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Abstract. Fine-grained software-based distributed shared memory (SW-
DSM) systems typically maintain coherence with in-line checking code at
load and store operations to shared memory. The instrumentation over-
head of this added checking code can be severe. This paper (1) shows
that most of the instrumentation overhead in the fine-grained SW-DSM
system DSZOOM is store-related, (2) introduces a new write permission
cache (WPC) technique that exploits spatial store locality and batches
coherence actions at runtime, (3) evaluates WPC and (4) presents WPC
results when implemented in a real SW-DSM system. On average, the
WPC reduces the store instrumentation overhead in DSZOOM with
42 (67) percent for benchmarks compiled with maximum (minimum)
compiler optimizations.

1 Introduction

The idea of implementing a shared address space in software across clusters of
workstations, blades or servers was first proposed almost two decades ago [1].
The most common approach, often called shared virtual memory (SVM), uses
the virtual memory system to maintain coherence. In this paper, we concentrate
on fine-grain systems, which maintain coherence by instrumenting memory op-
erations in the programs [2–4]. An advantage with these systems is that they
avoid the high degree of false sharing, which is common in SVMs. Hence, they
can implement stricter memory consistency models and run applications origi-
nally written for hardware-coherent multiprocessors. However, fine-grain systems
suffer from relatively high instrumentation overhead [2–4]. Multiple schemes to
reduce this overhead have been proposed. For example, Shasta [3] statically
merges coherence actions at instrumentation time.

In this paper, we show that most of the instrumentation overhead in the
sequentially consistent [5] fine-grained software DSM system, DSZOOM [4],
comes from store instrumentation. We propose a dynamic write permission cache
(WPC) technique that exploits spatial store locality. This technique dynamically
merges coherence actions at runtime. We evaluate the proposed WPC technique
in a parallel test bench. In addition, we present and evaluate two real WPC
implementations as part of the DSZOOM system.



The WPC reduces DSZOOM’s average store instrumentation overhead with
42 percent for SPLASH-2 benchmarks compiled with the highest optimization
level and 67 percent for non-optimized applications. The parallel execution time
for 16-processor runs for a 2-node configuration is reduced as much as 27 (32)
percent and, on average, 7 (11) percent for benchmarks compiled with maximum
(minimum) compiler optimization.

2 Write Permission Cache (WPC)

Blocking directory coherence protocols have been suggested to simplify the de-
sign and verification of hardware DSM (HW-DSM) systems [6]. DSZOOM’s pro-
tocol is a distributed software-version of a blocking directory protocol. Only one
thread at a time can have the exclusive right to produce global coherence activity
at each piece of data. The blocking protocol avoids all corner cases of traditional
coherence protocols. More protocol details can be found in [4, 7].

The applications studied have more loads than stores to shared memory. Yet,
the store-related coherence checks stand for the largest part of the instrumenta-
tion overhead, as we will show in section 5.2. Most of this overhead comes from
the fact that a locally cached directory entry (called “MTAG”) must be locked
before the write permission check is performed (blocking protocol).

The idea with the write permission cache (WPC) is to reduce locking and
consulting/checking of MTAGs by exploiting spatial store locality. Instead of
releasing the MTAG lock after a store is performed, a thread holds on to the
write permission and the MTAG lock, hoping that the next store will be to the
same coherence unit. If indeed the next store is to the same coherence unit, the
store overhead is reduced to a few ALU operations and a conditional branch in-
struction. When a store to another coherence unit appears, a WPC miss occurs.
Only then, a new lock release followed by a lock acquire must be performed.

The upper part of Figure 2 shows how an original store instruction expands
into a store snippet when the DSZOOM system is used. Ry is a temporary reg-
ister, Rx contains the value to be stored and addr is the effective address of this
particular store operation. Lines 12 and 17 acquire and release the MTAG lock.
Moreover, lines 13 and 14 load and check the MTAG value for permission. If the
processor does not have write permission, the store protocol is called at line 15.
Finally, at line 16, the original store is performed.

The lower part of Figure 2 shows how a WPC snippet is designed. The
snippet consists of two parts: a fast- and a slow-path. Line 22 checks if the
current coherence unit is the same as the one cached in the WPC (a WPC entry
contains a coherence unit identifier, refered to as CU id[addr] in Figure 2). If
that is the case, then the processor has write permission and can continue its
execution. The slow-path code is entered only if a WPC miss occurs. In that case,
the processor actually checks for write permission in the MTAG structure. The
slow path has much in common with the ordinary store snippet. However, one
major difference is that the old lock, whose coherence unit identifier is cached
in the WPC, has to be released (line 32). Moreover, at the end of the snippet,



01: original_store: 11: original_store_snippet:

02: ST Rx, addr; 12: LOCK(MTAG_lock[addr]);

03: 13: LD Ry, MTAG_value[addr];

04: 14: if (Ry != WRITE_PERMISSION)

05: 15: call st_protocol;

06: 16: ST Rx, addr;

07: 17: UNLOCK(MTAG_lock[addr]);

21: wpc_fast_path_snippet: 31: wpc_slow_path_snippet:

22: if (WPC != CU_id[addr]) 32: UNLOCK(MTAG_lock[WPC]);

23: call slow_path 33: WPC = CU_id[addr];

24: ST Rx, addr 34: LOCK(MTAG_lock[addr]);

25: 35: LD Ry, MTAG_value[addr];

26: 36: if (Ry != WRITE_PERMISSION)

27: 37: call st_protocol;

Fig. 1. Original and WPC-based store snippets.

the processor keeps the lock. At line 33, the processor inserts the new coherence
unit identifier in its WPC. Memory mappings are created in such a way that
the CU id[addr] reference at lines 22 and 33 easily can be done with arithmetic
instructions, i.e., a shift. Thus, the fast path contains no extra memory references
since thread-private registers are used as WPC entries. In other words, an n-
entry WPC system with t threads contains n× t WPC entries in total.

3 Experimental Setup

The benchmarks that are used in this paper are well-known workloads from
the SPLASH-2 benchmark suite [8]. Data set sizes for the applications studied
can be found in [7]. The reason why we cannot run volrend is that shared
variables are not correctly allocated with the G MALLOC macro. Moreover, all
experiments in this paper use GCC 3.3.3 and a simple custom-made assembler
instrumentation tool for UltraSPARC targets. To simplify instrumentation, we
use GCC’s -fno-delayed-branch flag that avoids loads and stores in delay slots.
We also use -mno-app-regs flag that reserves UltraSPARC’s thread private
registers for our snippets. These two flags slow down SPLASH-2 applications
with less than 3 percent (avg.). Compiler optimization levels are -O0 and -O3.

3.1 Hardware and DSZOOM Setup

All sequential and SMP experiments in this paper are measured on a Sun Enter-
prise E6000 server [9]. The server has 16 UltraSPARC II (250 MHz) processors
and 4 Gbyte uniformly shared memory with an access time of 330 ns (lmbench la-
tency [10]) and a total bandwidth of 2.7 Gbyte/s. Each processor has a 16 kbyte



on-chip instruction cache, a 16 kbyte on-chip data cache, and a 4 Mbyte second-
level off-chip data cache.

The HW-DSM numbers have been measured on a 2-node Sun WildFire built
from two E6000 nodes connected through a hardware-coherent interface with a
raw bandwidth of 800 Mbyte/s in each direction [6, 11]. The WildFire system
has been configured as a traditional cache-coherent, non-uniform memory access
(CC-NUMA) architecture with its data migration capability activated while its
coherent memory replication (CMR) has been kept inactive. The Sun WildFire
access time to local memory is the same as above, 330 ns, while accessing data
located in the other E6000 node takes about 1700 ns (lmbench latency). The
E6000 and the WildFire DSM system are both running a slightly modified ver-
sion of the Solaris 2.6 operating system.

All DSZOOM implementations presented in this paper run in user space on
the Sun WildFire system. The WildFire interconnect is used as a cluster inter-
connect between the two DSZOOM nodes. Non-cachable block load, block store
and ordinary SPARC atomic memory operations (ldstub) are used as remote
put, get and atomic operations. Each node accesses a “private copy” of the shared
memory. The DSZOOM system maintains coherence between these private seg-
ments, i.e., the hardware coherence is not used. Moreover, the data migration
and the CMR data replication of the WildFire interconnect are inactive when
DSZOOM runs.

3.2 Test Bench Setup

We have developed a parallel test bench environment to analyze new protocol
optimizations such as the WPC. The test bench is called protocol analyzer (PA)
and is designed for rapid prototyping and simulation of realistic workloads on
parallel machines.

Our system has much in common with the Wisconsin Windtunnel II [12]
simulator. It uses direct execution [13] and parallel simulation [12] to gain per-
formance. The output from instrumented load and store operations of the studied
benchmarks is used as input to PA. Moreover, an SMP (E6000) is used as host
system during simulations. The SMP hardware guarantees coherence, memory
consistency and correctness during the parallel execution of the program. PA
implements a configuration system that makes it possible to model different
memory systems. A PA model can simulate caches, cache coherence protocols
and much more by using shared memory and simple counters. However, it is not
possible to simulate target system’s execution time.

Instrumentation overhead and calls to PA models can introduce timing errors
or skewness in the simulation. It is important to consider these timing issues
when analyzing data produced by the simulator.
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(a) WPC hit rate for benchmarks compiled with optimization level -O0.
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(b) WPC hit rate for benchmarks compiled with optimization level -O3.

Fig. 2. WPC hit rate for SPLASH-2 benchmarks compiled with -O0 (a) and -O3 (b)
using a coherence unit size of 64 bytes.

4 Evaluating WPC

4.1 Simulated WPC Hit Rate

In this section, we investigate if it is possible to achieve high WPC hit rate with
a few WPC entries. This is especially important for an efficient software WPC
implementation. We use a multiple-entry WPC model to simulate WPC hit rate
in PA. WPC hit rate is measured as hits in the WPC divided by the number
of stores to shared memory. All data are collected during the parallel execution
phase of the applications when run with 16 processors. Because each processor
has its own set of WPC entries, and each processor simulates its own WPC hit
rate, a timing skewing introduced by PA is not a problem. This is especially
true for the applications that only uses synchronization primitives visible to the
runtime system. Moreover, our simulated 1-entry WPC hit rate numbers have
been verified with a slightly modified DSZOOM implementation. The numbers
are almost identical (maximum difference is less than 0.03 percent).

Figure 2 shows hit rate for thirteen applications when 1, 2, 3, 4, 8, 16, 32 and
1024 WPC entries and a coherence unit size of 64 bytes is used. Figure 2 contains
WPC hit rate for applications compiled with (a) minimum and (b) maximum
optimization levels. Applications compiled with a low optimization level seem



to have higher WPC hit rates than fully optimized binaries. Still, almost all
applications compiled with -O3 have a WPC hit rate above 0.7. In particular, this
is true when two or more WPC entries are used. If the number of WPC entries
is increased from one to two, applications such as barnes, cholesky and fft
significantly improve their hit rate numbers. This is due to multiple simultaneous
write streams. Increasing the number of entries from two to three or from three to
four does not give such a large WPC hit rate improvement. Thus, increasing the
number of WPC entries above two might not be justified. radix and raytrace
show poor WPC hit rate. WPC hit rate numbers for other coherence unit sizes
(32-8192 bytes) and individual applications have been studied in a technical
report [7].

4.2 WPC Impact on Directory Collisions

Data sharing, such as multiple simultaneous requests to a directory/MTAG en-
try, might lead to processor stall time in a blocking protocol. If a requesting
processor fails to acquire a directory/MTAG lock, a directory collision occurs.
We have simulated the DSZOOM protocol in PA to estimate what impact a WPC
has on the number of directory collisions in DSZOOM. We run simulations with
1, 2, 3, 4, 8, 16, 32 and 1024 WPC entries, using 16 processors. Results show
that the number of collisions does not increase when the number of WPC entries
is small (less or equal to 32) [7]. For larger coherence unit sizes, the amount of
directory collisions (as well as false sharing) might increase. For example, lu-nc
performs poorly with a coherence unit size larger than 128 bytes.

PA might introduce timing skewness during a simulation. However, because
memory operations take longer time when PA is used, we believe that our col-
lision numbers are unnecessarily negative, i.e., that the number of directory
collisions will be even lower when run in DSZOOM than the simulation results
currently show.

5 WPC Implementation and Performance

5.1 The DSZOOM-WPC Implementation

For an efficient DSZOOM-WPC implementation, it is necessary to reserve pro-
cessor registers for WPC entries to avoid additional memory references in store
snippets. With multiple WPC entries, the register pressure as well as the WPC
checking code increases. As indicated in section 4.1, a 2-entry WPC may be
a good design choice. Thus, in this paper, we implement and evaluate 1- and
2-entry WPC systems. We use SPARC’s application registers as WPC entries.

The protocol of the base architecture maintains sequential consistency [5]
by requiring all the acknowledges from the sharing nodes to be received before
a global store request is granted. Introducing the WPC will not weaken the
memory model. The WPC protocol still requires all the remotely shared copies
to be destroyed before granting the write permission. WPC just extends the
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(a) Sequential instrumentation overhead breakdown for non-optimized binaries.

0%

50%

100%

150%

200%

250%

300%

fft lu-c lu-nc radix barnes cholesky fmm ocean-c ocean-nc radiosity raytrace water-nsq water-sp average

In
s
tr

u
m

e
n

ta
ti
o

n
 O

v
e

rh
e

a
d

 [
%

]

intld fpld st st-swpc st-dwpc st-wpc-hr1

(b) Sequential instrumentation overhead breakdown for fully optimized binaries.

Fig. 3. Sequential instrumentation overhead breakdown for integer loads (intld),
floating-point loads (fpld), the original store snippet (st), a 1-entry WPC store snippet
(st-swpc), a 2-entry WPC store snippet (st-dwpc) and a store snippet with WPC hit
rate 1.0 (st-wpc-hr1 ).

duration of the permission tenure before the write permission is given up. Of
course, if the memory model of each node is weaker than sequential consistency,
it will decide the memory model of the system. Our system implements TSO
since E6000 nodes are used.

The WPC technique also raises dead- and livelock concerns. Most of the dead-
and livelock issues are solved by the DSZOOM runtime system. A processor’s
WPC entries have to be released at (1) synchronization points, at (2) failures
to acquire directory/MTAG entries and at (3) thread termination. However,
user-level flag synchronization can still introduce WPC related deadlocks. The
WPC deadlock problem and three suggested solutions are discussed in [7]. In this
study, applications that use flag synchronization (barnes and fmm) are manually
modified with WPC release code.

5.2 Instrumentation Overhead

In this section, we characterize the overhead of inserted fine-grain access control
checks for all of the studied SPLASH-2 programs. The write permission checking



code (store snippets) is the focus of this section since the WPC technology is a
store optimization technique. To obtain a sequential instrumentation breakdown
for different snippets, we ran the applications with just one processor and with
only one kind of memory instruction instrumented at a time. This way, the code
will never need to perform any coherency work and will therefore never enter
the protocol code (written in C).

Sequential instrumentation overhead breakdown for the benchmarks is shown
in Figure 3. The store overhead is the single largest source of the total instru-
mentation overhead: 61 (34) percent for optimized (non-optimized) code. The
single-WPC checking code (st-swpc) reduces this overhead to 57 (16) percent.
Double-WPC checking code (st-dwpc) further reduces the store overhead to 36
(11) percent. As expected, the reduction is most significant for lu-c and lu-nc
because they have the highest WPC hit rate, see Figure 2, and low shared
load/store ratio [8]. fft and cholesky perform much better when a 2-entry
WPC is used. For radix, the instrumentation overhead slightly increases for the
st-swpc and st-dwpc implementations. The low WPC hit rate (see Figure 2) is
directly reflected in this particular instrumentation breakdown.

Finally, the “perfect” WPC checking code (st-wpc-hr1 ) (a single-WPC snip-
pet modified to always hit in the WPC) demonstrates very low instrumentation
overheads: 9 percent for optimized and 3 percent for non-optimized code.

To summarize, we have seen that applications with low load/store ratio tend
to have high store related instrumentation overhead. This store related overhead
could be significantly reduced if the application has a high WPC hit rate and
one or two WPC entries are used. On the other hand, if an application does not
have a high WPC hit rate nor a low load/store ratio the ordinary store snippet
might be a better alternative.

5.3 Parallel Performance

In this section, the parallel performance of two WPC-based DSZOOM systems
is studied. Figure 4 shows normalized execution time for Sun Enterprise E6000
(SMP), 2-node Sun WildFire (HW-DSM) and three DSZOOM configurations:

1. DSZOOM-base: the original DSZOOM implementation.
2. DSZOOM-swpc: the DSZOOM implementation with a 1-entry WPC.
3. DSZOOM-dwpc: the DSZOOM implementation with a 2-entry WPC.

All DSZOOM configurations use a coherence unit size of 64 bytes. Both the
HW-DSM configuration and the DSZOOM configurations run on two nodes and
with eight processors per node (16 in total). The SMP configuration run on a
single E6000 node with 16 processors and is used as an upper bound. The WPC
technique improves the parallel DSZOOM performance with 7 (11) percent for
benchmarks compiled with maximum (minimum) compiler optimization levels.
The performance gap between the hardware-based DSM and the DSZOOM sys-
tem is reduced with 14 (31) percent. Thus, the DSZOOM slowdown is in the
range of 77 (40) percent compared to an expensive hardware implementation of
shared memory, both running optimized (non-optimized) applications.



0.0

0.5

1.0

1.5

2.0

2.5

fft lu-c lu-nc radix barnes cholesky fmm ocean-c ocean-nc radiosity raytrace water-nsq water-sp average

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

SMP HW-DSM DSZOOM-base DSZOOM-swpc DSZOOM-dwpc

(a) 16-processor runs and non-optimized binaries.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fft lu-c lu-nc radix barnes cholesky fmm ocean-c ocean-nc radiosity raytrace water-nsq water-sp average

N
o

rm
a

ilz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

SMP HW-DSM DSZOOM-base DSZOOM-swpc DSZOOM-dwpc

(b) 16-processor runs and fully optimized binaries.

Fig. 4. Parallel performance for 16-processor configurations.

6 Related Work

The Check-In/Check-Out (CICO) cooperative shared memory implementation
presented by Hill et. al. [14] uses similar ideas as the WPC technique. CICO
is a programming model where a programmer can reason about access time
to memory and give simple hardware coherence protocol performance hints. A
check out annotation marks the expected first use and a check in annotation ter-
minates the expected use of the data. Whereas CICO annotations are inserted
as hints, a WPC entry actually “checks out” write permission since the direc-
tory/MTAG lock is not released until the next synchronization point or the next
WPC miss.

Shasta [3] uses batching of miss checks, that is a “static merge” of coherence
actions at instrumentation time. For a sequence of shared loads and stores, that
touches the same coherence unit, the Shasta system combines/eliminates some of
the access control checks (if possible). This way, all of the loads and stores in this
sequence can proceed with only one check. The current WPC implementation
works as a dynamic version of Shasta’s batching technique.



7 Conclusions

In this paper, we introduce and evaluate a new write permission cache (WPC)
technique that exploits spatial store locality. We demonstrate that the instru-
mentation overhead of the fine-grained software DSM system, DSZOOM [4],
can be reduced with both 1- and 2-entry WPC implementations. On average,
the original store instrumentation overhead, the single largest source of the to-
tal intrumentation cost, is reduced with 42 (67) percent for highly optimized
(non-optimized) code. The parallel performance of the DSZOOM system for
16-processor runs (2-node configuration) of SPLASH-2 benchmarks is increased
by 7 (11) percent. We believe that instrumentation-time batching (Shasta’s ap-
proach [3]) of coherence actions combined with our new WPC technique might
improve performance even further.
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