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ABSTRACT 
A potential problem for persisting large volume of data logs with 
a conventional relational database is that loading massive logs 
produced at high rates is not fast enough due to the strong 
consistency model and high cost of indexing. As a possible 
alternative, a modern NoSQL data store, which sacrifices 
transactional consistency to achieve higher performance and 
scalability, can be utilized. In this paper, we investigate to what 
degree a state-of-the-art NoSQL database can achieve high 
performance persisting and fundamental analyses of large-scale 
data logs from real world applications. For the evaluation, a state-
of-the-art NoSQL database, MongoDB, is compared with a 
relational DBMS from a major commercial vendor and with a 
popular open source relational DBMS. MongoDB is chosen as it 
provides both primary and secondary indexing compared to other 
popular NoSQL systems. These indexing techniques are essential 
for scalable processing of queries over large scale data logs. To 
explore the impact of parallelism on query execution, sharding 
was investigated for MongoDB. Our results revealed that relaxing 
the consistency did not provide substantial performance 
enhancement in persisting large-scale data logs for any of the 
systems. However, for high-performance loading and analysis of 
data logs, MongoDB is shown to be a viable alternative compared 
to relational databases for queries where the choice of an optimal 
execution plan is not critical.  

Categories and Subject Descriptors 
H.2.m [Database Management]: Miscellaneous 

General Terms 
Measurement, Performance, Experimentation 

Keywords 
NoSQL data stores, large-scale log analysis, log archival, bulk 
loading, sharding 
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1. INTRODUCTION 
Relational databases can be used for large-scale analysis of data 
logs from industrial applications such as sensor readings [21] [25] 
[29] and stream logs [27] [28]. Persisting large volume of data 
logs produced at high rate requires high performance bulk loading 
of data into a database before analysis. However, the loading time 
for relational databases may be time consuming due to full 
transactional consistency [9] and high cost of indexing [23]. In 
contrast to relational DBMSs, NoSQL databases are designed to 
perform simple tasks with high scalability [5]. For providing high 
performance updates, NoSQL databases generally sacrifice strong 
consistency by providing so called eventual consistency compared 
with the ACID transactions of regular DBMSs. NoSQL databases 
can be utilized for typical historical analysis of log data or 
numerical log analytics where transactional consistency 
conforming ACID compliance is not required.  

It has been argued in [23] that relational DBMSs can achieve the 
same performance as NoSQL database systems by specifying 
relaxed consistency to eliminate overhead. In [12] it is shown that 
this overhead is almost equally divided between four components 
for a typical relational DBMS:  logging, locking, latching, and 
buffer management. However, we did not find any experimental 
benchmark that investigates how a weaker consistency model for 
relational DBMSs and NoSQL databases can be utilized to 
enhance performance for persisting and analysis of data logs. 
Although [10] compares the performance of SQL Server and 
MongoDB [15] for interactive data-as-a-service based on the 
YCSB benchmark [6], it does not investigate the performance of 
the systems for scalable log analysis. A more recent investigation 
[13] did not consider the state-of-the-art NoSQL database, 
MongoDB for performance evaluation. None of the papers 
consider the option for relaxing the consistency for both types of 
systems. 

Unlike NoSQL data stores, relational databases provide advanced 
query languages and optimization technique for scalable analytics. 
Paper [19] demonstrates that indexing is a major factor for 
providing scalable performance, making relational databases 
having a performance advantage compared to a NoSQL data store 
without proper indexing to speed up analytical tasks. Like 
relational databases, MongoDB provides a query language as well 
as primary and secondary indexing, which should be well suited 
for analyzing persisted logs. Unlike relational databases and 
MongoDB, most other popular NoSQL data stores [22], 
Cassandra [2], Redis [20], HBase [1], Memcached [7], and 
CouchDB [3], do not provide full secondary indexing and query 
processing to transparently utilize indexes, which is essential for 
scalable performance of inequality queries. CouchDB has 
secondary indexes, but queries have to be written as map-reduce 
views [5], not transparently utilizing indexes. 



In this paper we compare MongoDB with state-of-the-art 
relational DBMSs to investigate at what degree a state-of-the-art 
NoSQL database is suitable for persisting and analyzing large 
scale data logs compared with relational databases. The 
performance of MongoDB is compared with a commercial DBMS 
from a major relational vendor, called DB-C, and a popular open 
source relational DBMS, called DB-O. 

The performance evaluation covers the bulk loading capacities of 
the systems w.r.t. indexing and relaxed consistency. We define 
three fundamental queries for accessing and analyzing persisted 
logs to investigate the efficiency of query processing and index 
utilization of the DBMSs. The properties of these queries are key 
selection, range search, and aggregation, which are fundamental 
to the analysis of persisted logs [25] [29]. We utilize data logs 
from a real world application [21] consisting of more than 1 
billion sensor readings from industrial equipment. 

Furthermore, the impact of MongoDB’s auto-sharding (automatic 
partitioning) is investigated for persisted log analysis in order to 
explore whether its data partitioning can provide performance 
advantages for bulk loading and query execution.  

In summary, the main contribution of the paper is a performance 
evaluation of persisting and analyzing data logs under different 
consistency configurations. The paper provides a comparison of 
the suitability of the two kinds of database systems for large-scale 
log analysis and reveals the trade-offs between bulk-loading and 
different levels of consistency. We discuss the cause of the 
performance differences influenced by how the systems choose 
different indexing strategies under relaxed consistency. The 
investigations provide insights in the issues that future systems 
should consider when utilizing weaker consistency of back-end 
storage for persisting and analyzing of data logs. 

2. PERFORMANCE EVALUATIONS 
In this section, we present bulk loading strategies and fundamental 
queries for persisted data logs. We first measure the performance 
in terms of execution time for different loading strategies by 
relaxing consistency overhead. Then we compare the performance 
of fundamental queries. For MongoDB, we also investigate the 
impact of auto-sharding on loading and querying. Based on 
inspecting the query execution plans, we discuss the causes of the 
performance differences. 

2.1 Application Scenario 
The Smart Vortex EU project [21] serves as a real world 
application context, which involves analyzing data logs from 
industrial equipment. In the scenario, a factory operates some 
machines and each machine has several sensors that measure 
various physical properties like pressure, power consumption, 
temperature, etc. For each machine, the sensors generate logs of 
measurements, where each log record has timestamp ts, machine 

identifier m, sensor identifier s, and a measured value mv. Each 
measured value mv on machine m is associated with a valid time 
interval [bt, et) indicating the begin time and end time for mv, 
computed from the log time stamp ts. The table measures (m, s, bt, 
et, mv) will contain a large volume of log data from many sensors 
on different machines. There is a composite key on (m, s, bt). 

In the performance measurements, the logs are bulk loaded into 
MongoDB and the two relational DBMSs. Since the incoming 
sensor streams can be very voluminous, it is important that the 
measurements are bulk-loaded fast. After data logs have been 
loaded into the measures table, the user can perform queries to 
detect anomalies of sensor readings by analyzing values of mv. 
The queries are used in the performance evaluation in order to 
understand the performance differences for both kinds of systems. 

2.2 Data Set 
The evaluation is made based on measurements from a real-world 
application in the Smart Vortex project [21]. A typical time series 
formed by a small piece of a larger numerical log from the 
application is plotted in Figure 1. In the performance evaluations 
more than 1 billion log measurements, which occupies 60GB of 
raw data from industrial sensors is used. It is important that data 
loading can keep up with increasing log volume. To investigate 
DBMS performance with growing data volume, increasing 
sections of the data logs were loaded into the databases. 

 
Figure 1. Pressure measurements of sensor for 1 hour 

2.3 Consistency Configurations for Bulk 
Loading 
In relational DBMSs, typical transactional overhead such as 
logging can be turned off and isolation level be relaxed to boost 
the performance. To investigate the impact of relaxed consistency 
levels, we configure the systems as in Table 1, which also defines 
the acronyms for the experiments. The lowest isolation level for 
the relational databases (dirty reads) corresponds to 
unacknowledged write concern in MongoDB, while serializable 
transactions correspond to acknowledged write concern [16]. For 
MongoDB, we also investigate the performance impact of auto-
sharding, which can be combined with both consistency levels per 
shard. MongoDB does not have distributed transactions, therefore, 
synchronized updates of several shards is not supported.  
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Acronym Name and Consistency Level Properties 

DB-C-S DB-C & strong consistency Logging, serializable  isolation level 

DB-C  DB-C,  & weak  consistency Dirty reads, no logging 

DB-O-S DB-O & strong consistency Logging, serializable isolation level 

DB-O DB-O & weak consistency Dirty reads , no logging  

Mongo-S MongoDB & acknowledged write concern Logging, serializable isolation level 

Mongo MongoDB &  unacknowledged write concern Dirty reads, no logging 

Mongo-AS-S MongoDB  auto-sharding & acknowledged write concern Logging, no distributed transactions, serializable isolation 

Mongo-AS  MongoDB auto-sharding & unacknowledged write concern  No logging, no distributed transactions, dirty reads 

Table 1. Consistency configurations for the experiments 



We evaluated several alternatives of bulk loading by utilizing the 
different levels of consistency configurations. First, the impact of 
relaxed consistency is investigated and then the best consistency 
option for each system is used in all other experiments.  

2.4 Fundamental Queries 
The queries used in the performance evaluation are very 
fundamental to analytics over numerical logs and provide basic 
building blocks of analytics of persisted logs [21] [25] [29]. We 
made the experimental queries simplistic in nature, which is one 
of the four major criteria of domain specific benchmarks [11], to 
demonstrate the credibility of the performance trade-offs for the 
systems. The queries essentially explore the performance and 
scalability of primary and secondary index utilization for growing 
data logs. The first query, key look-up query (Q1), gets a sensor 
reading for a given timestamp.  The second query, range query 
(Q2) detects deviations of sensor readings from expected values. 
The third query, aggregation query (Q3), performs aggregation of 
measurement deviations from persisted logs. 

2.4.1 Key Lookup Query, Q1 
The task involves finding measured values mv for a given 
machine m, sensor s, and begin time, bt. The query expressed in 
SQL and MongoDB’s query language [16], respectively, is 
specified as follows: 

-- SQL 
SELECT m, s, mv FROM measures                                                           
 WHERE m =? AND s =? AND bt =?                       
 
//MongoDB 
db.measures.find( 
 { m:?, s:?, bt:? },{ m: 1, s: 1 mv: 1}) 

In order to provide scalable performance of the query, we need an 
index on the composite key. In all systems we index by defining a 
composite B-tree primary key index on (m, s, bt). This query 
demonstrates the performance of primary key index utilization of 
the three systems.   

2.4.2 Range Query, Q2 
This query involves finding unexpected sensor readings by 
observing measured values mv that deviate from an expected 
value. Here, the sensor readings with the measured value mv 
higher than the unexpected value are retrieved.  Such a query can 
be expressed in SQL and MongoDB as follows: 

-- SQL 
SELECT * FROM measures  WHERE mv > ?                  
 
//MongoDB 
db.measures.find({ mv: {$gt: ?}})  

In order to improve the performance of this query, we need a 
secondary ordered index on value, mv. Query Q2 shows the 
performance of secondary B-tree indexing and how well the query 
optimizer can utilize the index. Since the efficiency of a 
secondary index is highly dependent on the selectivity, the query 
was executed with different query selectivities by providing the 
appropriate ranges of mv. The correspondence between choice of 
mv and query selectivities for Q2 for the data set is plotted in 
Figure 2. 

Based on the data illustrated by Figure 2, we execute Q2 for value 
of mv resulting in the selectivities 0.002%,  0.02%,  0.2%, 0.25 %,           

 
Figure 2. Measured value to selectivity mapping 

and 1%, resulting around 0.02, .2, 2, 2.5,5 and 10 millions of log 
records. 

Query Q2 is an example of a very fundamental analytics query 
that involves inequality comparisons. Complex analytics queries 
usually involve such inequalities and can often be rewritten into 
inequality queries like Q2, as automated in [25].   

2.4.3 Aggregate Query, Q3 
This query counts the total number of sensor readings having a 
measurement anomaly, using the same inequality as in Q2. Such a 
query is expressed in SQL and MongoDB as follows: 

-- SQL 
SELECT COUNT(*) FROM measures WHERE mv > ? 
 
//MongoDB 
db.measures.count( { mv: {$gt: ?}}) 

Similar to Q2, this query was executed for different selectivities 
utilizing a secondary index on mv. In difference to Q2, which 
returns a large volume of abnormal sensor readings, Q3 returns a 
single aggregated value. The query has insignificant network 
communication overhead compared to Q2.  

2.5 Indexing Strategy 
To speed up lookups of sensor readings for a given timestamp, we 
define a composite index on machine id m, sensor id s and begin 
time bt. For query Q2 and Q3, we define an extra secondary index 
on mv in addition to the composite key index. The data is then 
bulk loaded and the three fundamental queries were executed.   

2.6 Benchmark Configuration 
The non-sharding experiments are performed on a computer 
running Intel® CoreTM i7, 3.0GHz CPU with Windows Server 
2013 operating system. The computer has 16GB of physical 
memory. 

2.6.1 MongoDB Configuration 
MongoDB version 2.4.8 is used for the performance evaluation. 
Relational tables are represented as collections of binary-JSON 
(BSON) objects [14] in MongoDB. Since the attribute names are 
stored inside each BSON object, short attribute names are used to 
make the database compact.  

The sharding experiments were run on a cluster of five nodes 
connected by a one Gbit Ethernet switch. Each node had the same 
hardware configuration as the non-sharding experimental setup. 
We ran one mongod process managing each shard, one config_db 
process managing meta-data, and one mongos process for the 
MongoDB coordinator. The client, mongos, and config_db were 
run on the same node separate from the shards mongod. 
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2.6.2 Relational DBMS Configurations 
The query result cache was turned off for both relational DBMSs. 
Also MongoDB does not utilize any query result cache when 
executing queries. 

2.6.3 Benchmark Execution 
For each system we measured the bulk-load time for 167, 333, 
667, and 1000 million sensor readings consisting of 
approximately 10GB, 20GB, 40GB, and 60GB of data, 
respectively. The raw data files were stored in CSV format where 
each individual row represents a sensor reading for machine m, 
sensor s, begin time bt, end time et, and the measured value mv.   

The bulk loading into the relational DBMSs and MongoDB were 
performed utilizing their batch commands for bulk loading CSV 
files. 

The scalabilities of all fundamental queries were evaluated with 
the largest data set of 1 billion sensor records (60 GB) for all the 
systems. 

To enable incremental bulk loading of new data into existing 
tables, the indexes should always be predefined in all 
experiments, rather than building them after the bulk loading. 
Although one might consider the option of bulk loading first and 
then building the index, this will contradict the notion in our 
application scenario, where bulk loading and analyzing streaming 
logs is a continuous process that demands incremental loading of 
the data into pre-existing tables. Nevertheless, we also made 
performance evaluations of building the indexes after bulk 
loading, which is faster compared to incremental bulk loading 
(Figure 4).  

To provide stable results for bulk loading, we made all the 
experiment starting with empty databases. For each query, we 
measured the average time of three executions. The standard 
deviations of the measurements were less than 1%. 

2.7 Experimental Results 
For investigating the performance of bulk loading and queries for 
different consistency configurations, the following experiments 
were conducted. 

2.7.1 Performance of Bulk Loading 
In Figure 3, we observe that all systems offer scalable loading 
performance, except DB-O (DB-O and DB-O-S) and sharded 
MongoDB (Mongo-AS and Mongo-AS-S). DB-O scales 
significantly worse than DB-C and MongoDB for bulk-loading, 
whereas Mongo-AS is faster than DB-O. Both Mongo-AS and 
Mongo-AS-S are much slower compare to DB-C and non-sharded 

 
Figure 3. The performance of bulk loading with different 

consistency configurations 

MongoDB. We speculate that this performance degradation is due 
to MongoDB’s internal re-balancing of data among the shards 
during bulk-loading. 

For bulk loading of large databases, the improvement of weak 
consistency is around 24.8% for DB-C (DB-C vs. DB-C-S), while 
it is around 26% for MongoDB (Mongo vs. Mongo-S). MongoDB 
with weak consistency performs best compared to other systems. 
In summary, relaxing transactional overhead did not provide 
substantial performance improvement for any system.  From now 
on we always use the faster weak consistency levels in the 
experiments. 

Figure 4 illustrates the performance degradation for bulk loading 
one billion records incrementally with predefined indexes 
(Indexed-Before) compared with building the indexes after all data 
are loaded (Indexed-After). For Indexed-After, we show the total 
time of bulk loading and building the indexes. Here for the 
Indexed-After experiment, DB-C performs best. Although all 
systems demonstrate better performance with Indexed-After, this 
option prevents incremental bulk loading and is not suitable for 
incrementally persisting logs.  

 
Figure 4. The performance of building indexes before and 

after bulk loading 

2.7.2 Performance of Key Lookup Query (Q1) 
Figure 5 shows the performance of key lookup query Q1 to 
retrieve a particular sensor record. As expected, indexing the key 
provides scalability of Q1 in all systems, with DB-C being fastest. 

 
Figure 5. Performance of key lookup query (Q1) 

2.7.3 Performance of Range Query (Q2) 
Figure 6 shows the performance of query Q2 with both primary 
and secondary indexes defined. The selectivities are varied from 
0.002% up to 1.0% for 1 billion sensor records. Clearly there is a 
problem with secondary indexes for inequality queries in DB-O. 
Both sharded and non-sharded MongoDB and DB-C scale 
substantially better and is therefore investigated further in Figure 
7. 
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Figure 6. The performance of range query (Q2) 

Figure 7 compares Q2 for DB-C and both sharded and non-
sharded MongoDB while varying the selectivities from 0.002% up 
to 5.0%. The figure shows that DB-C switches from scanning the 
secondary index to full table scan when around 0.25% of the rows 
are selected. This makes DB-C faster than all configurations of 
MongoDB for non-selective queries (selecting more than 2.0%), 
because MongoDB does not switch the execution strategy and 
continues with an index scan for growing selectivities. Mongo-AS 
is clearly slowest for non-selective queries, while the query 
optimizer of DB-C makes it the system with the most stable 
performance. In the Figure, no performance differences can be 
observed for selectivities less than 0.2% and therefore Table 2 
details the performance differences for selectivities up to 0.2%. 

Table 2. The performance of very selective Q2 for DB-C and 
MongoDB 

Selectivity Records Performance of Q2 (second) 

% n Mongo-AS Mongo  DB-C 

0.002 237,360 0.56 1.6 1.8 

0.02 2,256,240 5.89 2.7 3.3 

0.20 22,261,280 35.5 12.7 17.4 

Table 2 shows that for very selective queries (selectivity from 
0.002% to 0.2%)  Mongo-AS is the fastest, since a relatively small 
number of records have to be transferred, which results in less 
network communication overhead. Sharded MongoDB is fastest 
only for highly selective queries.  

2.7.4 Performance of Aggregate Query (Q3) 
Figure 8 shows the performance of the aggregate query Q3 where 
a single value is returned. We use the same selectivities of the 
condition inside the aggregate as for Q2. Here it turns out that 
Mongo-AS performs much better compared to the corresponding 
performance of Q2 in Figure 7, since each shard performs a 
parallel scan and then sends a single result object to the 
coordinator. 

 The performance of DB-O for Q3 is much better than for Q2 in 
Figure 6,  but it still scales  worse   than  the  other   systems.   For  

 
Figure 7. The performance of Q2 for DB-C and MongoDB 

aggregates over non-selective conditions (5%), Mongo-AS scales 
best, being 1.4 times faster than non-sharded MongoDB and DB-
C, respectively. However, five shards provides only 40% speed-
up in our settings. 

 

Figure 8. The performance of the aggregate query (Q3) 

Figure 9 further highlights the performance of Q3 with highly 
selective conditions, where DB-C is fastest for selective queries, 
while the performance of Mongo-AS is slightly slower due to 
overhead of coordination among shards. 

 
Figure 9. The performance of Q3 for smaller selectivities 

The overall results of the performance evaluation are summarized 
in Table 3, where MongoDB is shown to have comparable 
performance as the state-of-the-art relational database from a 
major commercial vendor (DB-C). 
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Task\ System DB-O DB-C Mongo Mongo-AS 

Bulk Loading (Figure 3) very bad good very good bad 

Key lookup, Q1 (Figure 5) good very good good good 

Range query, Q2 
Selective (Table. 2, Fig. 7) very bad good good good 

Non-selective (Figure 6, 7) very bad very good good bad 

Aggregate query, Q3 
Selective (Figure 9) good good good good 

Non-selective (Figure 8) bad bad good very good 

Table 3.  Qualitative summary of the experimental results 



3. RELATED WORK 
Typical TPC benchmarks [24] such as TPC-C, TPC-DS, and 
TPC-H are targeted towards either OLTP or decision support, not 
for large scale log analysis, which often requires scalable 
persisting and querying over persisted logs, the focus of this 
paper. 

Floratou et al. [10] compared the performance of SQL Server and 
MongoDB for interactive data-as-a-service queries based on the 
YCSB benchmark [6], showing that SQL Server has significant 
performance advantages over MongoDB. However, the work 
neither explored the options of relaxing consistency overheads nor 
investigated indexing and query optimization issues for scalable 
execution of persisted data logs. Dede et al. [8] evaluated the 
performance of MongoDB and Hadoop for scientific data 
analysis, but not for scalable log analysis and there was no 
comparison with relational DBMSs. 

Barahmand et al. [4] compared the performance of an SQL 
solution with MongoDB for interactive social networking actions 
and sessions, which does not fit into the context of persisting and 
analyzing logs.  

Wei et al. [26] utilized MongoDB for storing and analyzing 
network logs. Although they provide queries that analyze network 
logs, they did not compare the performance with other systems.  

Finally, the performance of online incremental bulk loading with a 
main-memory DBMS was investigated in [17] [18]. By contrast, 
our focus is on comparing disk-based NoSQL and relational 
databases for persisting large-scale data logs.  

To our best knowledge we did not find any performance 
evaluation that compares MongoDB with relational DBMS in the 
context of persisting and analyzing of numerical logs. 

4. CONCLUSIONS AND DISCUSSIONS  
The conclusions from the evaluation can be divided into three 
different factors influencing performance: (i) relaxing 
consistency, (ii) indexing and query processing, and (iii) sharding. 

First, we discovered that relaxing the consistency does not provide 
any substantial performance enhancement in querying large scale 
data logs for neither SQL nor NoSQL databases. Although it is 
shown in [12] that removing transactional overhead can improve 
performance up to 20 times for updates, we discovered that both 
commercial and open source relational databases provide less than 
25% performance improvement for bulk-loading with relaxed 
transaction consistency. In contrast to the aggressive modification 
of the database kernel in [12], a common user will not be able to 
modify the DBMS kernel but has to rely on the options provided 
by the system. For MongoDB, weak consistency configuration of 
bulk loading provides around 26% improvement. 

For bulk loading in general, both MongoDB and DB-C scale 
substantially better than DB-O. For the largest data size, bulk 
loading with non-distributed MongoDB and DB-C are more than 
five times faster than DB-O. Distributing MongoDB by auto-
sharding is about 4 times slower than non-distributed MongoDB 
and DB-C.  

All systems perform well for looking up records matching the key 
(query Q1) by utilizing a primary key index. For the analytical 
task of range comparisons between a non-key attribute and a 
constant (query Q2), both MongoDB and DB-C scale 
substantially better than DB-O. A more careful comparison of 
DB-C and MongoDB revealed that DB-C scales better for non-
selective queries, while MongoDB is faster for selective ones. The 
reason is that, unlike MongoDB and DB-O, DB-C switches from a 

non-clustered index scan to a full table scan when the selectivity 
is sufficiently low, while MongoDB (and DB-O) continues to use 
an index scan even for non-selective queries. 

The aggregation query (query Q3) scales for all systems by 
utilizing the secondary index when computing an aggregated 
value. Here, sharded MongoDB scales best being around 1.4, 2.4, 
and 9.5 times faster than non-sharded MongoDB, DB-C, and DB-
O, respectively. The reason is that a parallel scan without sending 
lots of results among distributed shards speeds up query 
execution. Therefore, we conclude that, only when an analytics 
task is inherently parallel with insignificant communication/data-
transfer among parallel nodes, distributed MongoDB (or similar 
NoSQL data store) is an alternative to vertical scaling to speed up 
the analytics. 

To conclude, non-sharded MongoDB performs significantly better 
compared to DB-O and has comparable performance with DB-C, 
making it suitable for large scale persisting and analyzing logs. 
However, DB-C demonstrates that relational databases can have 
performance advantages compared to both distributed and non-
distributed NoSQL databases by having a sophisticated query 
optimizer. NoSQL databases can also be equipped with more 
sophisticated query optimizers as in state-of-the-art relational 
DBMSs, which will improve query performance. However, some 
NoSQL databases such as MongoDB provide a flexible schema-
less paradigm which makes query optimization challenging due to 
the absence of rigid schema and proper data statistics.  

Finally, although we have discussed the issues of persisting and 
analysis of data logs, our results can be utilized also in other 
large-scale and data intensive application scenarios where bulk 
loading with relaxed consistency and scalable query execution are 
required. 

For high performance loading and analysis of large-scale data 
logs, MongoDB is shown to be a viable alternative compared to 
relational databases. 
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