64.1 314 624
RADIX 1.00 42.6 60.8 392 666
WATER S 1.00 30.8 50.2 62.6 141
WATER N 1.00 41.1 67.4 70.0 169
APACHE 1.00 32.1 30.6 370 447
JBB2000 1.00 41.2 44.9 109 109
AVERAGE 1.00 42.3 62.6 164 287

Table 2. Normalized simulation speed for the MAI, STALL
and FUNC modes.

The STC can be used to further improve the simula-
tion speed according to the description in Section 6. Turn-
ing on the STC is most efficient when the cache miss ratio is
very low. In this case the STC will remove a large amount
of unnecessary cache accesses. The drawback of turning
the STC on is that we have to remove certain physical ad-
dresses from the STC. This takes time. For the simulated

configuration it turns out that it is most efficient to only en-
able the STC on instruction cache accesses. Turning on the
STC for data accesses actually decreased the performance
for several of the studied applications.

Table 2 shows the relative performance for the FUNC
and STALL modes with the instruction STC (iSTC) turned
on. The STALL mode with the iSTC turned on, is on av-
erage 63 times faster than the MAI mode and the FUNC
mode with the iSTC is on average 287 times faster than the
MAI mode. The iSTC simulations are therefore about 48
percent faster in the STALL mode and 75 percent faster in
the FUNC mode than the normal simulation on average for
all applications. However, for APACHE which has a high
instruction cache miss ratio [13], we actually get a slow-
down in STALL mode. No results are presented for the
MAI mode. In this mode the differences are very small,
since almost all time is spent in simulating the processors
rather than simulating the cache hierarchy.

7.5 Results in Different Modes

The simulations were performed with the case study sys-
tem configuration in the three simulation modes. We set
up Vasa to vary the access time to memory in order to get
more statistically correct results. The simulated execution
time can differ significally even if very small memory la-
tency differences are used [14].

Table 3 shows the median cache miss ratios, data traf-
fic, coherence traffic and execution time for the 64 Byte
coherence unit configuration for each application. The L1d
cache miss ratio is for many applications notably higher
for the FUNC mode than it is for the MAI and the STALL
modes. The reason for this is that each instruction, includ-
ing memory operations, only takes a single cycle to execute
in FUNC mode. The entire machine is updated instantly.
This leads to an overestimate in the cache miss ratio for ap-
plications with lock contention. Critical sections typically
takes shorter time to execute in FUNC mode than in other
Vasa modes, which leads to fewer cache hits from threads
spinning on contended locks.

Simics makes it possible to chose the number of in-
structions that is executed on a processor before switching
to the next processor. This parameter is called the cpu-
switch-time and is set to one in all configurations used
in this paper. We tried to increase this parameter and
found the cache miss ratio to decrease, especially in ap-
plications with many locks and barriers such as LUC and
OCEAN C. This can be explained by more lock spinning
caused by longer periods from the time a lock becomes
available to when it becomes observable by other proces-
sors.

The relative differences in cache miss ratios between
the simulation modes decrease the further away we come
from the processor. The cache miss ratios in the third level
cache only differ with a few percent between the modes.

The data traffic is somewhat underestimated in the
STALL and FUNC modes compared to the MAI mode. The

STALL and FUNC modes estimate the data traffic to be 8
respectively 16 percent less than the MAI mode data traffic
on average. The STALL (FUNC) mode coherence traffic
is 5 (13) percent less than that of the MAI mode on aver-
age. The reason for this is probably that the MAI mode’s
processor model lets speculative memory references from
wrong path execution pass out to the memory system.

It is not really relevant to compare the absolute cy-
cle count in the MAI and STALL modes since the STALL
mode assumes no pipelining and that the processor issues
a single instruction each cycle except when the memory
system causes it to stall. The executed number of cycles is
higher for the STALL mode than the FUNC mode since the
FUNC mode assumes no latency at cache accesses.

The comparison presented in Table 3 is only carried
out using the 64 byte coherence unit configuration. It does
not show how the performance changes when we make an
architectural change to the simulated system. The ability
to study performance effects of architectural modifications
is very important for computer architects since it it nec-
essary for making correct design decisions. We therefore
continue the experiments by comparing the studied appli-
cations when the coherence size in the entire system is var-
ied between 64, 128 and 256 byte. A large coherence size
normally leads to better performance as long as false shar-
ing is limited [9].

In Figures 2 and 3, the cache miss ratios for all caches
and the execution time for all applications are shown. All
results are normalized to 1.0 relative to the 64 byte con-
figuration of each application in the corresponding execu-
tion mode. The FUNC mode is omitted since an instruction
takes one cycle to execute regardless of cache line size, and
hence, the number of cycles is exactly the same for all con-
figurations.

The figures show that the trends in cache miss ratios
and execution time are similar for almost all applications
in the three simulation modes. The only time a less de-
tailed simulation mode yields a significantly incorrect trend
is for L1d cache miss ratio in some of the applications, e.g,
BARNES, FFT, LUC and OCEANC. In all other cases,
it is possible to pick out the best candidate also in faster
simulation modes.

The results also show that the differences in the re-
sults between the simulation modes are smaller closer to
the memory. These results indicate that the most detailed
simulation mode only has to be used when the processor
itself or the first level cache behavior is studied. Note that
more aggressive processors than the out-of-order model de-
scribed here, may have an increased effect in the higher
levels of the memory hierarchy.

8 Related Work

Many different simulation strategies have been presented
both in terms of simulation techniques and finding rel-
evant benchmark applications and working sets. The
trend towards multithreaded computers, with SMT/CMP-

(a) Normalized L1d cache miss ratio

(b) Normalized L1i cache miss ratio

(c) Normalized L2 cache miss ratio

(d) Normalized L3 cache miss ratio

Figure 2. Normalized cache miss ratios for all applicationswhen scaling coherence unit.

Cache miss ratios (percent) Data traffic Coherence traffic Execution time
L1d L1i L2 L3 (MB) (MB) (Mcycles)

BARNES MAI 20.0 0.00264 0.186 46.1 41.5 12.8 408
STALL 10.5 0.00270 0.232 46.2 41.0 13.1 297
FUNC 32.2 0.00244 0.161 46.1 42.8 14.0 186

FFT MAI 11.1 0.0273 1.22 70.0 8.00 1.74 21.1
STALL 16.4 0.0185 0.913 69.3 6.98 1.60 23.0
FUNC 9.39 0.00974 1.37 67.8 6.56 1.48 22.4

LU C MAI 1.37 0.00158 0.554 53.3 12.1 2.98 97.1
STALL 0.617 0.00127 0.515 58.9 9.11 2.30 56.7
FUNC 34.6 0.00139 0.256 45.2 11.2 2.61 36.5

LU NC MAI 1.51 0.00224 0.712 53.0 16.8 4.14 119
STALL 2.70 0.00157 0.551 52.4 12.6 2.84 84.2
FUNC 22.0 0.00156 0.276 47.4 12.9 2.72 59.0

OCEAN C MAI 2.18 0.0133 3.78 52.4 81.0 19.2 211
STALL 3.47 0.0102 3.40 53.8 77.5 18.8 206
FUNC 15.4 0.0312 7.18 50.6 81.0 21.5 30.9

RADIX MAI 6.89 0.0228 0.968 70.3 9.09 2.13 29.8
STALL 10.2 0.0138 0.800 69.4 8.61 2.17 32.6
FUNC 30.4 0.0832 2.35 69.4 7.60 1.86 3.06

WATER S MAI 6.47 0.00481 0.108 64.8 3.96 1.24 75.0
STALL 8.26 0.00310 0.0980 64.4 3.45 1.18 71.3
FUNC 16.5 0.00320 0.0729 58.9 3.37 1.24 40.2

WATER N MAI 5.63 0.00397 0.209 66.0 8.56 2.42 96.2
STALL 7.19 0.00266 0.212 67.5 8.77 2.57 91.0
FUNC 12.3 0.00258 0.130 56.4 6.65 1.98 64.2

APACHE MAI 39.3 0.219 12.5 64.4 151 26.6 138
STALL 41.6 1.22 10.2 66.0 138 24.5 123
FUNC 43.9 2.10 10.4 63.3 47.4 8.79 4.37

JBB2000 MAI 16.0 0.169 8.51 63.0 36.7 4.31 53.2
STALL 17.7 0.457 7.81 58.4 42.1 4.91 48.6
FUNC 19.0 0.439 7.52 57.6 40.6 4.72 12.3

Table 3. Cache miss ratios, data traffic, coherence traffic and execution time for all applications (64 byte coherence unit).

processors and several nodes makes it important to
model multiprocessor systems. Simulators with this abil-
ity include Simics [3], Talisman [15], PharmSim [16],
ASIM [17], TFSim [18], SimOS [19] and RSIM [20].

Some simulators focus on user-level execution of pro-
grams without including the effect of the operating sys-
tem [17, 20, 21, 22, 23, 24]. Other simulators, model op-
erating systems but require modifications to the operating
system to be able to run user applications [15, 16, 19].
The SimFlex project [26] at Carnegie Mellon University
includes the simulation package Flexus which is another
simulator project that uses the Simics Micro Architectural
Interface. It is currently capable of modeling CMPs but not
SMT processors.

A useful feature in several simulators is the ability to
run the simulations with different levels of accuracy and
simulation speed [19, 21, 24, 25]. For example, in sev-
eral of these simulators, a modeled out-of-order processor
can be replaced by an in-order processor for improved sim-
ulation speed. Other simulation approaches include Sim-

Point [27] and SMARTS [28] which main contributions are
to find statistically more relevant working sets.

9 Conclusion

We have presented Vasa a highly configurable simulation
framework. Vasa enables detailed simulation of multi-
processor systems by providing models of modern out-of-
order processors, caches, store buffers, interconnects and
memory controllers.

Vasa is less complex than many other simulators be-
cause it relies on the concepts of downstream timing and
instant coherence. Timing is only modeled on the way from
the processors to the memory and state changes take place
instantly throughout the entire system.

Vasa includes three different fidelity modes, where
the level of detail can be traded for simulation speed. We
find that the most detailed mode of simulation, which in-
cludes a fully pipelined out-of-order processor, in many
cases can be avoided. An exception to this is if one specif-

(a) Normalized Execution time

Figure 3. Normalized execution time for all applications when scaling coherence unit.

ically wants to study processor design options or first level
cache designs. For architectural studies targeting memory
system components further away from the processor, our
results show that a less detailed simulation mode yields ac-
curate results. The less detailed modes can also be more
useful since the speed increase enables longer simulations.

10 Acknowledgement

We would like to thank the Multifacet group at University
of Wisconsin for providing us with the commercial work-
loads used in this article.

This work is supported in part by Sun Microsystems,
Inc., the Parallel and Scientific Computing Institute (PSCI),
as well as the PAMP research program, supported by the
Swedish Foundation for Strategic Research.

References

[1] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, & D.
M. Hawkins, Characterizing and comparing prevaling
simulation techniques,Proceedings of the 11th Inter-
national Symposium on High Performance Computer
Architecture, Washington, DC, USA, 2005, 266-277.

[2] E. Berg & E. Hagersten, StatCache: A probabilistic
approach to efficient and accurate data locality analy-
sis,Proceedings of the 2004 IEEE International Sym-
posium on Performance Analysis of Systems and Soft-
ware, Austin, TX, USA, 2004, 20-27.

[3] P. S. Magnusson, M. Christensson, J. Eskilson, D.
Forsgren, G. Hållberg, J. Högberg, F. Larsson, A.
Moestedt, & B. Werner, Simics: A full system simu-
lation platform,IEEE Computer, 35(2), 2002, 50-58.

[4] M, Karlsson, K. Moore, E. Hagersten, & D. A. Wood,
Memory system behavior of Java-based middleware,
Proceedings of the 9th International Symposium on
High Performance Computer Architecture, Anaheim,
CA, USA, 2003, 217-228.

[5] Simics Micro-Architectural Interface, Reference
manual, Virtutech Inc., ver 2.2.10, 2005.

[6] M. Ekman, Strategies to Reduce Energy and Re-
sources in Chip Multiprocessors, (Gothenburg, Swe-
den: Chalmers Institute of Technology, 2004).

[7] J. M. Tendler, J. S. Dodson, J. S. Fields Jr., H. Le,
& B. Sinharoy, POWER4 system microarchitecture,
IBM Journal of Research and Development, 46(1),
2002, 5-25.

[8] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy,
J. L. Lo, & R. L. Stamm, Exploiting choice: instruc-
tion fetch and issue on an implementable simultane-
ous multithreading processor,Proceedings of the 23rd
Annual International Symposium on Computer Archi-
tecture, Philadelphia, PA, USA, 1996, 191-202.

[9] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, & A.
Gupta, The SPLASH-2 programs: Characterization
and methodological considerations,Proceedings of
the 22nd International Symposium on Computer Ar-
chitecture, S. Margherita Ligure, Italy, 1995, 24-36.

[10] http://www.spec.org/osg/jbb2000/.

[11] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K.
E. Moore, X. Min, M. D. Hill, D. A. Wood, & D. J.
Sorin, Simulating a $2M commercial server on a $2K
PC,IEEE Computer 36(2), 2003, 50-57.

[12] J. Nilsson, P. Nandula, & A. Landin,SUMO - A
Generalized Memory Hierarchy Simulator, Reference
manual, Sun Microsystems Inc.

[13] M, Karlsson, K. Moore, E. Hagersten, & D. A. Wood,
Exploring Processor Design Options for Java-Based
Middleware, Proceedings of the 34th International
Conference on Parallel Processing, Oslo, Norway,
2005, 59-68.

[14] A. R. Alameldeen & D. A. Wood, Variability in ar-
chitectural simulations of multi-threaded workloads,
Proceedings of the 30th International Symposium
on High Performance Computer Architecture, San
Diego, CA, USA, 2003, 7-18.

[15] R. C. Bedichek, Talisman: Fast and accurate mul-
ticomputer simulation, Proceedings of the 1995
ACM SIGMETRICS Joint International Conference
on Measurement and Modeling of Computer Systems,
Ottawa, Ontario, Canada, 1995, 14-24.

[16] H. W. Cain, K. M. Lepak, B. A. Schwartz, & M.
H. Lipasti, Precise and accurate processor simulation,
Proceedings of the Fifth Workshop on Computer Ar-
chitecture Evaluation Using Commercial Workloads,
Cambridge, MA, USA, 2002, 13-22.

[17] J. Emer, P. Ahuja, E. Borch, A. Klauser, C. K. Luk,
S Manne, S. S. Mukherjee, H. Patil, S. Wallace, N.
Binkert, R. Espasa, & T. Juan, Asim: A performance
model framework,IEEE Computer 35(2), 2002, 68-
76.

[18] C. J. Mauer, M. D. Hill, & D. A. Wood, Full-system
timing-first simulation,Proceedings of the 2002 ACM
SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, Marina Del
Rey, CA, USA, 2002, 108-116.

[19] M. Rosenblum, S. A. Herrod, E. Witchel, & A. Gupta,
Complete computer system simulation: The SimOS
approach,IEEE Parallel Distributed Technology 3(4),
1995, 34-43.

[20] L. Schaelicke & M. Parker,ML-RSIM Reference
Manual, Technical report 02-10, Dept. of Computer
Science and Engineering, Univ. of Notre Dame, 2002.

[21] T. Austin, E. Larson, & D. Ernst, SimpleScalar: an
infrastructure for computer system modeling,IEEE
Computer 35(2), 2002, 59-67.

[22] S. E. Breach,Design and Evaluation of a Multiscalar
Processor, (Madison, WI, USA: Univ. of Wisconsin,
1998).

[23] E. Larson, S. Chatterjee, & T. Austin, MASE: A novel
infrastructure for detailed microarchitectural model-
ing,Proceedings of the 2001 IEEE International Sym-
posium on Performance Analysis of Systems and Soft-
ware, Tuscon, AZ, USA, 2001, 1-9.

[24] E. Schnarr & J. R. Larus, Fast out-of-order proces-
sor simulation using memoization,Proceedings of the
8th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, San Jose, CA, USA, 1998, 283-294.

[25] M. M. K. Martin, D. J. Sorin, B. M. Beckmann,
M. R. Marty, M. Xu, A. R. Alameldeen, K. E.
Moore, M. D. Hill & D. A Wood, Multifacet’s general
execution-driven multiprocessor simulator (GEMS)
toolset, Submitted toComputer Architecture News,
2005.

[26] http://www.ece.cmu.edu/ simflex/.

[27] G. Hamerly, E. Perelman, & B. Calder, How to use
SimPoint to pick simulation points,SIGMETRICS
Performance Evaluation Review 31(4), 2004, 25-30.

[28] E. E. Wunderlich, T. F. Wenisch, B. Falsafi, & J. C.
Hoe, SMARTS: Accelerating microarchitecture sim-
ulation via rigorous statistical sampling,Proceedings
of the 30th Annual International Symposium on Com-
puter architecture, San Diego, CA, USA, 2003, 84-
97.

