
Uppsala Programming for Multicore
Architectures Research Center

DVFS Management in Real Processors

Vasileios Spiliopoulos, Georgios Keramidas∗, Stefanos Kaxiras
and Konstantinos Efstathiou∗

Our goal: Optimize Power Efficiency
Adapt voltage and frequency to the characteristics
of applications

Detect memory intensiveness at runtime
Predict impact of DVFS

Select optimal frequency

Model Performance/Energy under different
frequencies

Approximate models using Performance
Counters

Implement Frequency Governors
Reduce Energy without harming Performance by
exploiting Slack

Optimize EDP, ED2P, user-specific policies

Fine-Grained DVFS management

Exploit Memory Slack
Access time of main memory is not affected by processor Frequency Scaling

Performance of memory-bound applications is less susceptible to Frequency Scaling

Memory latency measured in processor cycles is reduced with processor Frequency
Scaling

Reduce stalls (in cycles) by scaling down Frequency

But execution time of non-stall intervals is increased

Need models to estimate the impact of Frequency Scaling in Performance

LLC MISS
memory latency

In
st

ru
ct

io
n

s 
E
xe

cu
te

d

total cycles

full stall

LLC MISS
memory latency

In
st

ru
ct

io
n

s 
E
xe

cu
te

d

total cycles

full stall

cycles cycles

LLC MISS

memory
latency

In
st

ru
ct

io
n

s 
E
xe

cu
te

d

total cycles cycles

STEADY
STATE

STEADY
STATE

STEADY
STATE

Decrease
frequency

Decrease
frequency

Analytical Interval-based DVFS Performance Models
Stall-based Model

Total stalls due to LLC misses (ST1+ST2) ∼ frequency
not completely true: memory latency ∼ frequency and
ST1+ST2 6= memory latency

Accurate enough/easy to approximate with current Monitoring
Hardware

LLC MISS1
memory latency

memory latency

LLC MISS2

ST1 ST2

In
st

ru
ct

io
n
s 

e
xe

cu
te

d

total cycles

Miss-based Model
If LLC MISS2 occurs x cycles after LLC MISS1 → serviced x cycles after LLC
MISS1

only miss interval of the first miss in a cluster of misses scales
with frequency

Very accurate/no clusters of misses event in current Monitoring Hardware

LLC MISS1
memory latency

memory latency

LLC MISS2
x

In
st

ru
ct

io
n
s 

e
xe

cu
te

d

total cycles

x

Measuring Power
Real hardware power measurements

V, I measured directly from motherboard
Voltage Regulator

High resolution measurements

Modeling Power

Dynamic Power = Frequency × Effective Capacitance × Voltage2

Frequency/Voltage known, but Effective Capacitance depends on the application
Correlate processor Effective Capacitance with

Executed Micro-ops → Includes speculative execution (Intel Core i7)

Retired Micro-ops → No speculative execution (AMD Phenom II)

i7 Intel Nehalem

y = 0.4991x + 0.841
R2 = 0.8437

0.5

1

1.5

2

2.5

3

0 1 2 3
Instructions Executed per Cycle

E
ffe

ct
iv

e 
C

ap
ac

ita
nc

e 
(n

F)

AMD Phenom II

y = 0.5094x + 1.6983
R2 = 0.6738

0.5

1

1.5

2

2.5

3

0 1 2 3
Instructions Retired per Cycle

E
ffe

ct
iv

e 
C

ap
ac

ita
nc

e 
(n

F)

Linux Frequency Governors
Combine Performance/Power Models to implement Frequency Governors

Fine-Grained management: limited by OS ticks (10ms)

Software-only solution: estimate Performance and Power using
Performance Monitoring Hardware

Approximately optimal decisions (<2% error)

Low overhead (<<1%)

Different Policies

Optimize Power Efficiency metrics (EDP, ED2P)

Policies by setting Performance Constraints

Multicore management

SELECT OPTIMAL
FREQUENCY
ACCORDING TO POWER
EFFICIENCY METRIC

READ COUNTERS
EVERY 50ms

PREDICT EXECUTION
CYCLES UNDER ALL
FREQUENCIES USING
STALL-BASED MODEL

COMPUTE IPC
FOR ALL
AVAILABLE
FREQUENCIES

PREDICT POWER
FOR ALL AVAILABLE
FREQUENCIS USING
EFFECTIVE C - IPC
CORRELATION

PERFORMANCE
COUNTERS

COMPUTE IPC PREDICT POWER SELECT FREQUENCYPREDICT EXECUTION
CYCLES

Experimental Results
Intel Core i7

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

milc libquantum omnetpp muti-process
mix

mem bound
avg

execution time energy EDP

normalized to fmax

AMD Phenom II

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

milc libquantum omnetpp muti-process
mix

mem bound
avg

execution time energy ED^2P

normalized to fmax

Department of Information Technology, Uppsala University ∗University of Patras, Greece http://it.uu.se/


