
Uppsala Programming for Multicore
Architectures Research Center

Beating Hardware Prefetching in Software
A Case for Resource Efficient Prefetching (REP) in Multicores

Muneeb Khan, Andreas Sandberg and Erik Hagersten

1- Insight: Hardware prefetchers require more shared resources for improving performance

Off-chip Data-Volume Increase

-50

 0

 50

 100

 150

 200

 250

 300

cigar

gcc
lbm

libquantum

O
ff
-c

h
ip

 t
ra

ff
ic

 i
n
c
re

a
s
e
 (

%
) 730%

Hardware Pref. REP

Hardware prefetchers
waste significant off-chip
bandwidth

Hardware prefetchers waste con-
siderable off-chip bandwidth by
fetching useless data from the
DRAM. This happens due to spec-
ulative prefetching, which our pro-
posed scheme avoids.

Single-Threaded Performance

 0

 10

 20

 30

 40

 50

 60

cigar

gcc
lbm

libquantum
S

p
e
e
d
u
p
 (

%
)

Hardware Pref. REP

Hardware prefetching
helps single thread
performance

When benchmarks are run in isola-
tion hardware prefetchers perform
slightly better than our simple soft-
ware prefetching method (REP) by
aggressively utilizing the off-chip
bandwidth (next figure).

Off-chip Bandwidth Requirement

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

cigar

gcc
lbm

libquantum

m
ix

O
ff
-c

h
ip

 B
a
n
d
w

id
th

 (
G

B
/s

) 27.4

Extra Bandwidth
Hardware Pref.

REP

REP - mix requires much
less bandwidth

When run together as a mixed
workload (mix), the hardware
prefetchers saturate the off-chip
bandwidth much earlier than the
ideally required. REP requires and
consumes less bandwidth.

2- Mixed Workload Throughput

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

cigar

gcc
lbm

libquantum

average

S
p
e
e
d
u
p
 (

%
)

Hardware Pref. REP

REP’s lower bandwidth requirement
translates to (23%) performance ad-
vantage over hardware prefetching.
Hardware prefetching degrades pro-
cessor throughput by 4% when run-
ning the four applications in parallel.

3- Single-Threaded Performance

Off-chip Data-Volume Increase

-20

 0

 20

 40

 60

 80

 100

 120

gcc
libquantum

lbm
m

cf
om

netpp

soplex

astar

cigar

xalan

G
em

sFD
TD

leslie3d

m
ilc

average

O
ff
-c

h
ip

 t
ra

ff
ic

 i
n
c
re

a
s
e
(%

) 263% 628%122%

Single-Threaded Speedup

-10

 0

 10

 20

 30

 40

 50

 60

gcc
libquantum

lbm
m

cf
om

netpp

soplex

astar

cigar

xalan

G
em

sFD
TD

leslie3d

m
ilc

average

S
p
e
e
d
u
p
(%

)

Hardware Pref. REP

Off-chip Bandwidth Requirement

 0

 2

 4

 6

 8

gcc
libquantum

lbm
m

cf
om

netpp

soplex

astar

cigar

xalan

G
em

sFD
TD

leslie3d

m
ilc

average

O
ff
-c

h
ip

 B
a
n
d
w

id
th

 (
G

B
/s

)

Baseline

REP performance trails slightly behind
hardware prefetching (within 5%)

However, REP lowers off-chip traffic
significantly, >60%on average

Great potential for mixed workloads

4- Mixed Workloads: Robust Prefetching Method

180 Mixed Workloads Throughput Performance (Intel)

-5%

0%

5%

10%

15%

20%

25%

30%

0% 10%
20%

30%
40%

50%
60%

70%
80%

90%
100%

S
p

e
e

d
u

p
 o

v
e

r
n

o
 p

re
fe

tc
h

in
g

Runs

REP Hardware Pref.

REP has higher throughput and is more robust

HWPF slows 9% of the mixes

Our scheme’s performance is more robust than hardware
prefetching across the 180 mixed workloads. REP performs 5%
better on average. Cache bypassing helps lower data volume on
average by 3% over the baseline.

Increase in Total Data Volume

-20%

0%

20%

40%

60%

80%

100%

0% 10%
20%

30%
40%

50%
60%

70%
80%

90%
100%

O
ff

-c
h

ip
 t

ra
ff

ic
 i
n

c
re

a
s
e

Runs

REP Hardware Pref.

effective cache bypassing lowers total data volume

Intel i7-2600K (Sandybridge)

180 Mixed Workloads Throughput Performance (AMD)

-5%

0%

5%

10%

15%

20%

25%

30%

0% 10%
20%

30%
40%

50%
60%

70%
80%

90%
100%

S
p

e
e

d
u

p
 o

v
e

r
n

o
 p

re
fe

tc
h

in
g

Runs

REP Hardware Pref.

REP increases throughput by 10% on average

REP performs 10% better on average. On AMD, REP improved
throughput performance across all mixed workloads, perform-
ing strictly better than hardware prefetching. REP consistently
maintains less DRAM traffic.

Increase in Total Data Volume

-20%

0%

20%

40%

60%

80%

100%

0% 10%
20%

30%
40%

50%
60%

70%
80%

90%
100%

O
ff

-c
h

ip
 t

ra
ff

ic
 i
n

c
re

a
s
e

Runs

REP Hardware Pref.

REP consumes lower off-chip bandwidth

AMD Phenom II X4 920

The benchmarks in Section 4 were selected to create 180 workload mixes. Each mix contains 4 different randomly chosen benchmarks
that were run in parallel on the 4 cores of a Intel Sandybridge and AMD Phenom II processors. Different mixes stress shared resources
differently, and help us explore how REP benefits performance under varying conditions. The graphs above compare REP’s performance
against hardware prefetching.

5- REP Framework: A fast software prefetching framework

30% overhead

Sampler

Reuse distance histogram

fr
e

q
u

e
n

c
y

reuse distance

application

Per-
Instruction

strides

[Eklov et al. ISPASS 2010]

StatStack
cache model

Strided
Loads

 0

 10

 20

 30

 40

8k 16k
32k

64k
128k

256k
512k

1M 2M 4M 8M

m
is

s
 r

a
ti
o
(%

)

cache size

per-instruction average

StatStack output: miss-ratio as
function of cache size

+
Prefetch cost function

for (i=0; i < LIMIT; i++){

load a[i]
}

prefetch[nta] a[i + 16]

prefetches can be inserted at the
assembler level or via binary rewriting

6- Conclusions

This work investigates how a resource-efficient prefetching (REP) method can help improve
throughput performance in multicores when shared resources are constrained. We propose
an efficient method that 1) accurately prefetches the required data, 2) avoids (useless)
speculative prefetching, and 3) employs cache bypassing to retain useful data in the higher
level caches. In contrast to hardware prefetchers, REP is designed to maintain minimal
off-chip traffic, and as a result avoids LLC pollution and lowers off-chip bandwidth demand.

This benefits throughput performance in multicores when several applications co-execute
and share resources. Compared to state-of-the-art hardware prefetching on two high-
performance commodity processors, REP performs up to 10% better on average. Our work
highlights the importance of shared-resource friendly prefetching for optimizing multicore
performance.

Department of Information Technology, Uppsala University http://it.uu.se/

