Beating Hardware Prefetching in Software
UP ARC A Case for Resource Efficient Prefetching (REP) in Multicores

Uppsala Programming for Multicore

Archifeciires Research Center Muneeb Khan, Andreas Sandberg and Erik Hagersten CReAA
' 5 5 UNIVERSITET
1- Insight: Hardware prefetchers require more shared resources for improving performance 2- Mixed Workload Throughput
Off-chip Data-Volume Increase Single-Threaded Performance Off-chip Bandwidth Requirement
mmmsm Hardware Pref. mmmm REP mmmsm Hardware Pref. mmmmm REP E)?trrglwl?;ae:ﬁdlz\)/\r/?cjih s REP mmmmw Hardware Pref. ==mmm REP
—_ 0% : : :
&i’ Zgg I Hardware prefetchers Hardwar.e prefetching glg i REP - mix requires much
o w655 | waste significant off-chip helps single thread 1 Sl less bandwidth
- bandwidth performance | £ |
£ 150 | 10|
£ 100 | 28|
= 50 D6
5 0 c 47
o — — £ 2
O -50 - - - — O
% % 4% %, °
%,
%
Hardware prefetchers waste con- When benchmarks are run in isola- When run together as a mixed REP’s lower bandwidth requirement
siderable off-chip bandwidth by tion hardware prefetchers perform workload (mix), the hardware translates to (23%) performance ad-
fetching useless data from the slightly better than our simple soft- prefetchers saturate the off-chip vantage over hardware prefetching.
DRAM. This happens due to spec- ware prefetching method (REP) by bandwidth much earlier than the Hardware prefetching degrades pro-
ulative prefetching, which our pro- aggressively utilizing the off-chip ideally required. REP requires and cessor throughput by 4% when run-
posed scheme avoids. bandwidth (next figure). consumes less bandwidth. ning the four applications in parallel.
3- Single-Threaded Performance 4- Mixed Workloads: Robust Prefetching Method
OfF—chlp Data- Volume Increase 180 Mixed Workloads Throughput Performance (Intel) 180 Mixed Workloads Throughput Performance (AMD)
S " : | = -— REP = Hardware Pref. o - REP === Hardware Pref.
2 £ 30% ' ' ' ' ' £ 30%
0] < c
% D 20% % 1 D 20% | 1
€ ol , a
o O 15% | j 0 15% | ™~
= S 10% | | | S 10% | |
000 469(/6’7) /bO /)),)00 /Q‘S’/éﬁ \QQ/,‘I&/Q QQ@ 6)0 /))// Q'Z@/~ 8_ 9% g_ 5%
O o
: Q 59 L Q. _59%
Slngle—HThreaded >peedup ” Q% 0 Vo Vo Vo Vo Vo 0 o v 7o ¥
mmms Hardware Pref. mmmmm REP ° 5 3 < < < < < < < ‘o
Runs °
Our scheme's performance is more robust than hardware REP performs 10% better on average. On AMD, REP improved
prefetching across the 180 mixed workloads. REP performs 5% throughput performance across all mixed workloads, perform-
better on average. Cache bypassing helps lower data volume on ing strictly better than hardware prefetching. REP consistently
- average by 3% over the baseline. maintains less DRAM traffic.
00 /<5 6®0> ,))oo ed, %. 5, Gy /@o 0),/ Q”, _
%o% Oé’ﬂ’ A %Aé‘}% Q‘i’o@ Increase in Total Data Volume Increase in Total Data Volume
O
-= REP -== Hardware Pref. - REP - Hardware Pref.
Off-chip Bandwidth Requirement 100% e S———— , 100% —————————
mn Baseline % S °
o 80% S 80% | _ _
. o 5 REP consumes lower off-chip bandwidth
£ g 60% | < 60% |
o8| IS 9 .
§6 : E 40% q-g 40% |
2,1 o 20% _ o 20% |
© — -
m : [T
=l & 0% & 0%
£ O O
Gol MU TN H D Ain AN -20% O U
000 469(//60) /))O/' OO)/) 00 pe% Q&/C‘?/. 0’5’ +Q/Q"/)O®//> @&/ %/ QL@,& 0% ;0 ‘o 6)0 ‘o 6)0 ‘o 70} 6\0} @0})0} &0} 90} ;000
Q/)/é,/)) %+ 'S‘O)g o o o o o Runso o o o o =
L . Intel i7-2600K (Sandybridge) AMD Phenom Il X4 920
m REP performance trails slightly behind
nardware prefetching (within 5%) The benchmarks in Section 4 were selected to create 180 workload mixes. Each mix contains 4 different randomly chosen benchmarks
m However, REP lowers off-chip traffic that were run in parallel on the 4 cores of a Intel Sandybridge and AMD Phenom Il processors. Different mixes stress shared resources
significantly, >60%on average differently, and help us explore how REP benefits performance under varying conditions. The graphs above compare REP’s performance
m Great potential for mixed workloads against hardware prefetching.
5- REP Framework: A fast software prefetching framework
30% Overhead —— per-instruction —— average
\ , \ o
> S | StatStack output: miss-ratio as
StatStack Er T
Sampler > § > > |
cache model g 107 —
reuse distance 0 | | ' | | | | |
dist \ , % ’@%@%@%é«@@é%é@’%&@
_ . cache size prefetches can be inserted at the
Reuse distance histogram [Eklov et al. ISPASS 2010] assembler level or via binary rewriting

\JYLJ | ~ f \ W for (i=0; i < LIMIT; i++){
(f \{j Per—. Strided prefetch|ntal a[i + 16]
> Instruction > > —I— > .
. Loads load ali
e strides
application ‘ ’ ‘) Prefetch cost function }

6- Conclusions

This work investigates how a resource-efficient prefetching (REP) method can help improve This benefits throughput performance in multicores when several applications co-execute
throughput performance in multicores when shared resources are constrained. We propose and share resources. Compared to state-of-the-art hardware prefetching on two high-
an efficient method that 1) accurately prefetches the required data, 2) avoids (useless) performance commodity processors, REP performs up to 10% better on average. Our work
speculative prefetching, and 3) employs cache bypassing to retain useful data in the higher highlights the importance of shared-resource friendly prefetching for optimizing multicore
level caches. In contrast to hardware prefetchers, REP is designed to maintain minimal performance.

off-chip traffic, and as a result avoids LLC pollution and lowers off-chip bandwidth demand.

Department of Information Technology, Uppsala University http://it.uu.se/

