
Amos II programmer’s conventions

Jonas S Karlsson, Tore Risch, Magnus Werner, etc.

May 17, 2004

Abstract

Amos II (Active Mediators Object System) is a Main-Memory Object Functional Database System.
This document describes how to extend the Amos II system kernel with more primitives and func-

tionality on the C/Lisp level along with coding conventions for this. For high level APIs to C, Lisp see
documents external.pdf and javaamos.pdf. The built-in ALisp system and the internal storage manager
is documented in alisp.pdf.

1

Contents

1 Introduction 3

2 Getting started 3

2.1 Installation . 3

2.2 Compilation . 3

2.3 Checking In . 3

3 Running Amos II from XEmacs 3

4 Coding convections 6

4.1 Files . 6

4.2 Headers . 6

4.3 Naming functions . 7

4.4 Init- and Registering function . 7

4.5 Documentation . 7

5 Extending the system 8

5.1 New files or use existing files . 8

5.2 Adding a new Lisp file . 8

5.3 Adding a new C file . 8

5.4 Regression test . 9

6 Lisp programmer’s Checklist 10

6.1 Symbols . 10

7 C Programmer’s Checklist 10

7.1 Parsing with Bison/Flex . 11

8 Making an Amos II Release 11

9 Bugs 12

2

1 Introduction

2 Getting started

First section describes how to install the system with source code after it has been installed into the repository.

2.1 Installation

Your PC need a number of software installations in order for you to be able to install the development
version of the system and be productive. See http://user.it.uu.se/∼udbl/setupinstructions.txt.

The system resides on the UDBL account on IT:s file system. You need to be member of the UDBL group
on IT’s Unix system in order to check out the sources. Furthermore, for convenience you should have the
same login names both under Unix and on the PC you are using.

The system sources are stored in a CVS-REPOSITORY and in order to do software development for the Amos
II system one has to check out an own version from the REPOSITORY. See http://user.it.uu.se/∼udbl/software/cvs-
instructions.html.

Decide where your amos root directory should reside, go to this directory and checkout AMOS with the
Unix/Windows commands:

cvs co AmosNT

After checking out, directory AmosNT will contain all source code necessary to build your own system.

2.2 Compilation

To compile and test the system. Execute in folder AmosNT/bin the command procedure:

install

which will compile the system. If not, some environment variable is wrong or you have not installed all
necessary software on your PC. See http://user.it.uu.se/∼udbl/software/cvs-instructions.html.

A successful full installation also includes a full regression test. Run it by typing in folder AmosNT/regress:

testmaster

If the regression fails you probably have not installed all software required. See http://user.it.uu.se/∼udbl/software/cvs-
instructions.html.

2.3 Checking In

For detailed informations about how to check in code changes to CVS see http://user.it.uu.se/∼udbl/software/cvs-
instructions.html.

3 Running Amos II from XEmacs

The most convenient way to develop Alisp and AmosQL code is to run Amos II from within XEmacs. Certain
features of Amos II and extensions of Emacs facilitate this.

3

To get the Emacs extensions you should copy the file lsp/init.el to the .xemacs directory where XEmacs
keeps its init files. This is usualy in C:/.xemacs or C:/Documents and Settings/<username>/.xemacs.

When XEmacs is started give the command

M-x-shell

This will start a new Windows (or Unix) shell inside XEmacs. You can there give the usual Windows (Unix)
commands. Run there Amos II by typing:

amos2

If you are developing ALisp code, enter ALisp with the command

lisp;

Lisp function APROPOS

(apropos symbol)

apropos searches through the entire system to find out what ALisp functions, STRUCTs, etc. contain the
string SYMBOL and prints the location of their definition along with the documentation string.

If you, e.g., are changing the system for overloading AmosQL functions you might be interested in what
other functions there are to deal with resolvents by calling:

lisp 1> (apropos ’resolvent)
GET-RESOLVENTS C:/AmosNT/lsp/typecheck.lsp 148

""
SET-RESOLVENTS C:/AmosNT/lsp/typecheck.lsp 174

""
GET-MOST-SPECIFIC-RESOLVENT C:/AmosNT/lsp/bindpatex.lsp 221

""
RESOLVENTS-WITH-ARITY C:/AmosNT/lsp/typecheck.lsp 520

""
GET-RESOLVENT-ARGTYPES C:/AmosNT/lsp/typecheck.lsp 635

""
COMPARERESOLVENTS C:/AmosNT/lsp/typecheck.lsp 267

""
GET-RESOLVENT-RESTYPES C:/AmosNT/lsp/typecheck.lsp 638

""
GEN-DIR-LIST-OF-RESOLVENTS C:/AmosNT/lsp/bindpatex.lsp 35

""
MATCH-ARGS-TO-RESOLVENTS C:/AmosNT/lsp/bindpatex.lsp 114

""
REMOVE-GENERAL-RESOLVENTS C:/AmosNT/lsp/typecheck.lsp 430

"Remove the resolvents in LOR that are more general than other resolvents
n LOR"
MAKE-RESOLVENTNAME-DCL C:/AmosNT/lsp/typecheck.lsp 206

"Generate resolvent name, given generic name NAME,
argument declarations ARGDCL, and result declarations RESDCL"
MORE-SPECIFIC-RESOLVENT? C:/AmosNT/lsp/typecheck.lsp 440

"Is A a more specific resolvent than B?"

4

AMBIGOUS-RESOLVENTS? C:/AmosNT/lsp/typecheck.lsp 150
""

ADDRESOLVENT C:/AmosNT/lsp/typecheck.lsp 153
""

GETRESOLVENT C:/AmosNT/lsp/typecheck.lsp 177
"Get the resolvent of the generic function FNO, given the list of

exact matching argument types ATL.
ERRORFLG != nil => generate error if resolvent not found"
RESOLVENTS C:/AmosNT/lsp/typecheck.lsp 146

""
SORT-RESOLVENT-LIST C:/AmosNT/lsp/bindpatex.lsp 381

""
GETUNIQUERESOLVENT C:/AmosNT/lsp/fncall.lsp 515

""
SET-RESOLVENT-TYPES C:/AmosNT/lsp/typecheck.lsp 167

""
FUNCTION.RESOLVENTS->FUNCTION-+ C:/AmosNT/lsp/amosfns.lsp 558

""
GENERATE-RESOLVENT-LIST C:/AmosNT/lsp/bindpatex.lsp 341

"Generates a list of all resolvents of genfn that is in the dynamic
type set of the type fargt"
MAKE-RESOLVENTNAME C:/AmosNT/lsp/typecheck.lsp 189

"Generate name of resolvent, given generic function NAME,
argument types ARGTYPES, and result types RESTYPES"
BAGCOERCERESOLVENT C:/AmosNT/lsp/collections.lsp 469

""

If you want to look at some of the definitions of these function, place the XEmacs cursor over the file name
(e.g. over C:/AmosNT/lsp/collections.lsp) and press F1. This will open the definition of ALisp function
BAGCOERCERESOLVENT in another XEmacs buffer.

Lisp function FP

(fp function)

fp prints the file position where ALisp function is defined. For example:

lisp 1> (fp ’bagcoerceresolvent)
BAGCOERCERESOLVENT C:/AmosNT/lsp/collections.lsp 469

Place the cursor over the file name and press F1 if you want to see its definition.

Lisp function CALLING

(calling function)

calling prints the file positions of the Lisp functions calling FUNCTION. For example:

lisp 1> (calling ’optimize-pred)
BPAT-OPTIMIZE-FUNCTION C:/AmosNT/lsp/bindpatex.lsp 166
COMPILE_PHASE2 C:/AmosNT/lsp/comppred.lsp 17
REOPTIMIZE C:/AmosNT/lsp/amosfns.lsp 661
CREATEFOREIGNFUNCTION C:/AmosNT/lsp/function.lsp 455

5

Lisp function GREP

(grep string)

grep searches the sources of all files loaded into the current Amos II image looking for the string and
displays the corresponding file positions. For example:

lisp 1> (grep "grep")
C:/AmosNT/lsp/ref_lisp.lsp:370 ;;; What lines in what files have given string? Borland grep.
C:/AmosNT/lsp/ref_lisp.lsp 372 grep ((charstring pat)) ((charstring))
C:/AmosNT/lsp/ref_lisp.lsp 374 (if (eq (system (concat "grep -r -n -o -e \"" pat "\" " f))
C:/AmosNT/lsp/ref_lisp.lsp 378 ;;; What files have given string? Save lines in INTOFILE. Borland g
C:/AmosNT/lsp/ref_lisp.lsp 380 grep ((charstring pat)(charstring intofile)) ((charstring))
C:/AmosNT/lsp/ref_lisp.lsp 383 (if (eq (system (concat "grep -r -n -o -e \"" pat "\" " f
C:/AmosNT/lsp/ref_lisp.lsp 401 (defun grep (string)
C:/AmosNT/lsp/ref_lisp.lsp 403 (mapfunctionres ’grep (list (mkstring string)) nil ’null)

Some useful XEmacs commands for dealing with Lisp:

• CTRL-META-q Place the cursor over the first ’(’ of a Lisp form and press CTRL-META-q to pretty print it.
It is strongly encouraged to let Emacs prettyprint Lisp functions. You will discover parathesis errors.

• META-p and META-n in the shell window picks upp the previously or next ALisp form or other command
typed into the shell.

• META--> and META-<- in a Lisp source buffer (arrows) moves the cursor one form forward or backwards.

4 Coding convections

In ALisp there is no real packages, but grouping of files has been done in most cases and should be done by
new developers.

First when adding new functions the already existing files should be studied. If there seems to be a package
for that kind of operations/data then the function should be put there. The Alisp function

(apropos SYMBOL)

Finds all Alisp functions similar to SYMBOL along with their documentation, as documented above.

4.1 Files

Naming convention for lisp module files is to suffix them with .lsp.

4.2 Headers

Each file has a header. In http://user.it.uu.se/∼udbl/amos/cvs-heads.html there are headers for most kinds
of files.

This is the header for Lisp files:

6

;;; ===
;;; AMOS2
;;;
;;; Author: (c) <year> <name>, UDBL
;;; $RCSfile: coding.tex,v $
;;; $Revision: 1.8 $ $Date: 2004/04/30 10:06:57 $
;;; $State: Exp $ $Locker: $
;;;
;;; Description: <description>
;;;
;;; ===

This is the C header:

/***
* AMOS2
*
* Author: (c) <year> <name>, UDBL
* $RCSfile: coding.tex,v $
* $Revision: 1.8 $ $Date: 2004/04/30 10:06:57 $
* $State: Exp $ $Locker: $
*
* Description: <description>
*
**/

Change the <name> to yourself and fill in the Description: field to reflect the modules usage.

4.3 Naming functions

When defining ALisp callable functions in C the following naming conventions are used:

• The C function name is always lower-case and suffixed with ’fn’. For example, the Lisp function LIST
is implemented by the C function listfn.

• Hyphens in Lisp function names become underscores in the corresponding C function names. For
example, the Lisp function ARG-TYPES is implemented by the C function arg typesfn.

4.4 Init- and Registering function

In order to simplify the init and register process for foreign C functions in Amos II, one is encouraged to
write a void register X functions() function for each C package. This function should be responsible
registering external functions using extfunctionX (For examples, look in: system/C/text fns.c.

For deatils on how to extend the system with new kernel ALisp functions implemented in C, storage man-
agement, etc., see document doc/alisp.pdf.

4.5 Documentation

Functions should be documented, supported ”online” documentation is available only in for functions/variables
available in ALisp.

Using the ALisp function doc one can get information on functions:

7

lisp 1> (doc ’createfunction)
"Create new OSQL function
resv, quant and pred = NIL => stored function
resv = FOREIGN => foreign function, resv = implementation name for table FF
otherwise derived function with select expression defined by resv, quant,
and pred"

Functions that can be accessed from within ALisp, can and should be documented. If you write the doc-
umentation in a special way, as described below, it is automatically extracted. It can then be viewed with
the doc function.

ALisp functions can be written to contain a Documentation-string:

(defun fac (n)
"Returns the factorial of N."
(if (> n 0)

(* n (fac (1- n)))
1))

5 Extending the system

This section describes the common way of extending the system kernel with new features in C. There is a
choice of implementing the extensions in existing files or add new files that implements the new features.

NOTICE: The description here is about extending the kernel of Amos II. If you are writing applications
calling Amos II or being called from Amos II there is a much higher level API from C and Lisp documented
in file external.pdf. The corresponding API for Java is documented in javaapi.pdf.

5.1 New files or use existing files

If the kernel feature added is an extension of an existing feature it is advised to use the file(s) with that
feature. Example: If new AMOSQL functions implemented in ALisp are added it is quite natural to add the
implementation to the file amosfns.lsp since that file does nothing but implements AMOSQL-functions.

If, however, the new feature is something completely new to the system the reasonable thing to do is to
implement it in a new file or set of files.

5.2 Adding a new Lisp file

Add a new file containing source code written in ALisp is very easy. Write the file and give it a mnemoic
name and extension .lsp. The location of the file should be amongst all other Lisp files i.e. ../AmosNT/lsp.
The file must then be read by the system at creation of the system. This is achieved by adding a load of the
file in init.lsp.

5.3 Adding a new C file

Adding a new file containing source code written in C is a bit more hassle than adding a new file in Lisp.

Following has to be done

• 1: Implement the features in a file with extension .c

8

• 2: Create a file with extension .h containing interface declarations from the new file.

• 3: In file amos.h include the new .h file.

• 4: In the project makefile system/Borland/amos.bpr add the new .c file using Borland C++ builder.

• 5: Always use the predefined headers.

In step 2 above it is necessary to do as follows in order to catch any circular dependencies. Assume the new
file is aChack.c. In aChack.h the following must be done:

#ifndef _aChack_h_
#define _aChack_h_
<Declarations>

#endif

In step 4 above it is of importance to add the new .c file in a fitting group.

NOTICE: The length of a filename must not exceed 17 characters. This is due to the source file version
package that does not function correctly if this restriction is violated. Still true???

5.4 Regression test

When the new features are working properly and the regression test runs well the regression test can be
extended to test the new features. This is done by writing a new testfile with extension .osql located in
../AmosNT/regress. The new regress file must then be called from test.osql. This is done by adding a
line in test.osql as:

< ’mynewtest.osql’;

9

6 Lisp programmer’s Checklist

6.1 Symbols

The datatype symbol is documented in Sec. 3.1 in Alisp User’s Guide. Read introduction carefully!

NOTICE that system hash table bound to variable **SYMBOLHASHTABLE** maps print names to symbols
in order to make them unique. NEVER change **SYMBOLHASHTABLE**!

NOTICE that symbol print names in CommonLisp are always upper-cased when a symbol is created. For
example:

(MKSYMBOL "aBc") -> symbol ABC

NOTICE that the obsolete function MKATOM is the same as MKSYMBOL but is NOT standard CommonLisp.

Symbols are often used in the system for upper-casing strings and for generating unique identifiers for strings.
For example,

(EQ \"a\" \"a\") -> NIL (strings are not unique)
(EQ (MKSYMBOL \"a\")(MKSYMBOL \"a\")) -> T (symbols are unique)
(EQ (MKSYMBOL \"a\")(MKSYMBOL \"A\")) -> T (symbols are upper-case)

NOTICE that the cost of creating a symbol is much higher that creating a string. In particular it should
be avoided to generate an unlimited number of symbols by calling MKSYMBOL on arbitrary strings.

NOTICE that symbols are not garbage collected and creating many of them causes storage leaks.

Variables in ObjectLog are represented using symbols. The function

(GENVAR)

is used whenever the system needs to generate a new variable. It generates variables V1, V2, etc. In
order to avoid generating variables with higher and higher generation numbers (and thus unlimited number
of symbols) the counter for the variable generation numbers is reset whenever a new function is compiled by
the macro:

(RESETGENVAR FORM)

RESETGENVAR resets the variable generation number counter to 0, evaluates the form, and then restes the
counter to its original value again.

7 C Programmer’s Checklist

This section describes common programming errors, and warnings when adding C code to the kernel. More
details can be found in alisp.pdf.

• Avoid using C’s assignment operator for Amos II data structures (unless you know what you are
doing). Always use dcloid and a setf instead!

• The unwind protect catch code must be executed; never return directly out of the main code block.
If unwind protect end is not executed after an exception, then the exception is not continued. Always
execute unwind protect end, unless you really know what you are doing.

10

• Streams must be closed before saving image!

• The system may stop functioning if breaks are put on a system function that is part of the break
package itself!

• The use of handles allows the storage manager to move the objects, making dereferenced handles
dangling pointers. Thus dereferenced pointers may become incorrect once a system feature that cause
data to move is called. Object allocation is the only system operation that may cause this. Thus, if a
system function is called that is suspected to do object allocation (most do), the dereferencing MUST
be redone. It is always safe to dereference through dr and to always use dcloid(x) and use a setf
for assignments.

• Never try to reset C arguments with a setf; it will clobber the garbage collector.

• Don’t forget to free the result of a Lisp function call (with a free) in case it generates garbage.

• call lisp automatically garbage collects its arguments upon return; thus temporary objects among the
arguments are automatically freed. For example:

call_lisp(mksymbol("prin1"),env,1,mkstring("hello world"));

will allocate a new Lisp string, then print it, and then deallocate it on the exit from call lisp.

However, the automatic deallocation of temporary storage is NOT performed with direct C function
calls. For example, with a direct C call to the C implementation of Lisp’s PRINT, printfn, the above
printing should become:

dcloid(a1);
......
a_setf(a1,mkstring("hello world"));
printfn(env,a1);
a_free(a1);

7.1 Parsing with Bison/Flex

The Bison/Flex parser generator is frequently used when parsing various languages. Bison/Flex can be run
under Windows. Download the .exe files from http://user.it.uu.se/∼udbl/software/bison and make
sure that the PATH variable include their sources. The file bison.simple must be placed in c:
tools
share
bison.simple.

8 Making an Amos II Release

First, check out the latest version of Amos II from CVS (don’t forget to check in everything You want to be
part of the new release first) and move to the directory containing the newly checked out copy of the AMOS
system. Standing in the AmosNT/bin directory, type install all. The system should now compile. Make
sure that it passes the regression test.

The command procedure mkrelease.bat in AmosNT root directory makes a new release for export.

More here...

11

9 Bugs

If you should find any bugs in a released Amos II, then send a mail to Tore.Risch@it.uu.se describing the
bug. If possible include an example detailed enough to recreate the bug. If Amos II dumps core you could
run Borland C++ and look at the stack to see in what function the fault occured.

12

