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Abstract. To enable historical analyses of logged data streams by SQL queries, 
the Stream Log Analysis System (SLAS) bulk loads data streams derived from 
sensor readings into a relational database system. SQL queries over such log da-
ta often involve numerical conditions containing inequalities, e.g. to find sus-
pected deviations from normal behavior based on some function over measured 
sensor values. However, such queries are often slow to execute, because the 
query optimizer is unable to utilize ordered indexed attributes inside numerical 
conditions. In order to speed up the queries they need to be reformulated to util-
ize available indexes. In SLAS the query transformation algorithm AQIT  
(Algebraic Query Inequality Transformation) automatically transforms SQL 
queries involving a class of algebraic inequalities into more scalable SQL que-
ries utilizing ordered indexes. The experimental results show that the queries 
execute substantially faster by a commercial DBMS when AQIT has been  
applied to preprocess them. 

1 Introduction 

We first introduce a real-world scenario application under investigation in the Smart 
Vortex project [15], which requires queries involving numerical expressions. A facto-
ry operates some machines. On each machine, there are a number of sensors to meas-
ure different physical properties, e.g. power consumption, pressure, temperature, etc. 
The sensors generate logs of measurements per machine that carry a time stamp ts, a 
machine identifier m, a sensor identifier s, a measured value mv, and a measurement 
class mc for the kind of measurements made by the sensor. Examples of measurement 
classes are oil pressures of hydraulic filters and pressures of gear pumps. The logs are 
analyzed by bulk loading them into a relational DBMS. To speed up performance 
when analyzing sensors of the same kind on many different machines, there is one 
table for each measurement class of each kind of physical property. To avoid repeti-
tion of unchanged sensor readings, each measured value mv on machine m is asso-
ciated with a valid time interval bt and et indicating the begin time and end time for 
mv, computed from the log time stamp ts when the data is bulk loaded.  Hence, the 
measurement of class mc=MC on machines m will be stored in the table measu-
resMC(m, s, bt, et,  mv). These tables will contain large volumes of log data from 
many sensors of the same kind on different machines.  
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After the data streams have been loaded into measuresMC(), the user can issue off-
line historical queries to find errors on machines in the past by looking for abnormal 
values of mv. This often requires search conditions containing inequalities inside nu-
merical expression. In our scenario, in order to improve the performance of inequality 
queries over mv, a B-tree index is added on each measuresMC.mv, denoted 
idx(measuresMC.mv). The following are typical numerical query conditions on tables 
measuresA, and measuresB to identify faulty behaviors of machines: 

• C1: Were the measurements of class A higher than a threshold v0 = 15.6? We ex-
press the condition as 0:)(1 vmvmvC > . 

• C2: Were the measurements of class A higher than r1 = 300 above the expected 
value v1 = 15.6? We express the condition as 1:)(2 1 rvmvmvC >− . 

• C3: Were the measurements of class B outside the range r2 = 11 from the ideal 

value v1 = 20?  We express the condition as 21:)(3 rvmvmvC >− . 

• C4: Were the measurements of class B outside the range r3 =20% from v1 = 20? 

We express the condition as 3
1

1:)(4 r
v

vmv
mvC >

−
. 

The above conditions can be expressed in SQL. Relational databases can handle 
SQL query conditions of type C1 efficiently, since there is an ordered index 
idx(measuresA.mv). However, in C2-C4 the inequalities are not defined directly over 
the attribute mv but through some numerical expressions, which makes the query 
optimizer not utilizing the indexes and hence the queries will execute slowly. We say 
that the indexes idx(measuresA.mv) and idx(measuresB.mv) are not exposed in C2-C4. 
To speed up such queries, the DBMS vendors recommend that the user reformulates 
them [11] which often requires rather deep knowledge of low-level index operations. 

To automatically transform a class of queries involving inequality expressions into 
more efficient queries where indexes are exposed, we have developed the query trans-
formation algorithm AQIT (Algebraic Query Inequality Transformation). We show 
that AQIT substantially improves performance for queries with conditions of type C2-
C4, exemplified by analyzing logged abnormal behavior in our scenario. Without the 
proposed query transformations the DBMS will do a full scan, not utilizing any index. 

AQIT transforms queries with inequality conditions on single indexed attributes to 
utilize range search operations over B-tree indexes. In general, AQIT can transform 
inequality conditions of form F(mv) ψ ε, where mv is a variable bound to an indexed 
attribute A, F(mv) is an expression consisting of a combination of transformable func-
tions T, currently T ∈ {+, -, /, *, power, sqrt, abs}, and ψ is an inequality comparison 
ψ ∈ {≤, ≥, <, >}. AQIT tries to reformulate inequality conditions into equivalent con-
ditions, mv ψ’ F’(ε) that makes the index on attribute A, idx(A) exposed to the query 
optimizer. AQIT has a strategy to automatically determine ψ’ and F’(ε). If AQIT fails 
to transform the condition, the original query is retained. For example, AQIT is cur-
rently not applicable on multivariable inequalities, which are subjects for future work. 
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In summary, our contributions are: 

1. We introduce the algebraic query transformation strategy AQIT on a class of nu-
merical SQL queries. AQIT is transparent to the user and does not require manual 
reformulation of queries. We show that it substantially improves query perfor-
mance. 

2. The prototype system SLAS (Stream Log Analysis System) implements AQIT as a 
SQL pre-processor to a relational DBMS. Thus, it can be used on top of any rela-
tional DBMS. Using SLAS we have evaluated the performance improvements of 
AQIT on log data from industrial equipment in use. 

This paper is organized as follows. Section 2 discusses related work. Section 3 
presents some typical SQL queries where AQIT improves performance. Section 4 
gives an overview of SLAS and its functionality. Section 5 presents the AQIT alge-
braic transformation algorithm on inequality expressions. Section 6 evaluates the 
scalability of applying AQIT for a set of benchmark queries based on the scenario 
database, along with a discussion of the results. Section 7 gives conclusions and fol-
low-up future work. 

2 Related Work 

The recommended solution to utilize an index in SQL queries involving arithmetic 
expressions is to manually reformulate the queries so that index access paths are ex-
posed to the optimizer [5] [11] [13]. However, it may be difficult for the database user 
to do such reformulations since it requires knowledge about indexing, the internal 
structure of execution plans, and how query optimization works. There are a number 
of tools [16] [11], which point out inefficient SQL statements but do not automatical-
ly rewrite them. In contrast, AQIT provides a transparent transformation strategy, 
which automatically transforms queries to expose indexes, when possible. If this is 
not possible, the query is kept intact. 

Modern DBMSs such as Oracle, PostgreSQL, DB2, and SQL Server support func-
tion indexes [10] [8], which are indexes on the result of a complex function applied on 
row-attribute values. When an insertion or update happens, the DBMS computes the 
result of the function and stores the result in an index.  The disadvantage of function 
indexes compared to the AQIT approach is that they are infeasible for ad hoc queries, 
since the function indexes have to be defined beforehand. In particular, function in-
dexes are very expensive to build in a populated database, since the result of the ex-
pression must be computed for every row in the database. By contrast, AQIT does not 
require any pre-computations when data is loaded or inserted into the database. There-
fore AQIT makes the database updates more efficient, and simplifies database main-
tenance.  

Computer algebra systems like Mathematica [1] and Maple [4] and constraints data-
base systems [7] [9] also transform inequalities. However, those systems do not have 
knowledge about database indexes as AQIT. The current implementation is a DBMS 
independent SQL pre-processor that provides the index specific query rewritings.  
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FunctionDB [2] also uses an algebraic query processor. However, the purpose of 
FunctionDB is to enable queries to continuous functions represented in databases, and 
it provides no facilities to expose database indexes. 

Extensible indexing [6] aims at providing scalable query execution for new kinds 
of data by introducing new kinds of indexes. However, it is up to the user to reformu-
late the queries to utilize a new index. By contrast, our approach provides a general 
mechanism for utilizing indexes in algebraic expressions, which complements extens-
ible indexing. In the paper we have shown how to expose B-tree indexes by algebraic 
rewrites. Other kinds of indexes would require other algebraic rules, which is a sub-
ject of future work. 

3 Example Queries 

A relational database that stores both meta-data and logged data from machines has 
the following three tables: 

machine(m, mm) represents meta-data about each machine installation identified by 
m where mm identifies the machine model. There is a secondary B-tree index on mm. 

sensor(m, s, mc, ev, ad, rd) stores meta-data about each sensor installation s on each 
machine m. To identify different kinds of measurements, e.g oil pressure, filter temper-
ature etc., the sensors are classified by their measurement class, mc. Each sensor has 
some tolerance thresholds, which can be an absolute or relative error deviation, ad or 
rd, from the expected value ev. There are secondary B-tree indexes on ev, ad, and rd. 

measuresMC(m, s, bt, et, mv) enables efficient analysis of the behavior of different 
kinds of measurements over many machine installations over time. The table stores 
measurements mv of class MC for sensor installations identified by machine m and 
sensor s in valid time interval [bt,et). By storing bt and et temporal interval overlaps 
can be easily expressed in SQL [3][14]. There are B-tree indexes on bt, et, and mv. 

We use the abnormality thresholds @thA for queries determining deviations in ta-
ble measuresA, @thB for queries determining absolute deviation in table measuresB, 
and @thRB for queries determining relative deviation in table measuresB. We shall 
discuss these thresholds in Section 6 in greater details. 

The following queries Q1, Q2, and Q3 identify abnormalities: 

• Query Q1 finds when and on what machines, the pressure reading of class A was 
higher than @thA from its expected value: 

1 SELECT va.m, va.bt, va.et 

2 FROM   measures A va, sensor s 

3 WHERE  va.m = s.m AND va.s = s.s AND va.mv > s.ev + @thA. 

AQIT has no impact for query Q1 since the index idx(measuresA.mv) is already 
exposed. 

• Query Q2 identifies abnormal behaviors based on absolute deviations: When and 
for what machines did the pressure reading of class B deviate more than @thB 
from its expected value? AQIT translates the query into the following SQL query 
T2: 
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  Q2: 
1 SELECT vb.m, vb.bt, vb.et  
2 FROM  measuresB vb, sensor s 
3 WHERE vb.m =s.m AND vb.s=s.s 
AND 
4 abs(vb.mv - s.ev) > @thB 
5 

T2:
SELECT vb.m, vb.bt, vb.et 
FROM   measuresB vb, sensor s  
WHERE  vb.m=vb.m AND vb.s=s.s AND 
 ((vb.mv > @thB + s.ev) OR 
 (vb.mv < - @thB + s.ev)) 

In T2 lines 4-5 expose the ordered index idx(measuresB.mv). 

• Query Q3 identifies two different abnormal behaviors of the same machine at the 
same time based on two different measurement classes and relative deviations: 
When and for which machines were the pressure readings of class A higher than 
@thA from its expected value at the same time as the pressure reading of class B 
were deviating @thRB % from its expected value? After the AQIT transformation 
Q3 becomes T3: 

Q3: 
1 SELECTva.m,greaest(va.bt,vb.bt) 
2       least(va.et, vb.et) 
3 FROM  measuresA va,measuresB vb, 
4       sensor sa, sensor sb 
5 WHERE va.m=sa.m AND va.s=sa.s AND 
6 vb.m=sb.m AND vb.s=sb.s    AND 7 
va.m=vb.m          AND  
8 va.bt<=vb.et AND va.et>=vb.bt AND 
9 va.mv - sa.ev > @thA     AND 
10 abs((vb.mv-sb.ev)/sb.ev)>@thRB 
11 
12 
13 

T3: 
SELECT va.m,greatest(va.bt, vb.bt), 
  least(va.et, vb.et)  
FROM  measuresA va, measuresB vb, 
   sensor sa, sensor sb 
WHERE va.m=sa.m AND va.s=sa.s AND 
      vb.m=sb.m AND vb.s=sb.s AND  
      va.m =vb.m       AND 
 va.bt<=vb.et AND va.et>=vb.bt AND  
 va.mv >@thA + sa.ev     AND 
((vb.mv>(1+@thRB)*sb.ev AND sb.ev >0) 
OR (vb.mv<(1+@thRB)*sb.ev AND sb.ev<0) 
OR (vb.mv<(-@thRB+1)*sb.ev ANDsb.ev>0) 
OR (vb.mv>(-@thRB+1)*sb.ev AND sb.ev<0)) 

Lines 8 in Q3 selects temporal overlap of the time interval [va.bt, va.et] with [vb.bt, 
vb.et]. The functions greatest(va.bt, vb.bt) and least(va.et, vb.et) return the maximum 
and minimum values of their two arguments, respectively. These functions are sup-
ported by Oracle, MySQL, DB2 and PostgreSQL but not by SQL Server [14]. There-
fore, we defined greatest(x, y) and least(x, y) as user defined functions for SQL Server. 

In T3 line 9 exposes idx(measuresA.mv) and lines 10-13 expose idx(measuresB.mv).  

4 Stream Log Analysis System (SLAS) 

Fig. 1 illustrates the architecture of SLAS. It uses a data stream management system, 
DSMS, to process raw streams of measurements from different machines. The log 
writer receives from the DSMS a stream of tuples with format (mc, m, s, ts, mv) speci-
fied as a continuous query. The log writer produces once per system-determined time 
interval a CSV file of tuples (m, s, bt, et, mv) for each measurement class mc to be 
loaded into the corresponding table measuresMC. Here, [bt,et) is the valid time inter-
val for mv, computed from ts. When the log writer has written a CSV file it notifies 
the log loader for measurement class mc, which bulk loads the new log file rows into 
the corresponding measurement log table measuresMC. 

In order to limit and customize the amount of log data stored in the DBMS the log 
deleter continuously deletes log data from the DBMS according to user specified 
configuration parameters.  
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The user can analyze the stored data streams by issuing historical SQL queries over 
loaded log data through the AQIT processor. The strategy used by AQIT to improve 
numerical SQL queries is the focus of this paper. 

 
 

 

Fig. 1. Stream Log Analyse System Fig. 2. AQIT Preprocessor 

Fig. 2 illustrates the query processing of AQIT. An SQL query is first parsed into 
an internal query in a Datalog dialect [12]. The AQIT rewriter transforms the Datalog 
query into an equivalent index exposed query. The SQL Generator transforms the 
index exposed Datalog query into an equivalent shipped SQL query sent to the back-
end DBSM through JDBC for optimization and evaluation.  

5 Algebraic Query Inequality Transformation 

To explain the AQIT transformations we need the following definitions: 

Definition 1. A source predicate r(…) of a query is a predicate that represents access 
to a relation named r. 

Definition 2. If there is a B-tree index idx(r.a) on some attribute a of a source predi-
cate  r(…a…), we say that r is an indexed predicate. 

Definition 3. If there is an occurrence of a variable v representing idx(r.a) in an in-
dexed predicate r(…v…) of a query, we say that v is an indexed variable in the query. 

Definition 4. If there is an inequality ψ(v,x) where v is an indexed variable, we say 
that the indexed variable v is exposed by the inequality predicate ψ. 

In this section, we use Q1 and Q2 to show how AQIT works. First the parser trans-
lates Q1, and Q2 into the following Datalog queries DQ1 and DQ2: 
DQ1(m,bt,et) 

 measuresA(m,s,bt,et,mv) AND 

 sensor(m,s,_,_,ev,_,_) AND 

 v1 = ev + @thA  AND 

 mv > v1 

DQ2(m,bt,et) 

 measuresA(m,s,bt,et,mv) AND 

 sensor(m,s,_,_,ev,_,_) AND 

 v1 = mv – ev    AND 

 v2 = abs(v1)   AND 

 v2 > @thA 

Here, the source predicates measuresA(m,s,bt,et,mv) and measuresB(m,s,bt.et,mv) 
represent relational tables for two different measurement classes. For both tables there 
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is a B-tree index on mv to speed up comparison and proximity queries, and therefore 
measuresA() and measuresB() are indexed predicates and the variable mv is an in-
dexed variable. In Q1, the index idx(measuresA.mv) is already exposed because there 
is a comparison between measuresA.mv and variable v1, so AQIT will have no effect. 

In Q2, the index idx(measuresB.mv) is not exposed by the inequality predicate v2 > 
@thB since the inequality is defined over a variable v2, which is not bound to the in-
dexed attribute measuresB.mv. Here AQIT transforms the predicates to expose the 
index idx(measuresB.mv) so in T2 idx(measuresB.mv) is exposed in both OR branches. 

5.1 AQIT Overview 

The AQIT algorithm takes a Datalog predicate as input and returns another semanti-
cally equivalent predicate that exposes one or several indexes, if possible. AQIT is a 
fixpoint algorithm that iteratively transforms the predicate to expose hidden indexes 
until no further indexes can be exposed. The full pseudo code can be found in [17]. 

The transformations are made iteratively by the function transform_pred() in  
Listing 1. At each iteration, it invokes three functions, called chain(), expose(), and subs-
titute(). chain() finds some path between an indexed variable and an inequality predicate 
that can be exposed, expose() transforms the found path so that the index becomes ex-
posed, and substitute() replaces the terms in the original predicate with the new path. 

 
function transform_pred(pred):
input:   A predicate pred 
output:  A transformed predicate or the original pred 
begin 

 
if pred is disjunctive then 
 
  
 

set failure = false 
/*result list of transformed branches*/ 
set resl = null           
do /*transform each branch*/  

 
set b = the first not transformed branch in pred 
set nb = transform_pred(b)/*new branch*/ 
if  nb not null then add nb to resl  
else  set failure = true  

until failure or no more branch of pred to try 
 if not failure then  
  /*return a disjunction from resl*/ 
     return  orify(resl) 
 end if  

else if pred is conjunctive then

 
 

set path = chain(pred) 
if path not null then  

 
 

set exposedpath = expose(path)  
if  exposedpath not null then  
     return substitute(pred, path, exposedpath)        
end if  

end if   
end if  
return pred  

end  

Listing 1. Transform Predicate    
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Chain. The chain() algorithm tries to produce a path of predicates that links one indexed 
variable with one inequality predicate. If there are multiple indexed variables a simple 
heuristic is applied. It sorts the indexed variables decreasingly based on selectivities of 
the indexed attributes, which can be obtained first from the backend DBMS. The path 
must be a conjunction of transformable terms that represent expressions transformable 
by AQIT. Each transformable term in a path has a single common variable with adjacent 
terms. Such a chain of connected predicates is called an index inequality path (IIP). 
Query DQ2 has the following IIP called Q2-IIP from the indexed variable mv to the in-
equality v2 > @thB, where the functions ‘–‘ and ‘abs’ are transformable: 
Q2-IIP: measuresB(m, s, bt, et, mv) v1=mv - ev  v2=abs(v1) v2>@thB 

In this case Q2-IIP is the only possible IIP, since there are no other unexposed in-
dex variables in the query after Q2-IIP has been formed. The following graph illu-
strates Q2-IIP, where nodes represent predicates and arcs represent the common vari-
able of adjacent nodes: 

 
Fig. 3. Q2-IIP 

An IIP starts with an indexed origin predicate and ends with an inequality destina-
tion predicate. The origin node in an IIP is always an indexed predicate where the 
outgoing arc represents one of the indexed variables. 

chain() is a backtracking algorithm trying to extend partial IIPs consisting of trans-
formable predicates from an indexed variable until some inequality predicate is 
reached, in which case the IIP is complete. The algorithm will try to find one IIP per 
indexed variable. If there are several common variables between transformable terms, 
chain() will try each of them until a complete IIP is found. If there are other not yet 
exposed ordered indexes for some source predicates, the other IIPs may be discovered 
later in the top level fixpoint iteration. 

The chain() procedure successively extends the IIP by choosing new transformable 
predicates q not on the partial IIP such that one of q’s arguments is the variable of the 
right-most outgoing arc (mv in our case) of the partial IIP. For DQ2 only the predicate 
v1=mv-ev can be chosen, since mv is the outgoing arc variable and ‘–‘ is the only 
transformable predicate in DQ2 where mv is an argument. When there are several 
transformable predicates, chain() will try each of them in turn until the IIP is complete 
or the transformation fails. 

An IIP through a disjunction is treated as a disjunction of IIPs with one partial IIP per 
disjunct in Listing 1. In this case the index is considered utilized if all partial IIPs are 
complete. 
Expose. The expose() procedure is applied on each complete IIP in order to expose 
the indexed variable. The indexed variable is already exposed if there are no interme-
diate nodes between the origin node and the destination node in the IIP. For example, 
the IIP for Q1 is Q1-IIP: measuresA(m, s, bt, et, mv) mv>v1.Here the indexed 
variable mv is already exposed to the inequality. Therefore, in this case expose() re-
turns the input predicate unchanged. 

 

v1= mv -ev 

measuresB(m, s bt, et, mv) v2=abs(v1) 

 v2 > @thB mv 

v1 

v2 
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The idea of expose() is to shorten the IIP until the index variable is exposed by ite-
ratively combining the two last nodes through the algebraic rules in  

Table 4 into larger destination nodes while keeping the IIP complete. To keep  
the IIP complete the incoming variable of the last node must participate in some  
inequality predicate. As an example, the two last nodes in Q2-IIP in Fig. 3 are  
combined into a disjunction in Fig. 4. Here the following algebraic rule is applied: 
R10: |x| > y ⇒ (x > y ∨ x < - y). 

 
Fig. 4. Q2-IIP after the first reduction 

The algebraic rule R10 exposes a variable x hidden inside abs() of an inequality. 
The following table shows how R10 is applied on the two last nodes in Fig. 3 to form 
the new predicate in Fig. 4. 

Table 1. Applying R10 

Before After 
v2 = abs(v1)  AND v2 > @thB (v1 > @thB OR v1 < -@thB) 

By iteratively exposing each variable on the IIP, the indexed variable (and the in-
dex) will possibly be exposed. For example, Q2-IIP in Fig. 4 is reduced into Fig. 5 by  
applying the algebraic rules R3: x - y > z ⇒ x > y+ z and  R4: x - y < z ⇒ x < y+ z. 

 

Fig. 5. Q2-IIP after the second reduction 

The following two tables show how rules R3 and R4 have been applied: 

Table 2. Applying R3 Table 3. Applying R4 
                                                      

Before After Before After 

v1 = mv –ev AND 
v1 > @thB 

v3 = ev + @thB AND
 mv > v3 

v1 = mv –ev AND 
v1 < -@thB 

v4 = ev -@thB AND 
mv < v4 

 
The new variables v3 and v4 are created when applying the rewrite rules to hold in-

termediate values.   
In Fig. 5, there are no more intermediate nodes and the index idx(measuresB.mv) is 

exposed, so expose() succeeds.  
expose() may fail if there is no applicable algebraic rule when trying to combine 

some two last nodes, in which case the chain() procedure will be run again to find a 
next possible IIP until as many indexed variables as possible are exposed. 

v1 measuresB(m, s, bt, et,  mv) 
 v1> @thB 

OR v1<-@thB 

mv v1= mv-ev 

measuresB(m,s, bt,  et, mv) 

 mv> v3  OR mv < v4 
mv 
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Substitute. When expose() has succeeded, substitute() updates the original predicate 
by replacing all predicates in the original IIP, except its origin, with the new destina-
tion predicate in the transformed IIP [17]. For Q2 this will produce the final trans-
formed Datalog query: 

DQ2(m,bt,et)← measuresB(m,s,bt,et,mv)AND 

           sensor(m, s, _,_,ev,_,_) AND 

           v3  =  ev + @thB   AND  

           v4 = ev -@thB    AND 

          (mv < v4 OR mv >  v3) 

The Datalog query is the translated by the SQL Generator into SQL query T2. 

5.2 Inequality Transformation Rules 

Table 4 the algebraic rewrite rules currently used by AQIT are listed. The list can be 
extended for new kinds of algebraic index exposures. In the rules, x, y, and z are va-
riables and ψ denotes any of the inequality comparisons ≥, ≤,<, or >, while ψ--1 de-
notes the inverse of ψ. CP denotes a positive constant (CP > 0), while CN denotes a 
negative constant (CN < 0). Each rule shows how to expose the variable x hidden 
inside an algebraic expression to some inequality expression. 

Table 4. Algebraic inequality transformations 

R1 
(x + y)  ψ z   ⇔ x ψ (z – y) 

R2 
(y + x) ψ z  ⇔ x ψ (z – y) 

R3 
(x - y) ψ z ⇔ x ψ (z + y) 

R4 
(y - x) ψ z ⇔ x ψ  -1 (y – z ) 

R5 
(x * CP) ψ z ⇔ (x ψ z/CP) 

R6 
(x * CN) ψ z ⇔ (x ψ -1  z/CN) 

R7 
x/y ψ z ∧  y!= 0 ⇔ (x ψ y*z ∧ y > 0) ∨ (x ψ  -1 z*y ∧ y < 0) 

R8 
y/x ψ z ⇔ (y/z ψ x ∧ x*z > 0) ∨ (y/z ψ-1 x ∧ x*z < 0) 

∨  (y = 0 ∧ 0 ψ  z) 

R9 
|x| ≤ y   ⇔ (x ≤ y ∧ x  ≥ - y) 

R10 
|x| ≥ y ⇔ (x  ≥ y ∨ x ≤ - y) 

R11 ψ y 
⇔ x ψ y2  

R12 
xy ψ z ⇔

(x ψ ∧ y  > 0) ∨  (x ψ  -1  ∧ y < 0) 
∨  (x ψ z ∧ y = 0) 

R13 

(x+ y)/x ψ  z ⇔ (1+ y/x) ψ  z 

R14 
|(x - y) / y | > z ⇔ (x > (z + 1)* y ∧ y > 0) ∨ (x < (z + 1)* y ∧  y < 0) 

∨ (x < (- z+ 1)* y ∧ y > 0)∨ (x > (- z + 1)* y ∧  y < 0) 

x

y
z

y
z
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of AQIT on the query execution time, we run the SL
2008 R2 as DBMS on a separate server node. The DB
ws Server 2008 R2 Enterprise on 8 processors of AM

8, 2.00 GHz CPU and 16GB RAM. The experiments w
t AQIT preprocessing.  

from a small sampled time interval of pressure readings
ple of an asymmetric measurement series with an ini
econds.  

essure measured of class A (a) and class B (b) 

in this case is that the measured values are larger than 
hin a threshold. When the deviation threshold is 0 all m
while when the threshold is 359.44 no measurements 
1 finds when a sensor reading of class A is abnormal ba

be varied. 
readings of measurements of class B over a small samp

bnormality is determined by threshold @thB, indicat
en a reading and the expected value (20.0), as specified
0 all measurements are abnormal, while when the thresh
e abnormal.  

ality of measurements of class B is determined by thresh
ng relative difference between a reading and the expec
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value. When the relative d
while when the threshold is

Fig. 

6.3 Benchmark Querie

We measured the impact of
mality thresholds @thA fo
thresholds @thB  and @th
larger the threshold values 
three other benchmark que
formulations before and afte

• Q4 identifies when the p
the machines in a list m
many machine models t
index keys are accessed. 
 

Q4: SELECT vb.m, vb.bt,

FROM measuresB vb, sens

     machine ma 

WHERE vb.m = s.m AND va

    vb.m = ma.m   

    ma.mm in@machine-mo

    abs(vb.mv - s.ev) >

 

 

 

(A) 

(C) 

sch 

eviation threshold is 0%, no measurements are abnorm
s 100% all measurements are abnormal.  

7. Thresholds and selectivity mappings 

es 

f index utilization exposed by AQIT by varying the abn
or queries determining deviations in measuresA, and 
hRB for queries determining deviations in measuresB. T

the fewer abnormalities will be detected. We also defi
eries Q4, Q5, and Q6. All the detailed SQL and Data
er AQIT for the benchmark queries are listed in [18].  

pressure readings of class B deviates more than @thB 
machine-models of varying length. Here, if a query sp
the impact of AQIT should decrease since many differ

 

 vb.et 

sor s,  

a.s=s.s AND      

AND 

odels  AND 

> @thB 

T4: SELECT vb.m, vb.bt, vb.et  

FROM measuresB vb, sensor s,  

     machine ma  

WHERE vb.m = s.m AND va.s=s.s AN

     vb.m = ma.m   AN

     ma.mm in @machine-models AN

(vb.mv > @thB + s.ev OR vb.mv < 

@thB + s.ev 

 

(B) 

mal, 

 

nor-
the 

The 
ined 
alog 

for 
pans 
rent 

ND     
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ND 
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• Q5 identifies when the
two specific machine m
cal expressions over tw
See [18] for details.  

• Query Q6 is a complex 
behaviors of the same ma
different measurement cl
out-of-bounds more than 
were higher than @thA f
idx(measuresB.mv) are ex

6.4 Performance Meas

To measure performance 
Fig. 7 we map the threshol
of idx(measuresA.mv) and i
when any of the thresholds
(@thA=359.44, @thB=20.0

Experiment A varies the d
tivities (abnormality percen
in Q4.  

Fig. 8 (a) shows the pe
(without AQIT) and their c
(with AQIT) when varying
without AQIT are substant
will do full scans, while fo
exposed indexes. 

Experiment B varies index
while keeping the database 
in Q4. We varied the index
tion times of the all benchm

Without AQIT, the execu
lectivity since no index is u

Fig. 8. All queri
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e pressure reading of class B deviates more than @thB 
models using a temporal join. The query involves num
wo indexed variables, which are both exposed by AQ

query that identifies a sequence of two different abnor
achine happening within a given time interval, based on 
asses: On what machines the pressure readings class B w
@thB within 5 seconds after the pressure readings of clas

from the expected value. Here, both idx(measuresA.mv) 
xposed by AQIT. See [18] for details. 

urements 

based on different selectivities of indexed attributes,
d values to the corresponding measured index selectivi
idx(measuresB.mv). 100% of the abnormalities are detec
s is 0 and thresholds above the maximum threshold val
0, and @thRB=100%) detect 0% abnormalities.  

database size from 5GB to 25GB while keeping the sel
ntages) at 5% and a list of three different machine mod

erformance of example queries Q2, Q3, Q4, Q5, and 
corresponding transformed queries T2, T3, T4, T5, and
g the database size from 5 to 25 GB. The original que
tially slower since no indexes are exposed and the DB
or transformed queries the DBMS backend can utilize 

x selectivities of idx(measuresA.mv) and idx(measuresB.m
size at 25 GB and selecting three different machine mod

x selectivities from 0% to 100%. Fig. 8 (b) presents exe
mark queries with and without AQIT. 

ution times for Q2 - Q6 stay constant when varying the
utilized and the database tables are fully scanned.  

ies while changing DB size (a) and selectivities (b) 
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Fig. 8 (b) shows that AQ
scans are more effective fo
are not useful. When all ro
slower than original ones; 
AQIT does not make the qu

Experiment C varies the n
the database size at 25 GB 
that when the list is small th
nal query Q4. However, wh
reason is that the index id
which is faster for fewer mo

Fig. 9. Execution tim

The experiments A, B, 
benchmark queries substant
In general AQIT exposes h
to utilize them or not. 

7 Conclusion and 

In order to improve the per
sion, we investigated and
algorithm AQIT. It transfo
numerical expressions are e

From experiments, whic
streams from industrial ma
substantially improves quer

We presented our gener
based on bulk loading data 
abnormal behavior of logge
and AQIT was shown to im

sch 

QIT has more effect the lower the selectivity, since in
or selective queries. For non-selective queries the inde
ows are selected the AQIT transformed queries are sligh

the reason being that they are more complex. In gene
ueries significantly slower. 

number machine models in Q4 from 0 to 25 while keep
and the selectivity at 5%, as illustrated by Fig. 9. It sho
he transformed query T4 scales much better than the or
hen the list of machine increases, T4 is getting slower. T
dx(measuresB.mv) is accessed once per machine mo
odels. 

 

mes of Query 4 when varying the list of machine models 

and C show that AQIT improves the performance of 
tially and will never make the queries significantly slow
hidden indexes while the backend DBMS decides whet

Future Work  

rformance of queries involving complex inequality expr
d introduced the general algebraic query transformat
orms a class of SQL queries so that indexes hidden ins
exposed to the back-end query optimizer. 
ch were made on a benchmark consisting of real log d
achines, we showed that the AQIT query transformat
ry execution performance. 
ral system architecture for analyzing logged data strea
streams into a relational database. Importantly, looking
ed data streams often requires inequality search conditi

mprove the performance of such queries. 
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We conclude that AQIT improves substantially the query performance by exposing 
indexes without making the queries significantly slower. 

Since inequality conditions also appear in spatial queries we plan to extend AQIT to 
support transforming spatial query conditions as well user defined indexing. We also 
acknowledge that the inequality conditions could be more complex with multiple va-
riables and complex mathematical expression, which will require other algebraic rules. 
 
Acknowledgements. The work was supported by the Smart Vortex EU project [15].  
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