
Utilizing a NoSQL Data Store for Scalable Log Analysis
Khalid Mahmood

Dept. of Information Technology
Uppsala University,

Sweden
khalid.mahmood@it.uu.se

Tore Risch
Dept. of Information Technology

Uppsala University,
Sweden

tore.risch@it.uu.se

Minpeng Zhu
Dept. of Information Technology

Uppsala University,
Sweden

minpeng.zhu@it.uu.se

ABSTRACT
A potential problem for persisting large volume of data logs with
a conventional relational database is that loading massive logs
produced at high rates is not fast enough due to the strong
consistency model and high cost of indexing. As a possible
alternative, a modern NoSQL data store, which sacrifices
transactional consistency to achieve higher performance and
scalability, can be utilized. In this paper, we investigate to what
degree a state-of-the-art NoSQL database can achieve high
performance persisting and fundamental analyses of large-scale
data logs from real world applications. For the evaluation, a state-
of-the-art NoSQL database, MongoDB, is compared with a
relational DBMS from a major commercial vendor and with a
popular open source relational DBMS. MongoDB is chosen as it
provides both primary and secondary indexing compared to other
popular NoSQL systems. These indexing techniques are essential
for scalable processing of queries over large scale data logs. To
explore the impact of parallelism on query execution, sharding
was investigated for MongoDB. Our results revealed that relaxing
the consistency did not provide substantial performance
enhancement in persisting large-scale data logs for any of the
systems. However, for high-performance loading and analysis of
data logs, MongoDB is shown to be a viable alternative compared
to relational databases for queries where the choice of an optimal
execution plan is not critical.

Categories and Subject Descriptors
H.2.m [Database Management]: Miscellaneous

General Terms
Measurement, Performance, Experimentation

Keywords
NoSQL data stores, large-scale log analysis, log archival, bulk
loading, sharding

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
IDEAS '15, July 13 - 15, 2015, Yokohama, Japan
© 2015 ACM. ISBN 978-1-4503-3414-3/15/07…$15.00
DOI: http://dx.doi.org/10.1145/2790755.2790772

1. INTRODUCTION
Relational databases can be used for large-scale analysis of data
logs from industrial applications such as sensor readings [21] [25]
[29] and stream logs [27] [28]. Persisting large volume of data
logs produced at high rate requires high performance bulk loading
of data into a database before analysis. However, the loading time
for relational databases may be time consuming due to full
transactional consistency [9] and high cost of indexing [23]. In
contrast to relational DBMSs, NoSQL databases are designed to
perform simple tasks with high scalability [5]. For providing high
performance updates, NoSQL databases generally sacrifice strong
consistency by providing so called eventual consistency compared
with the ACID transactions of regular DBMSs. NoSQL databases
can be utilized for typical historical analysis of log data or
numerical log analytics where transactional consistency
conforming ACID compliance is not required.

It has been argued in [23] that relational DBMSs can achieve the
same performance as NoSQL database systems by specifying
relaxed consistency to eliminate overhead. In [12] it is shown that
this overhead is almost equally divided between four components
for a typical relational DBMS: logging, locking, latching, and
buffer management. However, we did not find any experimental
benchmark that investigates how a weaker consistency model for
relational DBMSs and NoSQL databases can be utilized to
enhance performance for persisting and analysis of data logs.
Although [10] compares the performance of SQL Server and
MongoDB [15] for interactive data-as-a-service based on the
YCSB benchmark [6], it does not investigate the performance of
the systems for scalable log analysis. A more recent investigation
[13] did not consider the state-of-the-art NoSQL database,
MongoDB for performance evaluation. None of the papers
consider the option for relaxing the consistency for both types of
systems.

Unlike NoSQL data stores, relational databases provide advanced
query languages and optimization technique for scalable analytics.
Paper [19] demonstrates that indexing is a major factor for
providing scalable performance, making relational databases
having a performance advantage compared to a NoSQL data store
without proper indexing to speed up analytical tasks. Like
relational databases, MongoDB provides a query language as well
as primary and secondary indexing, which should be well suited
for analyzing persisted logs. Unlike relational databases and
MongoDB, most other popular NoSQL data stores [22],
Cassandra [2], Redis [20], HBase [1], Memcached [7], and
CouchDB [3], do not provide full secondary indexing and query
processing to transparently utilize indexes, which is essential for
scalable performance of inequality queries. CouchDB has
secondary indexes, but queries have to be written as map-reduce
views [5], not transparently utilizing indexes.

In this paper we compare MongoDB with state-of-the-art
relational DBMSs to investigate at what degree a state-of-the-art
NoSQL database is suitable for persisting and analyzing large
scale data logs compared with relational databases. The
performance of MongoDB is compared with a commercial DBMS
from a major relational vendor, called DB-C, and a popular open
source relational DBMS, called DB-O.

The performance evaluation covers the bulk loading capacities of
the systems w.r.t. indexing and relaxed consistency. We define
three fundamental queries for accessing and analyzing persisted
logs to investigate the efficiency of query processing and index
utilization of the DBMSs. The properties of these queries are key
selection, range search, and aggregation, which are fundamental
to the analysis of persisted logs [25] [29]. We utilize data logs
from a real world application [21] consisting of more than 1
billion sensor readings from industrial equipment.

Furthermore, the impact of MongoDB’s auto-sharding (automatic
partitioning) is investigated for persisted log analysis in order to
explore whether its data partitioning can provide performance
advantages for bulk loading and query execution.

In summary, the main contribution of the paper is a performance
evaluation of persisting and analyzing data logs under different
consistency configurations. The paper provides a comparison of
the suitability of the two kinds of database systems for large-scale
log analysis and reveals the trade-offs between bulk-loading and
different levels of consistency. We discuss the cause of the
performance differences influenced by how the systems choose
different indexing strategies under relaxed consistency. The
investigations provide insights in the issues that future systems
should consider when utilizing weaker consistency of back-end
storage for persisting and analyzing of data logs.

2. PERFORMANCE EVALUATIONS
In this section, we present bulk loading strategies and fundamental
queries for persisted data logs. We first measure the performance
in terms of execution time for different loading strategies by
relaxing consistency overhead. Then we compare the performance
of fundamental queries. For MongoDB, we also investigate the
impact of auto-sharding on loading and querying. Based on
inspecting the query execution plans, we discuss the causes of the
performance differences.

2.1 Application Scenario
The Smart Vortex EU project [21] serves as a real world
application context, which involves analyzing data logs from
industrial equipment. In the scenario, a factory operates some
machines and each machine has several sensors that measure
various physical properties like pressure, power consumption,
temperature, etc. For each machine, the sensors generate logs of
measurements, where each log record has timestamp ts, machine

identifier m, sensor identifier s, and a measured value mv. Each
measured value mv on machine m is associated with a valid time
interval [bt, et) indicating the begin time and end time for mv,
computed from the log time stamp ts. The table measures (m, s, bt,
et, mv) will contain a large volume of log data from many sensors
on different machines. There is a composite key on (m, s, bt).

In the performance measurements, the logs are bulk loaded into
MongoDB and the two relational DBMSs. Since the incoming
sensor streams can be very voluminous, it is important that the
measurements are bulk-loaded fast. After data logs have been
loaded into the measures table, the user can perform queries to
detect anomalies of sensor readings by analyzing values of mv.
The queries are used in the performance evaluation in order to
understand the performance differences for both kinds of systems.

2.2 Data Set
The evaluation is made based on measurements from a real-world
application in the Smart Vortex project [21]. A typical time series
formed by a small piece of a larger numerical log from the
application is plotted in Figure 1. In the performance evaluations
more than 1 billion log measurements, which occupies 60GB of
raw data from industrial sensors is used. It is important that data
loading can keep up with increasing log volume. To investigate
DBMS performance with growing data volume, increasing
sections of the data logs were loaded into the databases.

Figure 1. Pressure measurements of sensor for 1 hour

2.3 Consistency Configurations for Bulk
Loading
In relational DBMSs, typical transactional overhead such as
logging can be turned off and isolation level be relaxed to boost
the performance. To investigate the impact of relaxed consistency
levels, we configure the systems as in Table 1, which also defines
the acronyms for the experiments. The lowest isolation level for
the relational databases (dirty reads) corresponds to
unacknowledged write concern in MongoDB, while serializable
transactions correspond to acknowledged write concern [16]. For
MongoDB, we also investigate the performance impact of auto-
sharding, which can be combined with both consistency levels per
shard. MongoDB does not have distributed transactions, therefore,
synchronized updates of several shards is not supported.

0

100

200

300

400

0 600 1200 1800 2400 3000 3600

P
re
ss
u
re
, m

v
(b
ar
)

Time (s)

Acronym Name and Consistency Level Properties

DB-C-S DB-C & strong consistency Logging, serializable isolation level

DB-C DB-C, & weak consistency Dirty reads, no logging

DB-O-S DB-O & strong consistency Logging, serializable isolation level

DB-O DB-O & weak consistency Dirty reads , no logging

Mongo-S MongoDB & acknowledged write concern Logging, serializable isolation level

Mongo MongoDB & unacknowledged write concern Dirty reads, no logging

Mongo-AS-S MongoDB auto-sharding & acknowledged write concern Logging, no distributed transactions, serializable isolation

Mongo-AS MongoDB auto-sharding & unacknowledged write concern No logging, no distributed transactions, dirty reads

Table 1. Consistency configurations for the experiments

We evaluated several alternatives of bulk loading by utilizing the
different levels of consistency configurations. First, the impact of
relaxed consistency is investigated and then the best consistency
option for each system is used in all other experiments.

2.4 Fundamental Queries
The queries used in the performance evaluation are very
fundamental to analytics over numerical logs and provide basic
building blocks of analytics of persisted logs [21] [25] [29]. We
made the experimental queries simplistic in nature, which is one
of the four major criteria of domain specific benchmarks [11], to
demonstrate the credibility of the performance trade-offs for the
systems. The queries essentially explore the performance and
scalability of primary and secondary index utilization for growing
data logs. The first query, key look-up query (Q1), gets a sensor
reading for a given timestamp. The second query, range query
(Q2) detects deviations of sensor readings from expected values.
The third query, aggregation query (Q3), performs aggregation of
measurement deviations from persisted logs.

2.4.1 Key Lookup Query, Q1
The task involves finding measured values mv for a given
machine m, sensor s, and begin time, bt. The query expressed in
SQL and MongoDB’s query language [16], respectively, is
specified as follows:

-- SQL
SELECT m, s, mv FROM measures
 WHERE m =? AND s =? AND bt =?

//MongoDB
db.measures.find(
 { m:?, s:?, bt:? },{ m: 1, s: 1 mv: 1})

In order to provide scalable performance of the query, we need an
index on the composite key. In all systems we index by defining a
composite B-tree primary key index on (m, s, bt). This query
demonstrates the performance of primary key index utilization of
the three systems.

2.4.2 Range Query, Q2
This query involves finding unexpected sensor readings by
observing measured values mv that deviate from an expected
value. Here, the sensor readings with the measured value mv
higher than the unexpected value are retrieved. Such a query can
be expressed in SQL and MongoDB as follows:

-- SQL
SELECT * FROM measures WHERE mv > ?

//MongoDB
db.measures.find({ mv: {$gt: ?}})

In order to improve the performance of this query, we need a
secondary ordered index on value, mv. Query Q2 shows the
performance of secondary B-tree indexing and how well the query
optimizer can utilize the index. Since the efficiency of a
secondary index is highly dependent on the selectivity, the query
was executed with different query selectivities by providing the
appropriate ranges of mv. The correspondence between choice of
mv and query selectivities for Q2 for the data set is plotted in
Figure 2.

Based on the data illustrated by Figure 2, we execute Q2 for value
of mv resulting in the selectivities 0.002%, 0.02%, 0.2%, 0.25 %,

Figure 2. Measured value to selectivity mapping

and 1%, resulting around 0.02, .2, 2, 2.5,5 and 10 millions of log
records.

Query Q2 is an example of a very fundamental analytics query
that involves inequality comparisons. Complex analytics queries
usually involve such inequalities and can often be rewritten into
inequality queries like Q2, as automated in [25].

2.4.3 Aggregate Query, Q3
This query counts the total number of sensor readings having a
measurement anomaly, using the same inequality as in Q2. Such a
query is expressed in SQL and MongoDB as follows:

-- SQL
SELECT COUNT(*) FROM measures WHERE mv > ?

//MongoDB
db.measures.count({ mv: {$gt: ?}})

Similar to Q2, this query was executed for different selectivities
utilizing a secondary index on mv. In difference to Q2, which
returns a large volume of abnormal sensor readings, Q3 returns a
single aggregated value. The query has insignificant network
communication overhead compared to Q2.

2.5 Indexing Strategy
To speed up lookups of sensor readings for a given timestamp, we
define a composite index on machine id m, sensor id s and begin
time bt. For query Q2 and Q3, we define an extra secondary index
on mv in addition to the composite key index. The data is then
bulk loaded and the three fundamental queries were executed.

2.6 Benchmark Configuration
The non-sharding experiments are performed on a computer
running Intel® CoreTM i7, 3.0GHz CPU with Windows Server
2013 operating system. The computer has 16GB of physical
memory.

2.6.1 MongoDB Configuration
MongoDB version 2.4.8 is used for the performance evaluation.
Relational tables are represented as collections of binary-JSON
(BSON) objects [14] in MongoDB. Since the attribute names are
stored inside each BSON object, short attribute names are used to
make the database compact.

The sharding experiments were run on a cluster of five nodes
connected by a one Gbit Ethernet switch. Each node had the same
hardware configuration as the non-sharding experimental setup.
We ran one mongod process managing each shard, one config_db
process managing meta-data, and one mongos process for the
MongoDB coordinator. The client, mongos, and config_db were
run on the same node separate from the shards mongod.

0

20

40

60

80

100

0 75 150 225 300 375

Se
le
ct
iv
it
y
(%

)

Pressure, mv (bar)

2.6.2 Relational DBMS Configurations
The query result cache was turned off for both relational DBMSs.
Also MongoDB does not utilize any query result cache when
executing queries.

2.6.3 Benchmark Execution
For each system we measured the bulk-load time for 167, 333,
667, and 1000 million sensor readings consisting of
approximately 10GB, 20GB, 40GB, and 60GB of data,
respectively. The raw data files were stored in CSV format where
each individual row represents a sensor reading for machine m,
sensor s, begin time bt, end time et, and the measured value mv.

The bulk loading into the relational DBMSs and MongoDB were
performed utilizing their batch commands for bulk loading CSV
files.

The scalabilities of all fundamental queries were evaluated with
the largest data set of 1 billion sensor records (60 GB) for all the
systems.

To enable incremental bulk loading of new data into existing
tables, the indexes should always be predefined in all
experiments, rather than building them after the bulk loading.
Although one might consider the option of bulk loading first and
then building the index, this will contradict the notion in our
application scenario, where bulk loading and analyzing streaming
logs is a continuous process that demands incremental loading of
the data into pre-existing tables. Nevertheless, we also made
performance evaluations of building the indexes after bulk
loading, which is faster compared to incremental bulk loading
(Figure 4).

To provide stable results for bulk loading, we made all the
experiment starting with empty databases. For each query, we
measured the average time of three executions. The standard
deviations of the measurements were less than 1%.

2.7 Experimental Results
For investigating the performance of bulk loading and queries for
different consistency configurations, the following experiments
were conducted.

2.7.1 Performance of Bulk Loading
In Figure 3, we observe that all systems offer scalable loading
performance, except DB-O (DB-O and DB-O-S) and sharded
MongoDB (Mongo-AS and Mongo-AS-S). DB-O scales
significantly worse than DB-C and MongoDB for bulk-loading,
whereas Mongo-AS is faster than DB-O. Both Mongo-AS and
Mongo-AS-S are much slower compare to DB-C and non-sharded

Figure 3. The performance of bulk loading with different

consistency configurations

MongoDB. We speculate that this performance degradation is due
to MongoDB’s internal re-balancing of data among the shards
during bulk-loading.

For bulk loading of large databases, the improvement of weak
consistency is around 24.8% for DB-C (DB-C vs. DB-C-S), while
it is around 26% for MongoDB (Mongo vs. Mongo-S). MongoDB
with weak consistency performs best compared to other systems.
In summary, relaxing transactional overhead did not provide
substantial performance improvement for any system. From now
on we always use the faster weak consistency levels in the
experiments.

Figure 4 illustrates the performance degradation for bulk loading
one billion records incrementally with predefined indexes
(Indexed-Before) compared with building the indexes after all data
are loaded (Indexed-After). For Indexed-After, we show the total
time of bulk loading and building the indexes. Here for the
Indexed-After experiment, DB-C performs best. Although all
systems demonstrate better performance with Indexed-After, this
option prevents incremental bulk loading and is not suitable for
incrementally persisting logs.

Figure 4. The performance of building indexes before and

after bulk loading

2.7.2 Performance of Key Lookup Query (Q1)
Figure 5 shows the performance of key lookup query Q1 to
retrieve a particular sensor record. As expected, indexing the key
provides scalability of Q1 in all systems, with DB-C being fastest.

Figure 5. Performance of key lookup query (Q1)

2.7.3 Performance of Range Query (Q2)
Figure 6 shows the performance of query Q2 with both primary
and secondary indexes defined. The selectivities are varied from
0.002% up to 1.0% for 1 billion sensor records. Clearly there is a
problem with secondary indexes for inequality queries in DB-O.
Both sharded and non-sharded MongoDB and DB-C scale
substantially better and is therefore investigated further in Figure
7.

0

5

10

15

20

25

30

35

40

0 167 333 500 667 833 1,000

Ex
ec
u
ti
o
n
 T
im

e
 (
h
o
u
r)

Number of measurements (million)

Mongo‐AS‐S
Mongo‐AS
DB‐O‐S
DB‐O
Mongo‐S
Mongo
DB‐C‐S
DB‐C

14

54

28

10

25

122 124

26

0

20

40

60

80

100

120

140

Mongo Mongo‐AS DB‐O DB‐C

Ex
ec
u
ti
o
n
 T
im

e
 (
h
o
u
r)

Data Stores

Indexed‐After

Indexed‐Before

0.22

0.25

0.12

0.07

0.00

0.08

0.16

0.24

0.32

Mongo‐AS Mongo DB‐O DB‐C

Ex
ec
u
ti
o
n
 T
im

e
 (
s)

Data Stores

Figure 6. The performance of range query (Q2)

Figure 7 compares Q2 for DB-C and both sharded and non-
sharded MongoDB while varying the selectivities from 0.002% up
to 5.0%. The figure shows that DB-C switches from scanning the
secondary index to full table scan when around 0.25% of the rows
are selected. This makes DB-C faster than all configurations of
MongoDB for non-selective queries (selecting more than 2.0%),
because MongoDB does not switch the execution strategy and
continues with an index scan for growing selectivities. Mongo-AS
is clearly slowest for non-selective queries, while the query
optimizer of DB-C makes it the system with the most stable
performance. In the Figure, no performance differences can be
observed for selectivities less than 0.2% and therefore Table 2
details the performance differences for selectivities up to 0.2%.

Table 2. The performance of very selective Q2 for DB-C and
MongoDB

Selectivity Records Performance of Q2 (second)

% n Mongo-AS Mongo DB-C

0.002 237,360 0.56 1.6 1.8

0.02 2,256,240 5.89 2.7 3.3

0.20 22,261,280 35.5 12.7 17.4

Table 2 shows that for very selective queries (selectivity from
0.002% to 0.2%) Mongo-AS is the fastest, since a relatively small
number of records have to be transferred, which results in less
network communication overhead. Sharded MongoDB is fastest
only for highly selective queries.

2.7.4 Performance of Aggregate Query (Q3)
Figure 8 shows the performance of the aggregate query Q3 where
a single value is returned. We use the same selectivities of the
condition inside the aggregate as for Q2. Here it turns out that
Mongo-AS performs much better compared to the corresponding
performance of Q2 in Figure 7, since each shard performs a
parallel scan and then sends a single result object to the
coordinator.

 The performance of DB-O for Q3 is much better than for Q2 in
Figure 6, but it still scales worse than the other systems. For

Figure 7. The performance of Q2 for DB-C and MongoDB

aggregates over non-selective conditions (5%), Mongo-AS scales
best, being 1.4 times faster than non-sharded MongoDB and DB-
C, respectively. However, five shards provides only 40% speed-
up in our settings.

Figure 8. The performance of the aggregate query (Q3)

Figure 9 further highlights the performance of Q3 with highly
selective conditions, where DB-C is fastest for selective queries,
while the performance of Mongo-AS is slightly slower due to
overhead of coordination among shards.

Figure 9. The performance of Q3 for smaller selectivities

The overall results of the performance evaluation are summarized
in Table 3, where MongoDB is shown to have comparable
performance as the state-of-the-art relational database from a
major commercial vendor (DB-C).

0

1,000

2,000

3,000

4,000

0.0 0.2 0.4 0.6 0.8 1.0

Ex
ec
u
ti
o
n
 T
im

e
 (
s)

Selectivity (%)

Mongo
Mongo‐AS
DB‐O
DB‐C

0

50

100

150

200

250

0 1 2 3 4 5

Ex
ec
u
ti
o
n
 T
im

e
 (
s)

Selectivity (%)

Mongo‐AS
Mongo
DB‐C

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5

Ex
ec
u
ti
o
n
 T
im

e
 (
s)

Selectivity (%)

Mongo‐AS
Mongo
DB‐C
DB‐O

0

0.2

0.4

0.6

0.8

1

0.00 0.05 0.10 0.15 0.20 0.25

Ex
ec
u
ti
o
n
 T
im

e
 (
s)

Selectivity (%)

Mongo‐AS
Mongo
DB‐C
DB‐O

Task\ System DB-O DB-C Mongo Mongo-AS

Bulk Loading (Figure 3) very bad good very good bad

Key lookup, Q1 (Figure 5) good very good good good

Range query, Q2
Selective (Table. 2, Fig. 7) very bad good good good

Non-selective (Figure 6, 7) very bad very good good bad

Aggregate query, Q3
Selective (Figure 9) good good good good

Non-selective (Figure 8) bad bad good very good

Table 3. Qualitative summary of the experimental results

3. RELATED WORK
Typical TPC benchmarks [24] such as TPC-C, TPC-DS, and
TPC-H are targeted towards either OLTP or decision support, not
for large scale log analysis, which often requires scalable
persisting and querying over persisted logs, the focus of this
paper.

Floratou et al. [10] compared the performance of SQL Server and
MongoDB for interactive data-as-a-service queries based on the
YCSB benchmark [6], showing that SQL Server has significant
performance advantages over MongoDB. However, the work
neither explored the options of relaxing consistency overheads nor
investigated indexing and query optimization issues for scalable
execution of persisted data logs. Dede et al. [8] evaluated the
performance of MongoDB and Hadoop for scientific data
analysis, but not for scalable log analysis and there was no
comparison with relational DBMSs.

Barahmand et al. [4] compared the performance of an SQL
solution with MongoDB for interactive social networking actions
and sessions, which does not fit into the context of persisting and
analyzing logs.

Wei et al. [26] utilized MongoDB for storing and analyzing
network logs. Although they provide queries that analyze network
logs, they did not compare the performance with other systems.

Finally, the performance of online incremental bulk loading with a
main-memory DBMS was investigated in [17] [18]. By contrast,
our focus is on comparing disk-based NoSQL and relational
databases for persisting large-scale data logs.

To our best knowledge we did not find any performance
evaluation that compares MongoDB with relational DBMS in the
context of persisting and analyzing of numerical logs.

4. CONCLUSIONS AND DISCUSSIONS
The conclusions from the evaluation can be divided into three
different factors influencing performance: (i) relaxing
consistency, (ii) indexing and query processing, and (iii) sharding.

First, we discovered that relaxing the consistency does not provide
any substantial performance enhancement in querying large scale
data logs for neither SQL nor NoSQL databases. Although it is
shown in [12] that removing transactional overhead can improve
performance up to 20 times for updates, we discovered that both
commercial and open source relational databases provide less than
25% performance improvement for bulk-loading with relaxed
transaction consistency. In contrast to the aggressive modification
of the database kernel in [12], a common user will not be able to
modify the DBMS kernel but has to rely on the options provided
by the system. For MongoDB, weak consistency configuration of
bulk loading provides around 26% improvement.

For bulk loading in general, both MongoDB and DB-C scale
substantially better than DB-O. For the largest data size, bulk
loading with non-distributed MongoDB and DB-C are more than
five times faster than DB-O. Distributing MongoDB by auto-
sharding is about 4 times slower than non-distributed MongoDB
and DB-C.

All systems perform well for looking up records matching the key
(query Q1) by utilizing a primary key index. For the analytical
task of range comparisons between a non-key attribute and a
constant (query Q2), both MongoDB and DB-C scale
substantially better than DB-O. A more careful comparison of
DB-C and MongoDB revealed that DB-C scales better for non-
selective queries, while MongoDB is faster for selective ones. The
reason is that, unlike MongoDB and DB-O, DB-C switches from a

non-clustered index scan to a full table scan when the selectivity
is sufficiently low, while MongoDB (and DB-O) continues to use
an index scan even for non-selective queries.

The aggregation query (query Q3) scales for all systems by
utilizing the secondary index when computing an aggregated
value. Here, sharded MongoDB scales best being around 1.4, 2.4,
and 9.5 times faster than non-sharded MongoDB, DB-C, and DB-
O, respectively. The reason is that a parallel scan without sending
lots of results among distributed shards speeds up query
execution. Therefore, we conclude that, only when an analytics
task is inherently parallel with insignificant communication/data-
transfer among parallel nodes, distributed MongoDB (or similar
NoSQL data store) is an alternative to vertical scaling to speed up
the analytics.

To conclude, non-sharded MongoDB performs significantly better
compared to DB-O and has comparable performance with DB-C,
making it suitable for large scale persisting and analyzing logs.
However, DB-C demonstrates that relational databases can have
performance advantages compared to both distributed and non-
distributed NoSQL databases by having a sophisticated query
optimizer. NoSQL databases can also be equipped with more
sophisticated query optimizers as in state-of-the-art relational
DBMSs, which will improve query performance. However, some
NoSQL databases such as MongoDB provide a flexible schema-
less paradigm which makes query optimization challenging due to
the absence of rigid schema and proper data statistics.

Finally, although we have discussed the issues of persisting and
analysis of data logs, our results can be utilized also in other
large-scale and data intensive application scenarios where bulk
loading with relaxed consistency and scalable query execution are
required.

For high performance loading and analysis of large-scale data
logs, MongoDB is shown to be a viable alternative compared to
relational databases.

5. ACKNOWLEDGMENTS
This work is supported by EU FP7 project Smart Vortex, the
Swedish Foundation for Strategic Research under contract RIT08-
0041, and eSSENCE.

6. REFERENCES
[1] Apache Software Foundation. 2015. Apache HBase. (June

2015). Retrieved June 18, 2015 from http://hbase.apache.org/

[2] Apache Software Foundation. 2015. Cassandra. (June 2015).
Retrieved June 18, 2015 from http://cassandra.apache.org/

[3] Apache Software Foundation. 2015. CouchDB. (June 2015).
Retrieved June 18, 2015 from http://couchdb.apache.org/

[4] Barahmand, S., Ghandeharizadeh, S. and Yap, J. 2013. A
comparison of two physical data designs for interactive
social networking actions. In Proceedings of the 22nd ACM
international conference on Conference on information &
knowledge management (CIKM '13). ACM, New York, NY,
USA, 949-958.
DOI=http://doi.acm.org/10.1145/2505515.2505761

[5] Cattell, R. 2011. Scalable SQL and NoSQL data stores. ACM
SIGMOD Rec. 39, 4 (May 2011), 12-27.
DOI=http://doi.acm.org/10.1145/1978915.1978919

[6] Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R. and
Sears, R. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud

computing (SoCC '10). ACM, New York, NY, USA, 143-
154. DOI=http://doi.acm.org/10.1145/1807128.1807152

[7] Danga Interactive. 2015. Memcached. (June 2015). Retrieved
June 18, 2015 from http://www.memcached.org/

[8] Dede, E., Govindaraju, M., Gunter, D., Canon, R.S. and
Ramakrishnan, L. 2013. Performance evaluation of a
MongoDB and hadoop platform for scientific data analysis.
In Proceedings of the 4th ACM workshop on Scientific cloud
computing (Science Cloud '13). ACM, New York, NY, USA,
13-20. DOI=http://doi.acm.org/10.1145/2465848.2465849

[9] Doppelhammer, J., Höppler, T., Kemper, A. and Kossmann,
D. 1997. Database performance in the real world: TPC-D and
SAP R/3. In Proceedings of the 1997 ACM SIGMOD
international conference on Management of data (SIGMOD
'97), Joan M. Peckman, Sudha Ram, and Michael Franklin
(Eds.). ACM, New York, NY, USA, 123-134.
DOI=http://doi.acm.org/10.1145/253260.253280

[10] Floratou, A., Teletia, N., DeWitt, D.J., Patel, J.M. and
Zhang, D. 2012. Can the elephants handle the NoSQL
onslaught?. Proc. VLDB Endow. 5, 12 (August 2012), 1712-
1723. DOI=http://dx.doi.org/10.14778/2367502.2367511

[11] Gray, J. 1992. Benchmark Handbook: For Database and
Transaction Processing Systems. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[12] Harizopoulos, S., Abadi, D.J., Madden, S. and Stonebraker,
M. 2008. OLTP through the looking glass, and what we
found there. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data (SIGMOD
'08). ACM, New York, NY, USA, 981-992.
DOI=http://doi.acm.org/10.1145/1376616.1376713

[13] Kuhlenkamp, J., Klems, M. and Röss, O. 2014.
Benchmarking scalability and elasticity of distributed
database systems. Proc. VLDB Endow. 7, 12 (August 2014),
1219-1230.
DOI=http://dx.doi.org/10.14778/2732977.2732995

[14] MongoDB Inc. 2015. BSON Types. (June 2015). Retrieved
June 18, 2015 from
http://docs.mongodb.org/manual/reference/bson-types/

[15] MongoDB Inc. 2015. MongoDB. (June 2015). Retrieved
June 18, 2015 from http://www.mongodb.org/

[16] MongoDB Inc. 2015. The MongoDB 2.4 Manual. (June
2015). Retrieved June 18, 2015 from
http://docs.mongodb.org/v2.4/

[17] Neumann, T. and Weikum, G. 2010. x-RDF-3X: fast
querying, high update rates, and consistency for RDF
databases. Proc. VLDB Endow. 3, 1-2 (September 2010),
256-263.
DOI=http://dx.doi.org/10.14778/1920841.1920877

[18] Neumann, T. and Weikum, G. 2010. The RDF-3X engine for
scalable management of RDF data. The VLDB Journal 19, 1
(February 2010), 91-113.
DOI=http://dx.doi.org/10.1007/s00778-009-0165-y

[19] Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., Dewitt, D.J.,
Madden, S. and Stonebraker, M. 2009. A comparison of
approaches to large-scale data analysis. In Proceedings of the
2009 ACM SIGMOD International Conference on
Management of data (SIGMOD '09), Carsten Binnig and
Benoit Dageville (Eds.). ACM, New York, NY, USA, 165-
178. DOI=http://doi.acm.org/10.1145/1559845.1559865

[20] Salvatore Sanfilippo. 2015. Redis. (June 2015). Retrieved
June 18, 2015 from http://redis.io/

[21] Smart Vortex. 2015. Retrieved June 18, 2015 from
http://www.smartvortex.eu/

[22] solid IT. DB-Engines Ranking. (June 2015). Retrieved June
18, 2015 from http://db-engines.com/en/ranking

[23] Stonebraker, M. 2010. SQL databases v. NoSQL databases.
Commun. ACM 53, 4 (April 2010), 10-11.
DOI=http://doi.acm.org/10.1145/1721654.1721659

[24] Transaction Processing Performance Council (TPC). 2015.
Active TPC Benchmarks. (June 2015). Retrieved June 18,
2015 from http://www.tpc.org/information/benchmarks.asp

[25] Truong, T. and Risch, T. 2014. Scalable Numerical Queries
by Algebraic Inequality Transformations. In Proceedings of
the 19th International Conference on Database Systems for
Advanced Applications (DASFAA '14) (Bali, Indonesia,
2014). Springer International Publishing, 95–109. DOI=
http://dx.doi.org/10.1007/978-3-319-05810-8_7

[26] Wei, J., Zhao, Y., Jiang, K., Xie, R. and Jin, Y. Analysis
farm: A cloud-based scalable aggregation and query platform
for network log analysis. In Proceedings of the 2011
International Conference on Cloud and Service Computing
(CSC '11). IEEE Computer Society, Washington, DC, USA,
354-359. DOI=http://dx.doi.org/10.1109/CSC.2011.6138547

[27] Zeitler, E. and Risch, T. 2011. Massive Scale-out of
Expensive Continuous Queries. Proc. VLDB Endow. 4, 11
(2011), 1181–1188.

[28] Zeitler, E. and Risch, T. 2010. Scalable splitting of massive
data streams. In Proceedings of the 15th International
Conference on Database Systems for Advanced Applications,
(DASFAA '10) (Tsukuba, Japan, Apr. 2010). Springer
International Publishing, 184–198.
DOI=http://dx.doi.org/10.1007/978-3-642-12098-5_15

[29] Zhu, M., Stefanova, S., Truong, T. and Risch, T. 2014.
Scalable Numerical SPARQL Queries over Relational
Databases. In Proceedings of 4th international workshop on
linked web data management (Athens, Greece, 2014).

