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1- Insight: Hardware prefetchers require more shared resources for improving performance 2- Mixed Workload Throughput
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Hardware prefetchers waste con- When benchmarks are run in isola- When run together as a mixed REP’s lower bandwidth requirement
siderable off-chip bandwidth by tion hardware prefetchers perform workload (mix), the hardware translates to (23%) performance ad-
fetching useless data from the slightly better than our simple soft- prefetchers saturate the off-chip vantage over hardware prefetching.
DRAM. This happens due to spec- ware prefetching method (REP) by bandwidth much earlier than the Hardware prefetching degrades pro-
ulative prefetching, which our pro- aggressively utilizing the off-chip ideally required. REP requires and cessor throughput by 4% when run-
posed scheme avoids. bandwidth (next figure). consumes less bandwidth. ning the four applications in parallel.
3- Single-Threaded Performance 4- Mixed Workloads: Robust Prefetching Method
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Our scheme's performance is more robust than hardware REP performs 10% better on average. On AMD, REP improved
prefetching across the 180 mixed workloads. REP performs 5% throughput performance across all mixed workloads, perform-
better on average. Cache bypassing helps lower data volume on ing strictly better than hardware prefetching. REP consistently
- average by 3% over the baseline. maintains less DRAM traffic.
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L . Intel i7-2600K (Sandybridge) AMD Phenom Il X4 920
m REP performance trails slightly behind
nardware prefetching (within 5%) The benchmarks in Section 4 were selected to create 180 workload mixes. Each mix contains 4 different randomly chosen benchmarks
m However, REP lowers off-chip traffic that were run in parallel on the 4 cores of a Intel Sandybridge and AMD Phenom Il processors. Different mixes stress shared resources
significantly, >60%on average differently, and help us explore how REP benefits performance under varying conditions. The graphs above compare REP’s performance
m Great potential for mixed workloads against hardware prefetching.
5- REP Framework: A fast software prefetching framework
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6- Conclusions

This work investigates how a resource-efficient prefetching (REP) method can help improve  This benefits throughput performance in multicores when several applications co-execute
throughput performance in multicores when shared resources are constrained. We propose  and share resources. Compared to state-of-the-art hardware prefetching on two high-
an efficient method that 1) accurately prefetches the required data, 2) avoids (useless)  performance commodity processors, REP performs up to 10% better on average. Our work
speculative prefetching, and 3) employs cache bypassing to retain useful data in the higher  highlights the importance of shared-resource friendly prefetching for optimizing multicore
level caches. In contrast to hardware prefetchers, REP is designed to maintain minimal  performance.

off-chip traffic, and as a result avoids LLC pollution and lowers off-chip bandwidth demand.
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