
A Case For Low-Complexity Multi-CMP Architectures

H̊akan Zeffer and Erik Hagersten

Department of Information Technology, Uppsala University
P.O. Box 337, SE-751 05, Uppsala, Sweden
{hakan.zeffer, erik.hagersten}@it.uu.se

Abstract

The advances in semiconductor technology have set
the shared memory server trend towards processors with
multiple cores per die and multiple threads per core.
This paper presents simple hardware primitives en-
abling flexible and low complexity multi-chip designs
supporting an efficient inter-node coherence protocol
run in software. The design is based on two node per-
mission bits per cache line and a new way to decouple
the intra-chip coherence protocol from the inter-node
coherence protocol. The protocol implementation en-
ables the system to cache remote data in the local mem-
ory system with no additional hardware support.

Our evaluation is based on detailed full system sim-
ulation of both commercial and HPC workloads. We
compare a low-complexity system based on the proposed
primitives with aggressive hardware multi-chip shared-
memory systems and show that the performance is com-
petitive, and often better, across a large design space.

1 Introduction

The continued decrease in transistor size and the
increasing delay of wires have lead to the develop-
ment of chip-multiprocessors (CMPs) [1, 10, 17, 24],
which implement multiple processor cores on a chip.
CMPs come both in small and large system config-
urations. The Sun UltraSPARC T1 processor (code
name Niagara) [8, 18] uses a single CMP while Pi-
ranha [1], IBM Power4 [24] and IBM Power5 [10] com-
bine multiple CMPs to form larger systems (multi-
CMPs). It is also common to use multiple hardware
threads (SMT) per core in order to increase on-chip
parallelism for both high-performance computing and
commercial computer systems [8, 9, 10, 26].

With today’s single chip systems implementing 32
hardware threads [8, 18] a traditional mid-range server

actually fits on a single die. One very important ques-
tion, with these trends in mind, is: Is it worth paying
the extra development cost to enable even larger sys-
tems?

This paper argues that architects should focus on
commercial single-chip performance and let small and
simple hardware primitives, together with a software
layer, provide support for shared-memory multi-chip
scalability. Our system design is inspired by SMTp [3]
and TMA Lite [30] and uses hardware inter-node co-
herence checks, but run the inter-node coherence pro-
tocol in software on the hardware thread that caused
the coherence miss.

We use two per cache line node permission bits for
our coherence checks and an innovative way to decouple
the intra-chip coherence protocol and its on-die mem-
ory controller from the inter-node coherence protocol.
The later scheme also let us use ordinary DRAM mem-
ory as a remote access cache. This DRAM remote ac-
cess cache (DRAC) makes it possible to cache large
amounts of remote data (gigabytes) locally and is ap-
plicable on a large spectrum of coherence designs, in-
cluding traditional hardware coherent NUMA systems.

This paper contributes with the following:

• We propose new hardware primitives for inter-
node coherence that greatly simplify large-scale
shared memory implementations. Our hardware
primitives require much less chip area than tradi-
tional hardware mechanisms.

• We introduce a new way to handle the interaction
between the intra-node- and the inter-node co-
herence protocol in modern chip-multiprocessors.
The logic is simple and greatly reduces the com-
plexity of inter-node write backs. It also enables
in DRAM remote access caching.

• This is the first paper that in great detail simu-
lates a system with hardware coherence detection



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

80ns 90ns 100ns 4 2 1

DRAM latency # cores

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Figure 1. Normalized execution time for
SPECjbb2000 while varying the DRAM ac-
cess latency (left) and number of processor
cores (right) for a Niagara like processor.

and a software protocol running commercial ap-
plications. We show that our system matches and
often outperforms three aggressive hardware co-
herent distributed shared-memory machines.

The rest of this paper is outlined as follows: we start
out with a short motivation in Section 2. Section 3
presents hardware modifications and the DRAC. Sec-
tion 4 and 5 describe our methodology and our results
respectively. We then present related work and con-
clude.

2 Motivation

While the big and lucrative market for small and
mid-range servers is targeted by today’s single chip sys-
tems [8, 18] it still adds value to support larger system
configurations. However, extending a single-chip CMP
system to support multi-CMP configurations comes at
a high cost, both in terms of design and verification.
The coherence mechanism, for example, has to be ex-
tended to support the additional inter-CMP coherence
protocol. The current trend is that the memory con-
troller and these coherence engines are moved on-die in
order to reduce both the local- and the remote memory
latency [1, 10, 24].

Figure 1 shows normalized execution time for
SPECjbb2000 running on a single Niagara-like chip [8,
18] with four hardware threads per processor core (de-
tails in Section 4). The left part of the figure shows
normalized execution time when the DRAM access la-
tency is increased from 80ns to 100ns for four processor

cores. The right part of the figure shows normalized
execution time when the number of processor cores on
the chip is varied from four to one. The results indi-
cate that modern chip designs often can overlap small
increases in DRAM latency but that removing cores
from the chip drastically reduces chip performance.

We are convinced that support for inter-chip coher-
ence, such as state machines and directory caches, will
require chip area, and hence, degrade commercial single
chip performance. One way to get around the problem
is to design two separate chips: one for single-chip and
one for multi-chip systems. However, this is a costly
solution and we do not believe all companies can afford
this approach.

The techniques presented in this paper makes it pos-
sible to design a single chip that support scalable con-
figurations without the sacrifice of chip area, and hence,
single-chip performance. Throughout this paper, we
compare our system with three traditional hardware
coherent machines with both on die coherence engine
and directory cache. We do not reduce their perfor-
mance based on the additional area used for inter-node
coherence.

3 Architecture and Mechanisms

This section discusses the simple hardware primi-
tives that have to be added to a processor to enable an
efficient inter-node coherence protocol run in software.
While the mechanisms proposed can be incorporated
in any kind of processor, our baseline processor closely
follows the Niagara design [8, 18]. It has a six-stage
pipeline, separate level-one data and level-one instruc-
tion caches where the data cache is write-through to a
shared second-level cache. A more detailed description
and system parameters can be found in Section 4.

Our system, named CRASH (Complexity-Reduced
Architecture for SHared memory), uses hardware sup-
port for detecting permission violations but runs the
coherence protocol in software on the hardware thread
that caused the miss. The directory is maintained by
the software protocol and is stored in normal cacheable
memory. Hence, the directory layout can easily be
changed and optimized for each particular system con-
figuration. On the other hand, it does occupy space in
the memory hierarchy and might lead to slightly more
cache misses.

Figure 2 shows a complete node diagram of the pro-
posed architecture. All parts other than the physical
DRAM and the network router are on the die. The
shaded areas correspond to CRASH modifications and
will be explained in detail in this section.



PC logic

x thrd

Fetch thrd select

I-CACHE

I-TLB

Instr buf

x thrd

Thread

select logic

Exe thrd select

DECODE ALU

D-CACHE

D-TLB

FETCH THRD SELECT DECODE EXECUTE MEMORY WB

Stbuf x thrd

CROSSBAR INTERFACE

L2 CACHE

CORE 0 CORE n

...

MEM CTRL
PROCESSOR CHIP

DRAM DIMMS

I/O CTRL

T
O

/F
R

O
M

N
E

T
W

O
R

K

Figure 2. Node architecture of CRASH. The shaded areas represent the logic and storage added for
CRASH support.

3.1 Global Address Support

When adding more nodes to a system one typically
wants to add extra memory as well. In order to support
the extra memory and to be able to cache remote mem-
ory in the local memory system all cache tags, TLBs
and the corresponding data paths have to be extended
to support extra physical address bits. These bits are
not needed for single-chip configurations but for our
and traditional multi-chip designs.

3.2 Node Permission Checks

In CRASH, the inter-node coherence checks are done
in hardware but the inter-node coherence protocol is
run in software on the hardware thread that detected
the coherence violation. We use two bits of meta data
per cache line to indicate a cache line’s inter-node co-
herence state. The node read (NR) bit indicates if a
node has read permission and the node write (NW) bit
indicates if a node has write permission. This section
discusses how the coherence checks are implemented,
how the two node permission bits are maintained in all
levels of the memory hierarchy, how they are updated,
and how forward progress is guaranteed.

3.2.1 The Load Check

In order to guarantee that inter-node coherence vio-
lations are detected, our design checks the node read
bit together with the normal state and tag check at

level-one cache lookups. If the node read bit indi-
cates read permission, the normal load behavior is per-
formed, data is forwarded to the destination register
and the load can commit. On the other hand, if the
node read bit indicates that the node does not have
read permission, the coherence protocol has to be in-
voked. Also here the normal load cache hit behavior
is used but with one small exception: we assert a ded-
icated signal indicating an inter-node read miss. This
signal is checked with a comparator at the load path
of the processor core and marks the load as faulting.
Hence, the load traps and the software protocol is in-
voked1.

We have now covered the load check when a load hits
in the level-one cache. At a level-one cache miss, on the
other hand, the following procedure is followed. When
data arrive from the crossbar interface it is installed in
the level-one cache and is forwarded to the destination
register through the load data path. However, also the
node read bit is installed in the level-one cache and is
forwarded on the load path (the dedicated signal). The
load can commit if the bit indicates read permission.
However, if the bit indicates a read coherence violation
the signal is asserted and the load is marked as faulting.
Hence, the coherence protocol is invoked.

1We rely on the SPARC V9 [28] trap- and interrupt mecha-
nism to streamline the design and minimize additional hardware.



3.2.2 The Store Check

The inter-node store check is done through interaction
between the store buffer and the level-two cache. When
store data reaches the head of the store buffer, data
together with the address and a mask, indicating which
bytes to write, is sent over the crossbar interface to the
level-two cache. The cache checks the node write bit
together with the tag and the normal state. If the
store is a cache hit and the node read bit indicates
permission, the normal store behavior is used. Data
is merged into the cache line and the store buffer is
signaled that the store did succeed, and hence, can be
removed from its store-buffer entry.

If the store is a cache hit but the node write bit
indicates that the node does not have write permission,
the update of the cache line is stopped and the store
buffer is signaled that a node write coherence violation
has occurred. Hence, the data has to stay in the store
buffer until the coherence miss has been solved and the
store can be retried. The inter-node coherence miss
signal is forwarded to the hardware thread responsible
for the store buffer and this particular store together
with the address. Hence, a non-precise trap invokes
the coherence protocol.

If the store is a second-level cache miss, on the other
hand, the following procedure is followed. When data
returns from the DRAM it is installed in the cache.
The tag array, the status and the two node permission
bits are updated. The store is then retried and the
cache-hit scenario described above is used.

3.2.3 Permission Bit Maintenance

The two inter-node permission bits must be maintained
in both cache and in DRAM memory. Moreover, it
must be possible for the software coherence protocol to
check and update them.

We have simply added the meta data bits to our
cache simulator and use the same ECC trick that
Nowatzyk et al. [16] and Gharachorloo et al. [5] use for
the directory implementation in S3.mp and Piranha,
when stored in memory. Note that the node permis-
sion bits have to be written back to memory when a
dirty cache line is evicted from the second-level cache.

The coherence protocol must be able to read data
without node read permission and write data without
node write permission in order to do its task. We use
dedicated ASIs2 for reading and writing without per-
mission. For example, the read without node permis-
sion ASI let data pass through the load data path to
the destination register with the permission violation

2Address Space Identifiers [28].

signal masked. In a similar way, for stores, a dedicated
bit is forwarded with the store operation to the second-
level cache where it is used to mask out the node write
permission check. The two bits are read- and writable
by the protocol.

It is also possible for the coherence protocol to read
and write the two bits.

3.2.4 Store Buffer Modification

It is crucial that the coherence protocol is able to write
valid data and permission bits to the local memory
system even if the store buffer is blocked by an inter-
node coherence miss.

We have extended the store buffer design in CRASH
to incorporate a special coherence protocol entry. This
entry is written by a dedicated ASI and can only be
occupied by protocol stores. When occupied, it acts as
if it is the head of the store buffer, and hence, takes
precedence over the rest of the entries. This implies
that there is no need to maintain order on this partic-
ular entry and since it can only hold protocol stores
there is no need to CAM against it.

3.2.5 Guaranteeing Forward Progress

When adding a new level of coherence, in this case the
inter-node coherence, one has to be careful to not loose
the forward progress property of the system. Forward
progress for loads is guaranteed since we do not only
update the cache line with valid data but also writes
the destination register of the missing load. We then
execute a done instruction instead of a retry [28] when
leaving the protocol. Hence, the load just occurred and
its place in the global memory order is defined.

We use the store buffer mechanisms with the extra
entry to guarantee store forward progress. We merge
the data from the store operation that triggered the
coherence protocol to start executing with the last up-
date from the protocol code. Hence, the original store
operation will take place together with the coherence
protocol initiated write of permission. Also this mech-
anism is controlled with a dedicated ASI.

3.3 DRAM RAC

The memory controller is responsible for queues
to DRAM, opening and closing of pages, RAS and
CAS calculation and much more. However, we will in
this paper only cover the logical CRASH modifications
shown in Figure 3.

This section discusses the CRASH memory con-
troller modifications that make it possible to cache re-
mote data in the local memory system. The DRAC



DRAC address
DRAC address logic

in: addr

out: daddr

t = addr

t = t & (size_reg - 1)

daddr = addr_reg+t

ADDR_REG (DRAC)

SIZE_REG (DRAC)

Local or remote
mask and match logic

in: addr

out: is_local

t = addr & mask_reg

is_local=(t==cmp_reg)

MASK_REG

CMP_REG (NID)

DRAM

address

logic

R
A

S

Read

D
A

T
A

 f
ro

m
 D

R
A

M

ADDR

C
A

S

DATA

no permission

line

R
A

S

Write Back

D
A

T
A

 t
o

 D
R

A
M

ADDR

C
A

S

DATA

local or

remote

DRAC

address

DRAM

address

logic

&

local or

remote

DRAM INTERFACE

Figure 3. Logical view of the memory con-
troller logic added for DRAC support. The
boxes to the left show the four registers
(mask reg, cmp reg, addr reg and size reg)
and the simple logic that is needed. To the
right is a high-level description of the read
and the write-back logic.

can logically be seen as a direct-mapped and tag-less
(in terms of hardware) cache maintained by the co-
herence protocol. The main task of the DRAC is to
decouple the two levels of coherence.

In short the logic consists of two parts: 1) logic that
classifies an address as remote or local and 2) simple
DRAC address logic. The upper left part of Figure 3
shows the former, which is based on a mask register
(mask reg) and a match register (cmp reg). The ad-
dress is simply masked with the mask register and the
output is compared with the content of the match reg-
ister.

Also the address calculation logic is simple. It is
shown in the lower left corner of Figure 3 and is based
on a start address register (addr reg) and a size reg-
ister (size reg). The physical address is masked with
the size of the DRAC minus one in order to get the
index. This index is then summed with the start ad-
dress register in order to get the new physical address
to use. Note that the size of the DRAC is controlled
with a register (size reg).

Data resident inside the DRAC can be reached in
two different ways: 1) a remote address that maps to
the corresponding index in the cache can be used, a
remote DRAC address, and 2) the local physical ad-
dress of the DRAC plus the index can be used, the
local DRAC address.

3.3.1 Read Logic

Figure 3 shows how a read and a write-back are han-
dled by the memory controller. The implementation
shown is not optimized for performance but for clar-
ity. Much of the logic can be run in parallel in a real
implementation.

The mask&match logic is used to determine if an
address is local or remote. If the address is local, the
normal read handling is used and the data are supplied
from DRAM. If the address is a remote address, on the
other hand, the memory controller stops the DRAM
access and returns a special cache line with no read
and no write permission. Hence, both the NR and the
NW bits indicate no permission and the data may be
set to any value (we use zero). Because of the lack of
permission, this cache line will trap the processor that
caused the read miss.

The memory controller always returns a no permis-
sion cache line on remote read accesses since we do not
want to add tag check hardware nor complexity to the
system. The software coherence protocol maintains the
cache and guarantees that multiple remote cache lines
that maps to the same DRAC index is never present in
the local cache system at the same time.

When the software coherence protocol is started by
a node read permission trap, it starts out by checking
the DRAC tags located in local memory. If this data
indicates a DRAC hit, the local DRAC address is used
to load the data from DRAM and the remote address
to place it in the local cache system. In the case of a
DRAC miss, the coherence protocol has to send a re-
quest to the home node in order to solve the coherence
miss. Moreover, before the new data can be placed in
the local cache system the remote cache line allocated
at the DRAC index that the missing address maps to
has to be written back to its home node. This is done
by sending a write-back request to that cache line’s
home node and provide the data when the protocol on
that node answeres to the request.

3.3.2 Write-Back Logic

A big challenge in coherent computer system design
is the write-back mechanism. When data is evicted
from the second-level cache a write-back request is sent
to the memory-controller that is responsible for writ-
ing the data to DRAM. If this data is local data the
memory controller simply uses the default handling and
writes the dirty data to DRAM. If the data is remote
data, the DRAC address logic is used to calculate the
corresponding physical DRAM address and the data
is written to the DRAC instead. Remember that our
coherence protocol guarantees that this is the only re-



mote cache line that maps to this particular DRAC
index.

This logic decouples the two layers of coherence by
letting all second-level cache write-backs go directly to
local memory without any inter-node coherence inter-
action.

3.4 Deadlock Considerations

The cyclic dependencies that can occur between
application instructions and protocol instructions in
SMTp [3] do not apply to CRASH. This is because
of the simple pipeline and the in-order memory system
of the base architecture. For example, if a load misses
in the data cache all instructions from this particu-
lar thread are flushed from the pipeline. This policy
is implemented to let other threads use the resources,
and hence, increase chip throughput. However, if
the CRASH extensions are implemented in a more
traditional out-of-order processor, deadlock avoidance
mechanisms similar to the ones presented in SMTp
have to be implemented.

3.5 I/O Controller Logic

The I/O controller has to be able to recognize cer-
tain messages from the network and be able to inter-
rupt the responsible processor. The standard interrupt
logic can be used but might be slow. In our evaluation,
we have made sure that these interrupts get high pri-
ority, and hence, start executing as soon as possible.

4 Evaluation Methodology

This paper presents simulation results for multipro-
cessors with up to sixteen nodes where each node is
an aggressive multithreaded chip-multiprocessor. This
section discusses the applications and the simulator in-
frastructure we use to evaluate CRASH.

4.1 Simulator Infrastructure

We use the Simics full-system simulator [15] ex-
tended with the Vasa memory system extensions [27].
We have implemented a new cycle accurate chip / pro-
cessor model and slightly extended the memory sys-
tem simulator in order to tag cache contents etc. We
simulate a SPARC-V9 system running an unmodified
Solaris 9 operating system.

Core and Chip Model: We model a chip-
multiprocessor where each core is a dynamically sched-
uled, multi-threaded throughput oriented processor de-
signed to resemble the Sun UltraSPARC T1 proces-

SMT Capabilities 1, 2, 4 or 8 way SMT
CMP Capabilities 1, 2, 4 or 8 way CMP
Frequency 1.4 GHz
Pipeline Stages 6
Fetch/Issue/Retire Width 8/1/1
Store Buffer 16 entries per thread
L1 Data Cache 16kB, 4-way, 2 cycle hit
L1 Instruction Cache 8kB, 4-way, 2 cycle hit
L2 Shared Unified Cache 1MB, 8-way, 10 cycle hit
L1/L2 Block Size 64 bytes

Table 1. Simulated chip parameters.

SDRAM access latency 80ns
SDRAM bandwidth Unlimited
Network Topology Fully connected
Hop latency 40ns
NIC latency 40ns
Interconnect Bandwidth Unlimited

Table 2. Simulated system parameters.

sor [8, 18]. The processor model is implemented in
the following way. One thread per core can fetch up
to 8 instructions from the instruction cache each cy-
cle. Round robin is used to select thread when more
than one need new instructions to their eight instruc-
tions wide fetch buffers. Round robin, dependencies,
branches and cache misses are used to select one thread
to send an instruction down the one instruction wide
pipeline. The processor does not implement branch
prediction. The rest of the pipeline is a decode stage
(register read), an execute stage (arithmetic operation
and address calculations). The last two stages are
for TLB, data cache access, trap and write-back logic.
Each core is single issue and has an integer ALU, a
FPU, a load/store unit and a branch unit.

The memory hierarchy simulator models the latency
and bandwidth of two levels of lockup-free caches per
chip. The first level instruction and data caches are
shared between the threads within a core. The sec-
ond level cache is shared among cores and is connected
to them with a crossbar. We model first-level write-
through caches, while the second-level cache implement
a write-back strategy. We use inclusion between the
caches. We send out a prefetch to the second level cache
when a store is placed in the store buffer. This idea is
taken from [19] and provides memory level parallelism
for stores. Table 1 shows simulated chip parameters.

System Configuration: In this paper each node
consists of a single chip with an on-die memory con-



troller. The memory controller is capable of handling
local cache misses. When simulating the hardware
coherent system, it also contains a hardware coher-
ence engine making it possible to handle remote cache
misses from the network interface. The protocol is a
highly optimized non-blocking directory protocol. The
on-chip coherence agent, responsible for node-to-node
coherence, uses a fully mapped bit vector to keep track
of sharers [12, 13]. The directory is located in mem-
ory but the coherence agent uses a directory cache to
cache directory information. The memory controller
used in the CRASH system, on the other hand, does
not maintain coherence between nodes.

We evaluate our system using multiple number of
nodes, number of cores per die and number of threads
per core. However, we always keep the total number of
simulated threads to 16 in order to avoid application
differences in the results.

We have in this paper assumed unlimited bandwidth
and a fully connected network. The reason for these
assumptions is that we do not want interference from
an unbalanced system or some “hard to find” bottle-
neck. It is important to note that the CRASH software
coherence protocol and the hardware coherence proto-
col uses the same protocol algorithms so the number
of packets sent and the bandwidth consumed by those
packets should be equal for a particular coherence miss.
Table 2 shows simulated system parameters.

Interactions with Solaris: To make the trap han-
dling as realistic as possible, we use reserved trap types
in the SPARC-V9 instruction set to implement our co-
herence traps. We have applied a binary patch that
modifies the corresponding trap vector entry in So-
laris 9 with our coherence protocol code. When a co-
herence trap is signaled, it is handled just as a normal
trap and the protocol routines are executed just as any
other trap handler instructions in the pipeline of the
cycle-accurate simulator, consuming pipeline resources
and polluting the caches.

Machine Configurations: This paper compares
the CRASH architecture with three hardware coherent
machine models as shown in Table 3. The different
hardware coherent machine models vary how large the
directory cache is. HWperf represents the most aggres-
sive hardware system with a perfect directory cache.
HW256 and HW64 correspond to more realistic design
points with a 256kB and a 64kB direct mapped di-
rectory cache respectively. These directory caches are
to be considered quite large since they are stored on
the processor die. CRASH corresponds to the CRASH
configuration and does not implement any hardware
coherence nor directory cache. Instead, the DRAC ad-
dress calculation shown in Figure 3 is incorporated in

its memory controller and, unless stated otherwise, is
configured with a DRAC size of 64MB.

4.2 Benchmarks

We use three commercial server side benchmarks
and two HPC benchmarks to evaluate CRASH.

MDB: Dynamic Web Search Content Serving: We
use a commercial in-memory database that responds to
web search queries. The full-scale database is started
and warmed. The benchmark’s warm-up phase is sim-
ulated until the steady-state phase is reached. One
query is approximately 1.5M instructions long.

JBB: SPECjbb2000 is a server-side Java benchmark
that models a 3-tier system, focusing on the middle-
ware server business logic and object manipulation [23].
The benchmark includes driver threads to generate
transactions as well as an object tree working as a back-
end. Our configuration uses 24-driver threads (1.5 per
processor) and 24-warehouses (with a total data size of
approximately 500MB).

SAP: SAP is a server side Sales and Distribution
benchmark. We use a commercial database server in
our experiments. The simulated machine is booted,
the full-scale database is started and warmed, and
the benchmark’s warm-up phase is simulated until the
steady-state phase is reached. (Generating the steady-
state checkpoint requires several months of simulation.
Total data size is greater than 2 GB.) One dialog step
is approximately 68M instructions long.

FFT: The FFT kernel is taken from the SPLASH-
2 [29] benchmark suite and is a complex 1-D version of
the radix−√

n six-step FFT algorithm. The kernel is
optimized to minimize inter-processor communication.

LU: This is the contiguous version of LU from the
SPLASH-2 [29] benchmark suite. It factors a dense
matrix into the product of a lower triangular and an
upper triangular matrix.

Data set sizes for the applications studied can be
found in Table 4. The commercial workloads are all
based on steady-state phase simulator checkpoints as
described above. All caches are warmed before we start
to collect data. For the HPC workloads the caches
are warmed during the initialization phase and data is
collected during the parallel region of the benchmark.
Both HPC benchmarks are run to completion.

5 Simulation Results

This section shows CRASH performance when com-
pared to the three hardware-coherent systems de-
scribed in Table 3.



MDB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

n2c2 n2c4 n2c8 n2c16 n4c4 n4c8 n4c16 n8c8 n8c16 n16c16

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

memory

protocol

compute

JBB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

n2c2 n2c4 n2c8 n2c16 n4c4 n4c8 n4c16 n8c8 n8c16 n16c16

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

memory

protocol

compute

SAP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

n2c2 n2c4 n2c8 n2c16 n4c4 n4c8 n4c16 n8c8 n8c16 n16c16

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

memory

protocol

compute

FFT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

n2c2 n2c4 n2c8 n2c16 n4c4 n4c8 n4c16 n8c8 n8c16 n16c16

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

memory

protocol

compute

Figure 4. Normalized execution time for the different hardware and the CRASH system for mdb, jbb,
sap and fft. The cycles are broken down into compute, protocol and memory cycles.



Model name Description
HWperf On-chip CA/MC, perfect directory data cache
HW256 On-chip CA/MC, 256kB direct mapped directory data cache
HW64 On-chip CA/MC, 64kB direct mapped directory data cache
CRASH On-chip MC (no CA), capable of DRAC address calculation

Table 3. Machine Models (CA=Coherence Agent (HW), MC=Memory Controller)

LU

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

n2c2 n2c4 n2c8 n2c16 n4c4 n4c8 n4c16 n8c8 n8c16 n16c16

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

memory

protocol

compute

Figure 5. Normalized execution time for the different hardware and the CRASH system for lu. The
cycles are broken down into compute, protocol and memory cycles.

Program Problem Size
mdb 22,500 queries
jbb 90,000 transactions
sap 450 dialog steps
fft 1M points, blocked for L2
lu 512 x 512 matrix, 16 x 16 block

Table 4. Benchmark working set sizes.

5.1 Node, Core and Thread Scaling

Figure 4 and 5 show CRASH performance when the
number of nodes, cores and threads per core are varied
in different configurations. The different configurations
are named after the total number of nodes and cores in
the system. For example, n2c2 corresponds to a sys-
tem with two nodes and two cores (one core per node)
and n4c8 corresponds to a system with four nodes and
eight cores (two cores per node). All configurations
have 16 hardware threads in total. Hence, the n2c2
(n4c8) configuration has eight (two) hardware threads
per core.

Each bar is built up of three parts: compute,
protocol and memory. The compute part corresponds

to each cycle when the pipeline’s execution units exe-
cuted normal instructions. The protocol part is only
valid for CRASH and corresponds to the cycles when
protocol code occupied the execution units. The rest
of the cycles (if any) are simply labeled memory (all
threads are waiting for memory).

This paper does not argue that one configuration is
better than another. Instead we investigate CRASH’s
performance point in a large design space. CRASH is
a bit slower than the hardware coherent systems when
the threads manage to hide the memory latency, as
in jbb-n2c2. The protocol instructions has to be ex-
ecuted, and hence, steals the ALUs from application
instructions. On the other hand, one can see that
CRASH outperforms not only the reasonable hardware
configurations but also the one with perfect directory
cache for many node/core configurations where this is
not the case. The reason for this is simply that the
protocol instructions do not interfere with the appli-
cation instructions and that CRASH’s DRAC reduces
the coherence traffic as will be shown later.

5.2 Protocol Cache Pollution

The software coherent system uses software data
structures for maintaining the directory and the



Benchmark L1i active ratio L1d active ratio L2 active ratio
instr/prot instr data/prot data instr/data/prot instr/prot data

mdb 0.996/0.004 0.943/0.057 0.053/0.819/0.000/0.128
jbb 0.996/0.004 0.901/0.099 0.073/0.809/0.000/0.118
sap 0.867/0.133 0.914/0.086 0.273/0.609/0.035/0.083
fft 0.996/0.004 0.868/0.132 0.031/0.917/0.000/0.052
lu 0.995/0.005 0.987/0.013 0.044/0.915/0.000/0.041
Benchmark L1i miss ratio L1d miss ratio L2 miss ratio

with prot/without prot with prot/without prot with prot/without prot
mdb 0.013/0.013 0.093/0.087 0.038/0.038
jbb 0.096/0.088 0.208/0.208 0.062/0.058
sap 0.227/0.215 0.162/0.154 0.070/0.066
fft 0.006/0.006 0.059/0.059 0.028/0.027
lu 0.004/0.004 0.055/0.055 0.003/0.003

Table 5. Cache pollution caused by the software coherence protocol: The top rows show active ratio
in the different on-chip caches and the lower rows show miss ratio for on-chip caches when the
protocol (instructions and data) occupies space in the cache and when it does not.

DRAC. Hence, they occupy cache space and might de-
grade performance. Table 5 shows both active ratios
and miss ratios for the various on-chip caches and the
n4c4 configuration. We define active ratio of a cache
and a certain type of data, x, to be the average space
occupied by x over time. Moreover, we define miss
ratio as number of misses divided by number of ac-
cesses. Both active ratio and miss ratio are expressed
as a number between zero and one.

The protocol code does not seem to be a big prob-
lem in any level of the caches for any of the applications
run except for sap. For sap the average level-one in-
struction cache occupancy of protocol instructions is
13 percent. However, the active ratio of protocol in-
structions at the second-level cache is below 4 percent
for all applications.

The protocol data, on the other hand, occupies be-
tween one and 13 percent of the level-one data cache
and large parts of the second-level cache. This is espe-
cially true for the commercial applications.

Table 5 also shows miss ratio for all cache levels with
and without interference of the protocol. The miss ra-
tios shown are miss ratios for application data. Hence,
the protocol’s hits and misses are not counted for. We
find it very interesting that the miss ratios are not im-
proved that much even though protocol data occupy
large portions of the second level cache. The biggest
performance improvement (in terms of execution time)
was seen for mdb and was less than five percent.

5.3 DRAM RAC Size

It might seem unfair to compare CRASH with its in-
memory remote access cache to the hardware coherent
systems with their fairly small (1MB per chip) second-
level cache. This section argues that this is not the
case and shows how the DRAC size affects CRASH
performance.

The chip we use in this paper was designed to re-
semble a somewhat scaled-down Niagara chip [8, 18].
Where Niagara has 3MB of shared second-level cache
for its 32 hardware threads (96kB per thread) we have
chosen to model a 1MB cache for all our chip configu-
rations. That means that our eight threaded chips (2-
node configurations) get 128kB per thread and that our
four threaded chips (4-node configurations) get 256kB
per thread and so on.

Adding a third-level cache or a dedicated remote
access cache to the hardware multi-CMP systems will
definitely increase their performance. However, the
cache level closest to memory and the number of hard-
ware threads are typically designed to hide the local
memory latency for a particular chip. Introducing a
larger cache, a new cache level or a remote access cache
will introduce complexity, require chip area and alter
the commercial single-chip performance. The CRASH
DRAC mechanism, on the other hand, simplifies the
design, the interaction between the coherence proto-
cols and uses very limited chip area while providing
the system with remote access cache capabilities.

Figure 6 shows CRASH’s performance while vary-



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H
 1

M
B

C
R

A
S

H
 4

M
B

C
R

A
S

H
 1

6
M

B

C
R

A
S

H
 6

4
M

B

C
R

A
S

H
 2

5
6
M

B

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H
 1

M
B

C
R

A
S

H
 4

M
B

C
R

A
S

H
 1

6
M

B

C
R

A
S

H
 6

4
M

B

C
R

A
S

H
 2

5
6
M

B

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H
 1

M
B

C
R

A
S

H
 4

M
B

C
R

A
S

H
 1

6
M

B

C
R

A
S

H
 6

4
M

B

C
R

A
S

H
 2

5
6
M

B

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H
 1

M
B

C
R

A
S

H
 4

M
B

C
R

A
S

H
 1

6
M

B

C
R

A
S

H
 6

4
M

B

C
R

A
S

H
 2

5
6
M

B

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H
 1

M
B

C
R

A
S

H
 4

M
B

C
R

A
S

H
 1

6
M

B

C
R

A
S

H
 6

4
M

B

C
R

A
S

H
 2

5
6
M

B

MDB JBB SAP FFT LU

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e memory

protocol

compute

Figure 6. Normalized execution time for CRASH while varying the DRAC size. The hardware coherent
systems are included for comparison. (n4c4: 4 nodes with one core a 4 threads each.)

ing the DRAC size for the n4c4 configuration. The
trend is very clear: having a large DRAC is important.
CRASH with a 256MB DRAC is comparable to or even
better than the hardware coherent systems for all ap-
plications studied except for fft. The performance of
fft is improved a lot when moving from a 1MB DRAC
to a 4MB DRAC. However, the improvement from an
even larger DRAC is very small. The reason for this is
fft’s communication intensive behavior where all pro-
cessors communicate with all other processors. Note
that the CRASH 256MB DRAC configuration is more
than 15 percent faster than the reasonable hardware
systems and about 10 percent faster than the system
with a perfect directory cache for sap. Also note that
the c4n4 configuration is not one of the better config-
urations for CRASH when compared to the hardware
systems (as can be seen in Figure 4), which indicates
that much larger improvements are possible with dif-
ferent configurations.

5.4 Inter-Node Hop Latency

This section investigates CRASH performance when
scaling the inter-node hop latency. One reason for a
longer remote latency is a not fully connected network
with multiple hops between nodes.

Figure 7 shows normalized execution time for the
different systems while varying the hop latency from
20ns to 160ns. We find it very interesting that CRASH
performs better and better compared to the hardware
systems with an increasing hop latency. The reason
for this is the ability to cache more remote data lo-
cally, and hence, avoiding the big penalty of inter-node
hops. However, this is not the case for fft where the
performance difference is more or less constant while

varying the hop latency. The reason for fft’s behavior
is the communication intensive behavior that a remote
access cache cannot hide (see Figure 6 and 7). Note
that with a 160ns inter-node hop latency CRASH is
able to outperform the hardware system with a perfect
directory cache for jbb, sap and lu and the reasonable
hardware systems for all benchmarks except fft. Also
note that CRASH outperforms the hardware systems
with more than 20 percent for many of the configura-
tions.

5.5 Fixed Sequential Prefetching

It is not only the remote access cache capabilities
that are easy to change in CRASH. It is also simple
to correct protocol bugs, protocol performance bugs,
prefetching strategy and inter-node coherence unit size.
Figure 8 shows normalized execution time for the hard-
ware coherent systems and CRASH while the later
varies the fixed sequential prefetch degree k [4]. CRASH
0 corresponds to the CRASH system without prefetch-
ing. CRASH n corresponds to the CRASH system with
a prefetch degree of n. That is, with a prefetch degree
of 1, one additional cache line is requested at each miss.
With a prefetch degree of 2, two additional cache lines
are requested and so on.

CRASH performance is greatly improved by
prefetching for all applications. However, the opti-
mal prefetching degree varies between the applications.
The performance of fft, for example, is greatly im-
proved when a prefetch degree of three is used and
is competitive with the performance of the reasonable
hardware systems.

While it is possible to implement prefetching
schemes in hardware coherent systems, they typically



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H

20ns 40ns 80ns 160ns 20ns 40ns 80ns 160ns 20ns 40ns 80ns 160ns 20ns 40ns 80ns 160ns 20ns 40ns 80ns 160ns

MDB JBB SAP FFT LU

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

memory

protocol

compute

Figure 7. Normalized execution time for the hardware and the CRASH system while varying the inter-
node hop-latency. (n4c4: 4 nodes with one core a 4 threads each.)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H
 0

C
R

A
S

H
 1

C
R

A
S

H
 2

C
R

A
S

H
 3

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H
 0

C
R

A
S

H
 1

C
R

A
S

H
 2

C
R

A
S

H
 3

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H
 0

C
R

A
S

H
 1

C
R

A
S

H
 2

C
R

A
S

H
 3

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H
 0

C
R

A
S

H
 1

C
R

A
S

H
 2

C
R

A
S

H
 3

H
W

p
e
rf

H
W

2
5
6

H
W

6
4

C
R

A
S

H
 0

C
R

A
S

H
 1

C
R

A
S

H
 2

C
R

A
S

H
 3

MDB JBB SAP FFT LU

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

memory

protocol

compute

Figure 8. Performance of the CRASH system while varying the Þxed sequential prefetching degree.
The three hardware coherence systems are included for comparison. (n4c4: 4 nodes with one core a
4 threads each.)

have to perform well for all kinds of applications (or at
least for commercial key applications). With CRASH
it is possible to run with the optimal inter-node coher-
ence unit size or prefetching strategy for a particular
workload.

We have not taken the additional bandwidth that
a prefetching protocol typically consumes into account
in this investigation. However, a lot of time is typi-
cally spent on database tuning in commercial setups.
Hence, the authors are convinced that testing one or
two prefetching schemes or inter-node coherence unit
sizes is time well spent. Such tests will of course
also show if a coherence scheme saturates the available
bandwidth.

6 Related Work

There is a wide range of options for hard-
ware/software trade-offs for implementing coherent
shared memory. For example, some systems run the
entire coherence protocol in software on a dedicated
coherence processor. Stanford’s FLASH [11], Sun’s
S3.mp [16] and Wisconsin’s Typhoon-0 [21] are exam-
ples of such machines. SMTp [3] and TMA Lite [30]
are more recent proposals in which SMT threads are
used to run the coherence protocol.

These designs enable flexible protocol adoptions as
well as protocol bug corrections. However, FLASH,
S3.mp and Typhoon-0 rely on dedicated coherence pro-
cessors capable of snooping the memory bus [11, 16,
21]. This scheme is much harder on modern chip de-



signs with on-die memory controllers. CRASH differs
from SMTp [3] since it can be implemented with both
on- and off-chip memory controllers. Moreover, SMTp
traps on each second-level cache miss and have to solve
inter-node write-backs instantly. CRASH uses the
DRAC memory controller modification to simplify the
interaction between the coherence protocols. For ex-
ample, inter-node write backs are solved at inter-node
coherence misses instead of at second-level cache evic-
tions. TMA Lite [30] avoids the write-back complexity
by replicating pages with the virtual memory system.
However, the virtual memory system and entire pages
have to be used for remote data caching. Moreover,
CRASH do not get any false coherence misses for ei-
ther loads or stores as do TMA Lite [30].

Our permission bits and the manipulation of them
have much in common with the fine grained tagging
of memory blocks and the nine operations defined on
them as proposed in the Tempest interface for user-
level shared memory [20]. However, the implemen-
tation described in [20] uses Typhoon’s snooping co-
herence processor to implement the Tempest interface.
That is, the coherence processor is needed.

It has also earlier been proposed to use the
trap mechanism for fine-grained shared memory sup-
port [22, 30]. In the Blizzard-E system [22] corrupt
ECCs indicate state invalid while store checks instru-
mented into the application protect cache lines in state
shared. Our node permission bits let us detect both
read and write violations with true binary transparency
and without corrupting ECCs.

Another interesting approach is the “informing”
memory operation proposal [7]. The idea is to let the
coherence protocol assume permission for all data in
the level-one data cache and trap on level-one data
cache misses. However, due to control speculation and
preceding exceptions that might bring unchecked data
to the level-one cache, the out-of-order processor im-
plementation is non-trivial. Shared level-one caches are
likely to further complicate their scheme. The CRASH
mechanism with the node permission bits is much sim-
pler and removes the traps on level-one cache misses.

Many computer systems have implemented remote
access cache support. For example, Sequent’s NUMA-
Q [14] and Stanford’s DASH [13] both have hardware
controlled fixed size remote access caches. In-memory
remote access caches has been tested in Stanford’s
FLASH [11] and Convex’s Exemplar [2, 25]. Since the
FLASH design is based on a software coherence proto-
col run on the coherence processor the remote access
cache size and its layout is trivial to change. In Ex-
emplar, on the other hand, hardware state machines
control the remote access cache, and hence, the imple-

mentation is less flexible.
The DRAC mechanism proposed in this paper is

first of all a mechanism that decouples the intra-node
and the inter-node coherence protocol from each other.
However, the mechanism let us use part of DRAM as
a direct-mapped and hardware tag-less remote access
cache. The remote access cache is managed in soft-
ware but the write backs from the second-level cache
are performed without interaction from the inter-node
coherence protocol. Note that we can implement a
“second-level” n-associative remote access in software
if we want to.

Other proposals, such as the Stache protocol [20]
and the Simple-COMA [6], use the virtual memory sys-
tem to replicate pages. This can be seen as a very
large remote access cache located in DRAM memory.
CRASH differs from these systems in many ways. For
example, the DRAC mechanism let CRASH cache re-
mote data at the cache line granularity without any
involvement of the virtual-memory system.

7 Conclusions

This paper presents key hardware mechanisms for
implementing low complexity multi-chip architectures
and a new in-memory remote access cache. The remote
access cache makes it possible to cache large amounts
of remote data in the local memory system and greatly
simplifies the inter-node write-back coherence mecha-
nism.

Detailed full system simulation of 2-, 4-, 8- and
16-node systems with different amount of on chip re-
sources shows that our hardware/software tradeoff is
competitive with hardware-only distributed shared-
memory systems across both commercial and HPC
workloads and across multiple design points.

Based on the performance, the simplicity and flex-
ibility of our system, we argue that future systems
should be optimized for single chip performance and
only include minor key hardware primitives for large-
scale shared-memory support. We believe this will im-
prove the commercial value of emerging chip designs
since removing inter-node coherence state machines
and directory caches from a chip will free up area that
can be used for more compute resources.

References

[1] L. Barroso et al. Piranha: A Scalable Architecture
Based on Single-Chip Multiprocessing. In Proceedings
of the 27th Annual International Symposium on Com-
puter Architecture (ISCA’00), pages 282–293, June
2000.



[2] T. Brewer and G. Astfalk. The Evolution of the
HP/Convex Exemplar. In Proceedings of COMP-
CON Spring’97: 42nd IEEE Computer Society Inter-
national Conference, pages 81–86, Feb. 1997.

[3] M. Chaudhuri and M. Heinrich. SMTp: An Archi-
tecture for Next-generation Scalable Multi-threading.
In Proceedings of the 31st Annual International Sym-
posium on Computer Architecture (ISCA’04), pages
124–135, June 2004.

[4] F. Dahlgren, M. Dubois, and P. Stenström. Sequential
Hardware Prefetching in Shared-Memory Multiproces-
sors. IEEE Transactions on Parallel and Distributed
Systems, 6(7):733–746, July 1995.

[5] K. Gharachorloo, L. A. Barroso, and A. Nowatzyk.
Efficient ECC-Based Directory Implementations for
Scalable Multiprocessors. In Proceedings of the
12th Symposium on Computer Architecture and High-
Performance Computing, Oct. 2000.

[6] E. Hagersten, A. Saulsbury, and A. Landin. Simple
COMA Node Implementations. In Proceedings of the
Hawaii International Conference on System Sciences
(HICSS), Jan. 1994.

[7] M. Horowitz et al. Informing Memory Operations:
Providing Memory Performance Feedback in Mod-
ern Processors. In Proceedings of the 23rd Annual
International Symposium on Computer Architecture
(ISCA’96), pages 260–270, May 1996.

[8] P. Kongetira, K. Aingaran, and K. Olukutun. Niagara:
A 32-Way Multithreaded SPARC Processor. IEEE
Micro, 2005.

[9] D. Koufaty and D. T. Marr. Hyperthreading Technol-
ogy in the Netburst Microarchitecture. IEEE Micro,
2003.

[10] K. Krewell. Power5 Tops on Bandwidth. In Micropro-
cessor Report, Dec. 2003.

[11] J. Kuskin et al. The Stanford FLASH Multiprocessor.
In Proceedings of the 21st Annual International Sym-
posium on Computer Architecture (ISCA’94), pages
302–313, Apr. 1994.

[12] J. Laudon and D. Lenoski. The SGI Origin: A cc-
NUMA Highly Scalable Server. In Proceedings of the
24th Annual International Symposium on Computer
Architecture (ISCA’97), pages 241–251, June 1997.

[13] D. Lenoski et al. The Directory-Based Cache Coher-
ence Protocol for the DASH Multiprocessor. In Pro-
ceedings of the 17th Annual International Symposium
on Computer Architecture (ISCA’90), May 1990.

[14] T. Lovett and R. Clapp. STiNG: A CC-NUMA Com-
puter System for the Commercial Marketplace. In Pro-
ceedings of the 23rd Annual International Symposium
on Computer Architecture (ISCA’96), pages 308–317,
May 1996.

[15] P. S. Magnusson et al. Simics: A Full System Sim-
ulation Platform. IEEE Computer, 35(2):50–58, Feb.
2002.

[16] A. Nowatzyk et al. The S3.mp Scalable Shared
Memory Multiprocessor. In Proceedings of the
1995 International Conference on Parallel Processing
(ICPP’95), volume I, pages 1–10, Aug. 1995.

[17] K. Olukotun et al. The Case for a Single-Chip Mul-
tiprocessor. In Proceedings of the 7th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-
VII), pages 2–11. ACM Press, Oct. 1996.

[18] OpenSPARC.net, June 2006. Available from
http://www.opensparc.net.

[19] R. Rajwar and J. R. Goodman. Speculative Lock Eli-
sion: Enabling Highly Concurrent Multithreaded Ex-
ecution. In Proceedings of the 34th IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO-
34), pages 294–305, Nov. 2001.

[20] S. K. Reinhardt, J. Larus, and D. A. Wood. Tempest
and Typhoon: User-Level Shared Memory. In Pro-
ceedings of the 21st Annual International Symposium
on Computer Architecture (ISCA’94), May 1994.

[21] S. K. Reinhardt, R. W. Pfile, and D. A. Wood. Decou-
pled Hardware Support for Distributed Shared Mem-
ory. In Proceedings of the 23rd Annual International
Symposium on Computer Architecture (ISCA’96),
pages 34–43, May 1996.

[22] I. Schoinas et al. Fine-grain Access Control for
Distributed Shared Memory. In Proceedings of the
6th International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS-VI), pages 297–306, Oct. 1994.

[23] Standard Performance Evaluation Corporation.
SPECjbb2000, A Java Business Benchmark. White
Paper.

[24] J. M. Tendler et al. Power4 system microarchitec-
ture. IBM Journal of Research and Development,
46(1), Jan. 2002.

[25] R. Thekkath et al. An Evaluation of a Commercial
CC-NUMA Architecture: The CONVEX Exemplar
SPP1200. In Proceedings of the 11th International
Symposium on Parallel Processing, Apr. 1997.

[26] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Si-
multaneous Multithreading: Maximizing On-Chip
Parallelism. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture
(ISCA’95), pages 392–403, June 1995.

[27] D. Wallin, H. Zeffer, M. Karlsson, and E. Hagersten.
Vasa: A Simulator Infrastructure with Adjustable Fi-
delity. In In Proceedings of the 17th IASTED Inter-
national Conference on Parallel and Distributed Com-
puting and Systems (PDCS 2005), Nov. 2005.

[28] D. L. Weaver and T. Germond, editors. The SPARC
Architecture Manual, Version 9. PTR Prentice Hall,
2000.

[29] S. C. Woo et al. The SPLASH-2 Programs: Char-
acterization and Methodological Considerations. In
Proceedings of the 22nd Annual International Sympo-
sium on Computer Architecture (ISCA’95), pages 24–
36, June 1995.

[30] H. Zeffer, Z. Radović, M. Karlsson, and E. Hagersten.
TMA: A Trap-Based Memory Architecture. In Pro-
ceedings of the 20th International Conference on Su-
percomputing (ICS’06), June 2006.

http://www.opensparc.net

	Introduction
	Motivation
	Architecture and Mechanisms
	Global Address Support
	Node Permission Checks
	The Load Check
	The Store Check
	Permission Bit Maintenance
	Store Buffer Modification
	Guaranteeing Forward Progress

	DRAM RAC
	Read Logic
	Write-Back Logic

	Deadlock Considerations
	I/O Controller Logic

	Evaluation Methodology
	Simulator Infrastructure
	Benchmarks

	Simulation Results
	Node, Core and Thread Scaling
	Protocol Cache Pollution
	DRAM RAC Size
	Inter-Node Hop Latency
	Fixed Sequential Prefetching

	Related Work
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.2
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


