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ABSTRACT 
Main-memory database systems (MMDBs) are viable solutions 
for many scientific applications. Scientific and engineering data 
often require special indexing methods, and there is a large 
number of domain specific main memory indexing 
implementations developed. However, adding an index structure 
into a database system can be challenging. Mexima (Main-
memory External Index Manager) provides an MMDB where new 
main-memory index structures can be plugged-in without 
modifying the index implementations. This has allowed to plug-
into Mexima complex and highly optimized index structures 
implemented in C/C++ without code changes. To utilize new user-
defined indexes in queries transparently, Mexima automatically 
transforms query fragments into index operations based on index 
property tables containing index meta-data. For scalable 
processing of complex numerical query expressions, Mexima 
includes an algebraic query transformation mechanism that 
reasons on numerical expressions to expose potential utilization of 
indexes. The index property tables furthermore enable validating 
the correctness of an index implementation by executing 
automatically generated test queries based on index meta-data. 
Experiments show that the performance penalty of using an index 
plugged into Mexima is low compared to using the corresponding 
stand-alone C/C++ implementation. Substantial performance 
gains are shown by the index exposing rewrite mechanisms.  
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1. INTRODUCTION 
Indexing is a key factor for scalable database query processing. 
Most DBMSs support one or several indexing structures, such as 
B-trees and hashing. It is well recognized that many scientific 
applications involving, e.g., data mining, temporal queries, and 
spatial analyzes, require customized indexing to improve 
performance, which motivates the need for extensible indexing 
frameworks [16][26][1]. These frameworks allow implementing 
new indexing algorithms by strictly following framework specific 
coding conventions and primitives, which requires knowledge 
about DBMS internals. To include a new domain indexing 

structure into a DBMS can also be challenging because of third 
party ownership, having only binary code available, or simply 
being very challenging to re-engineer.  

There are many domain-indexing algorithms developed for main-
memory, for example, T-Trees [31], Cache Sensitive B+-
Trees[34], Fast Architecture Sensitive Trees [32], and Adaptive 
Radix Trees [33]. The issue addressed in this paper is how to 
include a new main-memory domain indexing structure into a 
DBMS with minimal effort. The generalized extensible indexing 
framework Mexima (Main-memory eXternal Index Manager) 
enables plugging-in main-memory index implementations in an 
MMDB without changing their implementations. 

When using Mexima the index extension developer needs not 
have knowledge about the DBMS internals, since there is a clean 
separation between the database kernel and a plugged-in domain 
index implementation. Only a simple interface that bridges 
Mexima with the untouched index implementation needs to be 
developed. 

Another important issue with domain indexing is how to extend 
the query processor so that the plugged-in index algorithms are 
utilized in a scalable and transparent way in queries. To utilize a 
new index without re-formulating queries, Mexima supports 
automatic query transformations based on user-provided index 
property tables populated by the index extension developer to 
specify meta-data about the index.  

Basic access operators (BAOs) of an index are operators available 
for all kinds of indexes, i.e. methods for creating, dropping, 
updating, accessing, and mapping over indexed elements. In 
addition, each kind of index usually has special search functions 
(SSFs) to utilize index specific properties for efficient search, e.g., 
interval search on B-trees, and K-nearest neighbor and proximity 
search on R-trees and X-trees. To utilize SSFs transparently in 
queries the system must rewrite query conditions into calls to 
SSFs, for which Mexima allows the index extension developer to 
declare SSF translation rules that specify the rewrites.  

For example, spatial proximity search can be expressed in queries 
using an index sensitive function (ISF), such as distance(). The 
following query compares indexed color histograms with a given 
one. Here, ? denotes query parameter: 
SELECT name FROM Images i 
WHERE distance(i.colorHistogram, ?) <= 0.11; 

If there is a spatial index on i.colorHistogram, Mexima translates 
the query into an SSF call, rather than scanning all images to 
apply the ISF distance().  

If an indexed attribute is hidden inside expressions, the query 
processor cannot directly apply the SSF translation rules and fails 
to utilize the index. For example, in the following similarity query 
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the index on i.colorHistogram is hidden inside a numerical 
expression, which prohibits a direct translation into an SSF call: 
SELECT name FROM Images i 
WHERE  1/ (distance(i.colorHistogram ,  ? ) + 1 >= ?; 

To expose indexes hidden inside numerical expressions Mexima 
transparently reformulates queries to call SSFs in order to utilize 
indexes in numerical query expressions. 

An important aspect when plugging-in a new index 
implementation is to test that the index functionality is correct. 
Mexima has built-in automatic tests procedures for both BAOs 
and SSFs. Mexima utilizes index meta-data stored in the index 
property tables to generate test queries. This is a form of model-
based testing [19] where a model of index properties stored in 
Mexima is used for automatically generating and executing test 
queries. For this, the index extension developer specifies as meta-
data index-specific data generating queries expressed in terms of 
an extensible library of built-in data generating functions.  

In summary, our contributions are: 

1. The extensible indexing system, Mexima, allows inclusion of 
complex main-memory domain-specific index 
implementations in an MMDB without code changes. In 
addition, Mexima makes the plugged-in main-memory index 
data structures persistent. 

2. In order to transparently utilize a new index in queries, the 
SSF translator rewrites query fragments over indexed 
attributes into SSF calls. The rewrites are driven by user 
populated index property tables containing SSF translation 
rules that describe the operations supported by the index. 

3. Complex queries involving numerical expression over 
indexed attributes are automatically reformulated so that the 
SSF translator can rewrite them. 

4. To validate correct functionality of a domain index, Mexima 
generates automatic test procedures driven by meta-data 
stored in the index property tables.  

5. The experimental evaluation investigates the overhead of 
using main-memory index extensions in queries via Mexima 
compared to directly executing hard-coded C/C++ 
implementations1. Furthermore, the substantial impact of the 
query rewrites is investigated. 

The following main-memory index structures have been plugged-
into Mexima: Main memory B-trees [30], Linear-Hashing [30], 
Judy-Tries [2], X-trees [30], and R*-trees [7]. 
The paper is organized as follows. Section 2 discusses related 
work. Section 3 defines some terminology. Section 4 presents the 
architecture of Mexima in details. Section 5 presents queries used 
to   illustrate   Mexima’s   query   processor in Section 6. Section 7 
discusses Mexima’s model-based test generators for both BAOs 
and SSFs. Section 8 shows our experimental results and 
evaluations. Finally, Section 9 concludes and outlines future 
work. 

2. RELATED WORK 
Several index structures beyond B-trees and hash tables have been 
developed for domain-specific data, for example: R-trees [14], 
Quad-trees [10], KD-trees [23], and Tries [11]. Very few of them 
were implemented in DBMSs, even though the necessity of 
                                                                 
1 Even though MEXIMA supports Java as well, here we assume 

C/C++ as implementation languages. 

including new and domain-specific index structures as database 
indexes has been observed [1][16][26]. Some extensible indexing 
frameworks have been proposed for both commercial DBMSs and 
database research prototypes e.g, Oracle [27], Gist [16], and SP 
Gist [1]. Extensible indexing can be divided into three stages, as 
illustrated by Figure 1 

 
Figure 1 History of extensible indexing frameworks 

Stage 1: In DBMSs without support for extensible indexing all 
index structures have to be implemented and integrated with the 
DBMS kernel. This requires writing access method (AM) code 
and tightly integrating it with other components in the kernel, 
such as the storage manager, the query optimizer, and the query 
executor.  

Stage 2: GiST (Generalized Search Trees) [16] is a template index 
structure for disk-based search trees, i.e., B-trees and R-tree-like 
indexes. GiST reduces the implementation effort by providing 
implementation code for commonly invariant properties of search 
trees and leaving other characteristics to be specified as user-
defined index extensions. GiST itself is part of the DBMS kernel. 
The index extension developer writes extension code as user 
defined  functions  following  GiST’s  conventions,  without need to 
integrate the access method code with DBMS internals. 

Stage 3: To improve performance and simplify the index 
implementations, the GiST approach was generalized in 
IDS/UDO [17] and later in SP-GiST [1] to support spatial 
indexes. In IDS/UDO, the main idea is to redesign and separate 
the GiST implementation to reduce the number of calls to user-
defined functions. Furthermore, unlike GiST, IDS/UDO and SP-
GiST dynamically load the index implementation at runtime. The 
extended GiST system is divided into three sub-components [17]: 
the GiST core, the access method extensions (AME) for index-
specific accesses, and the data type adaptor (DTA) for 
manipulating index keys. The GiST core is part of the DBMS 
kernel and provides interfaces to the AME for each new kind of 
index. The AME is written by the index extension developer 
following  GiST’s   coding  conventions.   It   interacts with the GiST 
core through a set of C interfaces and callback functions. The 
AME developer needs to supply 11 such callback functions. In 
addition, the developer must supply DTA code. SP-GiST (Space 
Partitioning GiST) is a framework for space-partitioning trees [1] 
supporting a wide range space partition algorithms.  

Mexima: While all Gist-based approaches require re-engineering 
the index code in terms of the Gist coding conventions, Mexima 
allows using existing main-memory index implementations or 
binary code without any code modifications. An index structure 
implemented by a third party without knowledge of DBMS kernel 
functionality can be integrated with the DBMS though Mexima by 
writing some simple interface code. For index implementations 
without support for persistence, Mexima provides transparent 
storage persistence. Thus, Mexima makes inclusion of main-
memory index implementations possible with very limited 
implementation efforts.  



Oracle’s extensible indexing is an SQL-based framework for 
integrating domain-specific indexing schemes [26]. The index 
developer provides operations in C, C++, Java, or SQL/PSQL for 
index creation, index update, and index-scans following the 
complex Oracle Data Cartridge Interface (ODCIIndex) interfaces 
and coding conventions [26]. By contrast, Mexima allows 
including new index implementations without changing any code.  
 
While the approaches above address how to add index 
implementations to DBMS kernels, another critical issue is how to 
extend the query processor so that it can transparently utilize the 
new index structures without forcing users to reformulate queries. 
For example, in order to utilize a new index in queries, Oracle’s  
ODCIIndex allows associating an ISF with an index access path 
[26]. Conjunctive predicates where terms have the following 
forms are supported: 
 isf(…)   relop   <value   expression>,   where relop is one of the 

relational operators: ≤,  ≥,  <,or >. 
 isf(…)  LIKE  <value  expression> 

Oracle provides guidance [3] [21] on how to reformulate a query 
to utilize indexes when it is not exactly matching the above forms. 

Rather than manual query reformulations, Mexima transforms a 
wide range of query forms containing index sensitive functions 
and numerical expressions into queries that contain SSF calls 
utilizing domain index structures. 

Starburst and DB2 [22] contains an internal rule engine for 
transformations of queries represented by a Query Graph Model 
(QGM) in C++ structures. Rewrite rules are stored in a rule table, 
and classified into different classes. Each class of rewrite rules has 
different rewrite heuristics. These rules rely heavily on a rich 
function library in C++ to exploit and manipulate queries 
representing QGMs.  A rule engine is responsible for selecting 
rules to be executed along with controls how rules are fired. 
Similarly, Volcano [13], Cascades [12], and Exodus [5] also use 
rules to transform relational algebra expression into physical 
operators.  

Rather than procedural code, in Mexima the SSF rewrites are 
specified as declarative index meta-data stored in the index 
property tables. This is possible since the SSF rewriter is designed 
particularly for index utilization rather than for general query 
transformations as [5][12][13][22].  

QuEval [20] is a framework for performance evaluating spatial 
index implementations. Based on parameters specified for each 
evaluated spatial index implementation, built-in data generators 
produce data sets for performance evaluations. By contrast, the 
purpose   of  Mexima’s   test   generator   is   to   automatically generate 
correctness tests based on index specific meta-data and queries. 
Furthermore, unlike QuEval, new complex indexes in C/C++ can 
be plugged into Mexima without code changes.  

The database generator QAGen [15] provides general purpose 
testing of DBMS components. It generates test databases and test 
queries based on symbolic execution of queries. In [4] an inverse 
relational algebra generates query inputs for given query results. 
To implement unit testing for the query optimizer, the framework 
in [8] generates test queries based on user-defined transformation 
rules specified as trees of relational algebra operators.  

In conclusion, no other system provides inclusion, validation, and 
utilization of unchanged complex index implementations plugged 
into an extensible main-memory DBMS. 

 

3. PRELIMINARIES 
The terminology used in the rest of the paper is defined along with 
requirements on an index implementation for being suitable to be 
plugged into Mexima.  

3.1 Terminology 
Figure 2 illustrates the components of an index extension: 
The index implementation (a) is the code implementing the index 
structure. It is left unchanged when plugged into Mexima. 
The index API (b) is the provided public interface to the index 
implementation. 

The index driver (c) is the implementation of 
the BAOs and SSFs of an index calling the 
index API. Properties of the index driver are 
stored as meta-data in the index property 
tables. 

Figure 2 Index extension components 

The above components are implemented by two kinds of 
developers:  
 The index developer, who fully understands the algorithms and 

data structures used in the index implementation, develops the 
index code and API independent of Mexima.  

 The index extension developer, who has sufficient 
understanding of the index and Mexima APIs but no knowledge 
of the index implementation and the DBMS kernel, develops the 
index driver. 

Finally, the end-user defines indexes on tables and uses them in 
queries without concern for how they are implemented. 

3.2 Prerequisites for index implementations 
Mexima is designed bearing in mind the motto: It should not be 
necessary to be a database kernel expert to introduce a new 
domain index. An index implementation should thus meet the 
following two criterion:  

 The candidate index implementation should be written in a 
regular programming language such as C, C++, or Java. In order 
to achieve high performance, C or C++ is preferable, for 
example to be able to plug in highly optimized C code such as 
the Judy-tries package [2]. 

 The candidate index implementation should provide APIs for 
the functionality of the BAOs and optional SSFs. Missing 
mandatory BAOs, e.g. mapping over indexed elements, may 
need to be implemented in the driver. 

4. MEXIMA  
Figure 3 shows the software layers of Mexima. Query processing 
uses the query processor of Amos II [29] to call operations that 
access the Mexima core. The Mexima core calls implementations 

of the BAOs and SSFs in 
the extension driver of an 
index extension. 
 
In the next section, we 
elaborate the 
implementation by first 

describing aspects of the query processing in Amos II followed by 
presentation of Mexima core. 
 
Figure 3 Mexima architecture 



4.1 Amos II 
Figure 4 illustrates the details of Mexima, including how in 
utilizes the Amos II engine. 
Amos II provides an object-oriented and functional query 
language, AmosQL. The parser translates a query into an object 
calculus representation [18] in ObjectLog, which is an extension 
of Datalog with objects, types, overloading, and foreign functions. 
Then the calculus rewriter transforms the un-optimized object 
calculus expression to improve performance. After the rewrites, 
the cost-based optimizer produces an execution plan sent to the 
execution plan interpreter. Mexima extends the query processor 
with calculus rewrite rules for transparent utilization of new 
indexes. 
AmosQL functions can be defined as foreign functions 
implemented in some regular programming language, e.g. C or 
Java. In Mexima SSFs are specified as foreign functions to enable 
query transformation of user queries into equivalent queries 
calling them. By contrast, BAOs are standard operations on 
domain indexes implemented as C functions called from the 
Mexima core when executing the operations.  
In Amos II all data is stored in a continuous memory block called 
the database image. The storage manager is responsible for 
allocation and de-allocation of physical objects inside the database 
image. All data in a database are internally represented as physical 
objects managed by the storage manager. Physical objects 
allocated inside the image are persistent, which means that they 
can be saved on disk and later restored. A physical object, po, is 
accessed through an object handle, hdl, which is an indirect 
pointer to po. Amos II uses reference counting to manage memory 
allocation and automatic real-time garbage collection. When the 
reference counter of an object po in the image reaches zero, it is 
passed to the garbage collector and thereafter the memory 
occupied by po is marked as available for other memory 
allocation. Mexima extends the storage manager of Amos II with 
specialized external index storage managers for each index type. 
The garbage collector is called by the Mexima core when 
executing index updates.  

 

 

4.2 Mexima core components 
We now discuss in details the components of the Mexima core. To 
illustrate the functionality, we shall use an external index structure 
package named IDS through our discussion and examples. It 
indexes integers only. 
The extension loader  

The extension loader loads at run-time the index extension IDS as 
a dynamic library or shared object (step 1). It calls the 
initialization function (step 2) a_initialize_extension() of the index 
driver when the index extension has been loaded to register the 
index interfaces as C functions with Mexima (step 3). The index 
name IDS and its registered C functions are stored in Mexima’s  
BAO table (step 4). 

 Figure 5 Extension  loader’s  steps 

The five mandatory BAOs registered in step 3 are: create(), 
drop(), put(), delete(), get(), and map(), where create() creates a 
new index while drop() removes it, put() inserts a key/value pair 
while get() retrieves it, and delete() removes it. The BAO map() 
scans the index by applying a specified mapper function on each 
index entry.  

Some indexes require transforming the keys into integers used as 
actual keys, e.g. hashing or space filling curves. This is specified 
by the optional BAO compute_key() while the optional BAO 
compare_key() compares two computed keys for (in)equality.  

For the representation of keys there are two variants supported: 

 The index extension stores boxed keys, which are object handles 
managed by the storage manager. The data type of object 
handles is unsigned integer, so any index extension supporting 
integers can store boxed keys. In this case, the BAO 
compare_key() is not needed in Mexima, since comparisons of 
handles is built-in.  

 If an index stores unboxed keys, i.e. the key values themselves, 
compare_key() compares keys, while compute_key() unboxes 
them.  

Index interface dispatcher 
When the end-user has placed an index of type IDS on an attribute 
of a table, the index interface dispatcher (Figure 4) accesses the 
index by invoking the corresponding registered BAOs (create(), 
put(), get(),etc.,) in the BAO table.  

The index interface dispatcher is also responsible for maintaining 
reference counters of boxed keys and values so that the extension 
developer need not know about garbage collection. 

Index storage manager 
If the index implementation has storage facilities to persist index 
structures and has registered to Mexima the optional persistency 
BAOs save() and restore(), the index storage manager will invoke 
them upon saving and restoring the database.  

If an index implementation is not persistent, i.e. it is all 
implemented in main-memory, Mexima automatically serializes 
and de-serializes the index entries. To save the index on disk, the 
index storage manager scans over the index entries using the BAO 
map() and streams them to disk. Only the primary index is made 
persistent, since, when restoring a table by streaming its rows 
from disk, the index storage manager also builds the secondary 
indexes. In case the index implementation does not balance the 

Figure 4 Mexima details 



index structure on insertion, the restored index structure might 
become unbalanced, and the extension developer can then register 
a bulk loader and hook it to restore(). 

Internally, the index storage manager relies on two system hooks 
executed at different states of the system: the before-image-roll-
out hook is executed when a database is saved, and the after-
image-initialized hook is executed when a database is restored. 
The index storage manager keeps track of all created indexes to 
save and restore them. 

Mexima Query Rewriter 
In order to utilize a new index in queries, the Mexima query 
rewriter transforms them to expose the SSFs of the new index. 
The index property table contains the necessary meta-data to do 
the transformations. This is further described in Section 6 below. 
Mexima Tester 
In order to validate that an index implementation is correct, the 
Mexima tester automatically generates and runs tests based on 
meta-data in the index property tables, as described in Section 7.  

4.3 Implementation of an SSF 
The index driver bridges Mexima and an index extension by 
implementing BAOs and SSFs. SSFs are defined as foreign 
functions that also can be used in queries. For example, if the 
index type IDS supports range search, it can be implemented by 
the SSF foreign function IDS_select_range() registered as follows 
in the initialization function of the index driver:  
1 // Definition  of  the  foreign  function’s  signature: 
2 a_amosql("create function IDS_select_range(Function 

tbl, Integer pos, Number lower, Number upper)                        
-> Object as foreign 'IDS-range-search';"); 

3 // Bind C function IDS_range_search address to the 
symbol 'IDS-range-search': 
a_extfunction("IDS-range-search",  IDS_range_search); 
Here:  
The signature of the foreign function IDS_select_range() is 
defined by the a_amosql() call. In the signature the parameter pos 
is the indexed position on the function tbl representing an indexed 
table, while lower and upper define the range in a search.  

 a_extfunction() associates the address of the C-function 
implementing the SSF with a symbol used in the signature 
definition.  

The first two arguments tbl and pos are bound when the SSF is 
called in a query. The remaining arguments, here lower and 
upper, are called SSF parameters. They are different for different 
SSFs and are bound in queries rewritten by the SSF translator 
based on meta-data in the index property tables. Even though the 
user can also call an SSF with explicit parameters specified in 
queries, this is not recommended since it makes the index access 
non-transparent. 
The following snippet shows the C implementation of 
IDS_range_search() in the index driver of the IDS: 
1 void IDS_range_search(m_context cxt){ 
2 a_handle tbl = a_arg(cxt,0);   // Table handle 
3 int pos = a_int_arg(cxt,1);   // Indexed pos  
4 int l = a_int_arg(cxt,2); // lower range 
5 int u = a_int_arg(cxt,3); // upper range 
6 IDShead *ind=(IDShead *)mexima_identifier(pos, 

tbl,ids_type); 
7 IDScomparer cmp = mexima_get_comparer(pos, tbl, 

ids_type); 
8 // call the map function of IDS-API:  
9 IDSmap(ind->root, l, u, 
10       (IDSmapper)rangemapper, cmp, cxt);} 

// the function rangemapper() is defined as: 
11 int rangemapper(IDSitem *kv,m_context cxt){ 
12 a_bind(cxt, 4, kv->value); 
13 a_emit(cxt);} 
The IDS_range_search() accesses the first four function 
parameters from the binding context cxt on lines 2-5. Lines 2 and 
4-5 dereference the handles to get integer values2. Line 6 assigns 
the pointer ind to the index structure on position pos of table tbl. 
Line 7 retrieves the compare function of the IDS registered in the 
BAO table. On line 9 the index API IDSmap() iterates over the 
index ind and calls the function rangemapper(kv,cxt), defined on 
lines 11-13, on each index key/value pair kv. On line 12, the row 
(value part) of kv is bound to the result (5th parameter). Finally, 
the macro a_emit() emits a result tuple to Mexima. 

5. ILLUSTRATIVE QUERY EXAMPLES 
In this section, we present a database schema and queries to serve 
as  examples  when  discussing  Mexima’s  query  processor. 
In the table images(id, hist) each row represents an image 
identified by id. Search on table image often requires comparing 
images. However, it is expensive to compare images bit by bit. 
The most common technique is approximating an image with its 
features. Thus, a comparison between images becomes the 
cheaper comparison   between   the   images’   features.   In   our 
example, the features on an image are represented by its color 
histogram stored in the attribute hist as a vector of numbers. 
To speed up search on table images, there is a B-tree index on 
column id and an X-tree index [27] on column hist. X-trees 
supports efficient proximity search of high-dimensional data. 
Main-memory implementations of B-trees and X-trees [30] are 
plugged-in to Mexima. 
In the following example, we use the ObjectLog representation 
into which the queries are translated to illustrate the query 
processing. 
Q1: find images q whose identifiers are between 30 and 100. In 
this case, there is no input parameter: 
Q1(q):-  
1 images(q, hist_q) AND 
2 q >= 30 AND 
3 q <= 100  

Q2: For a given image x find the images q whose feature vectors 
are closer than epsilon (eps = 0.11). In the query, the function 
distance() computes the Euclidean distance of two vectors.  
Q2(x, q) :-  
1 images(x,  hist_x) AND 

2 images(q,  hist_q) AND 

3 distance (hist_x, hist_q) <= 0.11  

Q3: find the k = 10 closest images compared to a given image 
bound to x. We use the ‘knn’ function to return the k nearest 
neighbors in  table  ‘images’  to the input color histogram of x. knn() 
uses the table ‘images’   that maps from an object identifier to its 
feature vectors.  
Q3(x, q) :-  

1 images(x, hist_x) AND 
2 images(q, hist_q)  AND 
3 (q, hist_q) in knn(hist_x, 10, #’images’)  
 

                                                                 
2 The system raises an error if the parameters are not integers. 



Q4: We note that the distance() function used in Q2 expresses the 
distance between vectors, but not similarity. To define similarity, 
we define query Q4 using the following formula: 

threshold
qpancedist


 ),(1

1  

Q4 finds images q that are 90 percent similar to a given image 
bound to x: 
Q4(x, q):-  
1 images(x,  hist_x) AND 
2 images(q, q) AND 
3 1/(1+distance(hist_x, hist_q)) >= 0.90  

 
6. MEXIMA QUERY REWRITER 
This section presents the SSF Translator. It transforms a query 
into an equivalent one where SSF calls are exposed to the query 
optimizer. If this transformation is not done, the optimizer is 
unable to utilize the index. 
The system also does other rewrite tasks not related to indexing, 
e.g.: view expansion, elimination of common sub-expressions, 
and compile-time evaluation, which are not focus of this paper. 

6.1 SSF translation rules 
An SSF translation rule describes how query fragments are 
translated to a new format to expose SSFs. The translation rules 
can rewrite conjunctions in queries having terms of one the 
following query fragment forms:  
Form (i): P(…iv,..) AND (iv r1 expression)       AND  
                                       (iv r2 expression)       AND 
                                      . . .                               
                                    (iv rn expression) 
Here, iv is a variable bound to an indexed column of table P(…). 
We say iv is an indexed variable. ri are comparison operators in 
the set relop, ri  relop, where relop ={=, <, >, >=, <=}. 
For example, the following fragment in Q1 is of Form (i):  
images(q, hist_q) AND q >= 30 AND q <= 100.  
Form (ii): P(…iv,..) AND isf(…,iv,  …) r1 expression AND 
                                          isf(…,iv,  …) r2 expression AND  
                                           . . . 
                                        isf(…,iv,  …) rn expression 
Here, iv is an indexed variable occurring in parameter position of 
an index sensitive function isf(). 
For example, the following fragment in Q2 is of Form (ii):  
images(q, hist_q) AND distance(hist_x, hist_q) <= 0.11  
Form (iii): P(…,iv,…)  AND  (..,iv,..) in isf(…..,P,..) 
Here the isf() is an index sensitive function that takes a table P as 
argument and emits a set of rows. For example, Form (iii) occurs 
in Q3: 
images(q, hist_q) AND (q,hist_q) in knn(hist_x,  10,  #’images’) 
If a query contains some fragment that matches any of Form (i), 
(ii), or (iii), the query has the potential of being supported by the 
index on iv. If this is the case, the query fragment should be 
transformed into a format where the index is exposed through an 
SSF call. For each kind of index, the index developer can define 
SSF translation rules, which transform query fragments that match 
Form (i), (ii), or (iii), into the corresponding SSF call. The SSF 
translation rules are defined as rows in the SSF translation table. 
Table 1 is an example of translation rules for B-trees and X-trees 
indexes. 
 

 
Table 1 SSF translation table 

# itype pr ISF Relops SSF pf 
1 B-tree 1 Nil >=, <= btree_select_range F 
2 B-tree 2 Nil <= btree_select_open F 
3 X-tree 1 distance <= xt_proximity_search T 
4 X-tree 2 Knn nil xt_knn_search F 
Each row represents an SSF translation rule. It has the attributes 
itype, pr, isf, relops, ssf, and pf where: 
 itype is a user-defined index type. 
 pr is the translation rule priority for a given itype. 

 isf() is an index sensitive function.  isf is nil in Form (i). 

 relops is a set of allowed relational operators in {=, <, >, >=, 
<=}. relops is nil in Form (iii). The system knows how to infer 
open inequalities from closed ones. 

 ssf() is a special search function supported by the index type. 

  pf is the prune and filter flag. When it is true (T), the Mexima 
query rewriter applies the two-step paradigm [24], in which the 
prune step first prunes irrelevant data by calling the SSF to 
return a small set of candidates and then the filter step applies 
the original condition to carefully examine each candidate. Here 
it is important that pruning is done before the filtering.  

For a given query fragment of Form (i), (ii), or (iii), the system 
finds the matching SSF translation rules. Form (i) matches SSF 
translation rules where isf is empty, Form (ii) matches rules where 
both isf and relops are non-empty, while Form (iii) matches rules 
where there is an isf but no relops. If more than one rule matches, 
the priority pr determines which one. If pr is nil and more than 
one rule applies, the system will pick one of the matching rules. 

In Table 1 the translation rules TR1 – TR2 together define query 
fragments where B-trees interval search should be used, while 
TR3 define when X-trees proximity search should be used. The 
proximity search requires pruning so pf is true. Lastly, TR4 
defines the translation from the ISF knn() to the SSF 
xt_knn_search(). 

If an SSF translation rule for index type itype matches a query 
fragment of Form (i), (ii), or (iii) where iv the indexed variable, 
the SSF translator will replace P(.., iv,  …),  isf(…), and relops with 
the corresponding SSF defined by the rule. If the index translator 
finds no applicable translation rule, the query is kept intact. 

For example, by applying rule TR1 on Q1, it is translated into 
calling the SSF btree_select_range(): 

TQ1(q):-  
1 (q,_) in btree_select_range( #’images’,  0, 30,100)  

The first argument of the SSF btree_select_range() is the table 
images and the 2nd argument is position 0 of the indexed column 
id.  We say that the corresponding B-trees index on column id is 
exposed by the SSF btree_select_range(). 

Analogously, applying rule TR3 on Q2 yields the transformed 
query TQ2: 

TQ2(x, q):- 
1 image(x, hist_x) AND 
2 (q, hist_q) in  xtree_proximity_search(#’images’, 

                              1, hist_x, 0.11) SAND 

3 distance (hist_x, hist_q) <= 0.11  



Since TR3 has the prune and filter flag set, line 2 in TQ2 prunes 
away most images and then line 3 filters them with the full 
condition. The operator SAND is an order-preserving conjunction. 
TQ2 exposes the X-trees index on column hist by the SSF 
xtree_proximity_search().  

Finally, applying rule TR4 on Q3 yields the transformed query 
TQ3 that exposes the X-trees index by the SSF xt_knn_search(): 

TQ3(x, q):-  
1 image(x,  hist_x) AND  
2 (q,_) in xt_knn_search (#‘images’, 1, hist_x, 10)  

For query Q4, neither of Form (i), (ii), or (iii) match since the ISF 
distance() is hidden inside the numerical expression. We next 
discuss our general solution for this case. 

6.2 Extended Algebraic Query Inequality 
Transformation 
The AQIT algorithm [28] translates a class of numerical 
expressions with inequalities over variables indexed by B-trees 
into query fragments of Form (i). The translations use a set of 
algebraic inequality transformations. AQIT can transform 
conjunctive query fragments having terms of Form (iv): 

Form (iv) P(…iv,..)  AND  F(iv) relop expression 
Here iv is an indexed variable and F(iv) is an expression 
consisting of a combination of transformable functions T. 
Currently T  {+, -, /, *, power, sqrt, abs} and the set can be 
extended. AQIT tries to reformulate the query condition into an 
equivalent condition 
iv relop’  F’(expression) of Form (i) where the index is exposed to 
the query optimizer. The algebraic inequality transformations in 
AQIT automatically determine relop’ and F’(expression).  If 
AQIT fails to transform the condition, the original query is 
retained. 
However, AQIT cannot translate numerical expressions as in Q4 
because the ISF distance() is hidden inside the expression. 
Therefore, in Mexima, AQIT is generalized to translate 
inequalities over ISFs into query fragments of Form (ii). The 
extended AQIT automatically transforms conjunctive fragments 
with terms of Form (v): 

Form (v) P(…,iv,…)  AND    F(isf(…,iv,  …))  relop  expression 
Here F(isf(…,iv,…)) is an expression consisting of a combination 
of transformable functions T, and relop is an inequality 
comparison. The extended AQIT tries to reformulate the query 
fragment into isf(…,iv,…)   relop’   F’(expression)  of Form (ii) 
where the index on iv is exposed. 
For Q4, the system first applies the following algebraic inequality 
transformation: 

 (A/x >= B  A >0  B >0) x <= A/B  
The query will be transformed to TQ4-intermediate0: 
 
TQ4-intermediate0(x, q):-  
1 images(x,  hist_x) AND 
2 images(q,  hist_q) AND 
3 (1+ distance (hist_x, hist_q)) <= 1/ 0.9  
Then, the system applies the transformation: 

 x + A <= B  x <= B – A  
The query will be transformed to TQ4-intermediate1: 
TQ4-intermediate1 (x, q):-  
1 images(x, hist_x) AND 
2 images(q, hist_q) AND 
3 distance (hist_x, hist_q) <= 1/0.9 -1  

TQ4-intermediate1 matches Form (ii), which allows the SSF 
translator to apply translation rule TR3.  This transformation 
produces the final TQ4: 
 
TQ4 (x, q):-  
1 images(x,  hist_p) AND 
2 (q, hist_q) in  xtree_proximity_search( 

                            ‘image’,  1, hist_p, (1/0.9 - 1)) 
AND 

3 1/(1+distance (hist_p, hist_q)) >= 0.9  
 
7. THE MEXIMA TESTER  
To validate that a plugged-in index implementation is correct, 
Mexima provides automatic testing procedures of BAOs and 
SSFs. Both BAOs and SSFs are tested based on meta-data in the 
index property tables. For each index type, a number of test 
queries are automatically generated and executed. The test queries 
use data generators, which are queries specified by the extension 
developer that generate index keys for testing BAOs and SSFs. 
The system has a library of predefined data generators 
implemented as foreign functions calling the C++ library 
random.h to support randomly generated numbers and vectors of 
numbers respecting various distributions. New data generators can 
easily be defined is terms of these as queries.  
For example, the built-in data generator uniform_int(n,l,u) 
generates n integers in range [l,u]. For complete testing, the result 
set always includes the border values l and u. The data generator 
uniform_vec_real(n,d,l,u) generates a set of n vectors of 
dimension d where each element is a real number in the range 
[l,u], including l and u.  

7.1 The BAO Tester 
The BAO tester automatically tests that the BAOs of an index 
implementation are correct, i.e. correct behavior of put(), get(), 
delete(), map(), and drop(). It also provides a function to produce 
a report of the execution times of each BAO.  
The BAO tester is based on data generators specified as queries 
stored in the index key generator table (Table 2). The extension 
developer populates the table and specifies how index keys to be 
tested are generated. Based on the generated keys, the BAO tester 
runs a number of built-in algorithms described below to test basic 
index functionality. 

Table 2 Index key generator table 
# Idxtype Index key 

type 
Index KeyGenerators 

1 B-tree Number select uniform_int(1000,0,10000) 

2 X-tree Vector-
Number 

select uniform_vec_real(1000,5,0,1)  

3 X-tree Vector-
Number 

select 
CSV_file_rows(“colorhistogram.csv”) 

In Table 2 the first row specifies a correctness test of B-tree 
indexes by generating 1000 uniformly distributed integer keys in 
range 0-10000. The 2nd row specifies a correctness test for X-trees 
by generating 1000 uniformly distributed vectors of real numbers 
of dimension 5 in range [0, 1]. The last row tests X-trees by 
reading index keys from a file “colorHistogram.csv”.  
Based on the index key generator table, the BAO tester will run 
the following tests: 

 Lookup tests that all inserted keys are also stored in the 
index. 



 Mapping tests that the mapper iterates over all inserted 
key/values. 

 Deletion tests that iteratively deleting one key at the time 
works.  

 Remaining verifies that no keys are remaining after all keys 
have been deleted individually.  

 Dropping tests that the drop() operation removes all 
key/values. 

The result of the BAO tester is an error report that specifies for 
each test case, which BAO functionality failed.  
The BAO tester does the following:  
1. Create two tables, the indexed table: I_Table(k, v), and the 

reference table:  R_Table(k, v). On column I_Table.k the 
system puts an index of type IDS, idx(I_Table.k), while on 
column R_Table.k  there is a hash index idx(R_Table.k). 

2. For each test case, the BAO tester first calls the key 
generator. For each generated key k and a corresponding 
random number v, it inserts a row (k,v) into both I_Table and 
R_Table using put(k,v).  

3. For lookup, the BAO-tester iterates though the R_Table to 
test correctness of put() and get(). For each key/value in 
R_Table it tests that the result of accessing the key in I_Table 
calling get() returns the same value.  

4. For mapping the BAO tester iterates over each (k,v) in 
I_Table using map() and tests that the key/value pair is 
present in R_Table.  

5. For deletion, the BAO tester uses map() to iterate over all 
(k,v) in I_Table calling delete(k) followed by get(k) to check 
that each value is actually deleted.  

6. For remaining, the system verifies that the table is empty 
after step 5. 

7. For dropping, the table is repopulated, then drop() is called, 
and eventual remaining keys are reported.  

7.2 The SSF tester 
The purpose of the SSF tester is to validate that the result from an 
SSF is correct. Based on user-defined generators of SSF 
parameters, the system automatically generates test queries for 
each SSF translation rule of an index type IDS. The tests are 
based on that the SFF translation rules provide transparent 
rewrites of a generated test query to utilize the index through the 
SSF. When an index is defined for some attribute and can be 
utilized by some SSF translation rules in a test query, the query 
should return the same result as when there is no index or no 
matching SSF translation rule.  
In order to test an SSF, the user needs to specify data generators 
for SSF parameters as queries stored in the SSF parameter 
generator table (Table 3). 

Table 3 SSF parameter generator table 
# Index 

type 
SSF name SSF parameter generator SSF 

Parameter 
types 

1 B-tree btree_select_ran
ge 

select l, u  
from Number l,  
Number u 
 where l in uniform_int(100, 
0,10000) and u in 
uniform_int(100,0,10000) 

(Number, 
Number) 

2 B-tree btree_select_ope
n 

select  u  
from Number u 
 where u in uniform_int(100, 
0,10000) 
  

(Number) 

3 X-tree xtree-proximity-
search. 

select x, d from Vector of 
Number x, Number d where 
x in 
uniform_vec_real(100,5,0,1) 
and d in uniform_real(100,0, 
1.4) 

(Vector 
of 
Number, 
Number) 

4 X-tree xtree_knn-search select x, k from Vector of 
Number x, Number k where x 
in 
uniform_vec_real(100,5,0,1) 
and k in uniform_int(0,5) 

(Vector 
of 
Number, 
Number) 

In Table 3 the first row tests btree_select_range() by generating 
the two SSF parameters as 100 pairs of random integers in range 
[0, 1000]. The 2nd test case validates btree_select_open() by 100 
random numbers in range [0,1000]. The 3rd  test case validates X-
trees proximity search by generating 100 pairs (x,d) where x is a 
5D vector of random numbers in range [0,1] and d is a random 
number in range [0,1.4]. The fourth test case validates KNN 
search with an X-tree by generating 100 pairs (x,k) where k is the 
number of closest neighbors to be tested. There can be several test 
cases specified per SSF. 
For each test case in the SSF parameter generator table (Table 3), 
the SSF tester generates one SSF validation query VQ for each 
SSF translation rule TR in the SSF translation table (Table 1). The 
generated validation query VQ contains a query fragment of form 
Fm matching the TR.  
The SSF translator will rewrite the VQ using the translation rule 
TR when VQ contains query fragments of form Fm matching the 
TR. In order to guarantee that no other TR matches VQ, all other 
translation rules matching Fm are temporarily turned off when 
executing VQ. For each index type, this test procedure validates 
both the TRs and the SSFs. 
Meta-data to generate each VQ is obtained by joining the SSF 
translation rule table (Table 1), the SSF parameter generator table 
(Table 3), and the index key generator table (Table 2), to get for 
each test case the index key type, the SSF name, the SSF 
parameter generator, and the SSF parameter types, respectively. 
For each test case and TR, two queries VQi and VQr are generated. 
VQi is a query over I_Table, which is rewritten by the chosen TR 
to call the SSF. VQr is the same query over the R_Table. If the 
SSF is correct, both queries should return the same result. 
Depending on which form Fm is matching TR the validation 
queries are generated as follows:  
Case 1: TR matches Form (i). 
Assume the SSF parameters types in the SSF parameter generator 
table are T1,.., Tm (Table 3), that IT is the index key type in the 
index key generator table (Table 2), that SPG is the SSF 
parameter generator (Table 3) for parameters p1,…,pm, and that ri 
are the relops in Form (i). Then the validation query VQi has the 
following format: 

select iv, v 
from IT iv, Number v, 
             T1  p1, T2 p2,.., Tm  pm  
where I_Table(iv, v)                    and 
            (p1, p2,  …,pm) in (SPG)   and 
            (iv r1 p1)                           and 
            (iv r2 p2)                           and 
            . . . 
            (iv rm pm);                               



For example, the automatically generated validation query VQi for 
test case 1 in Table 3 is: 
select iv, v 
from Number iv, Number v, Number  p1, Number p2 
where I_Table(iv, v) and  
          (p1, p2) in (select l, u from Number l, Number u  
                            where l in uniform_int(100, 0,10000) and  
                             u in uniform_int(100,0,10000)) and 
            iv >= p1 and  iv <= p2;                                   
VQr is the same query with I_Table replaced with R_Table. 
Case 2: TR matches Form (ii). 
VQi has the following format, assuming the ISF() has arity j. 

select  iv, v 
from IT iv, Number v, 
           T1 p1, T2 p2,.., Tm  pm,, 
           Tj res 
where I_table(iv, v)                      and 
         (p1, p2,  …,pm)  in (SPG)      and 
        res = ISF (iv, p1,..,pj-1)          and 
        (res r1 pj)                               and 
          . . . 
         (res rm pm);  

For example, the generated validation query VQi for test case 3 in 
Table 3 is: 
select iv, v  
from Vector of Number iv, Number v, Vector of Number p1, 
          Number p2, Number res  
where I_Table(iv, v) and 
           (p1, p2) in (select x, d from Number x, Number d  
                             where x in uniform_vec_real(100,5,0,1) and 
                               d in uniform_real(100,0, 1.4)) and 
            res = distance(iv, p1) and  res<= p2; 
Case 3: When TR matches Form (iii) the generator validation 
query has the form: 
select  iv, v 
from IT iv, Number v, 
           T1 p1, T2 p2,.., Tm  pm,, 
where I_table(iv,v)               and 
  (p1, p2,  …,pm)  in (SPG)     and 
   (iv,v) in ISF (p1,..,pm, I_Table) 
For example, the generated validation query VQi for test case 4 in 
Table 3 is: 
select iv, v  
from Vector of Number iv, Number v, Vector of Number p1, 
        Number p2 
where I_Table(iv, v) and 
           (p1, p2) in (select x, k from Number x, Number k  
                            where x in uniform_vec_real(100,5,0,1) and k in  
                             uniform_int(0,5)) and 
            (iv,v) in knn(p1, p2,  #’images’); 
 
The BAO and SSF testers are run on all chosen index 
implementations to validate that they were correct. One bug in the 
R* package [7] and two bugs in the X-tree implementation [30] 
were found by the SSF tester. 

8. EXPERIMENTS 
We measured the performance of using Mexima for main memory 
implementations of B-trees [30], Linear-Hashing [30], Judy-Tries 
[2], X-trees [30], and R*-trees [7]. 
We conducted experiments in several perspectives. First, in 
Experiment A we compared the coding effort of the different 

index implementations based on disk-based GiST and SP-GiST 
with the corresponding main-memory index extensions in 
Mexima w.r.t. code size.  
In Experiment B, we compared the execution times of calling a 
plugged-in index through the BAOs put(), get(), map(), and 
delete() with the execution times of the corresponding stand-alone 
implementations in C/C++. The absolute time difference was 
calculated as overhead. The overhead of both boxed and unboxed 
keys were investigated.  
In Experiment C, the importance for scalability of using SSF 
translation rules is investigated. The queries were run with and 
without SSF translation enabled.  
All performance experiments were repeated 10 times, from which 
the average figures were calculated after removing outlier results 
if any. 
The experiments were run under Windows 7 on an Intel (R) 
Core(TM) i5 760 @2.80GHz 2.93 GHz CPU with 4GB RAM, 
using the Visual Studio 10 32 bits C compiler. 
Experiment A – Code size   
Table 4 shows the number of C/C++ code lines of different index 
interface implementations in PostgreSQL version 9.3.5 
(http://www.postgresql.org/ftp/source/v9.3.5/) and SP-GiST 
version 0.0.1 [25], compared to the corresponding Mexima 
drivers. We excluded comments in the comparisons. The 
compared code is what an index extension developer needs to 
provide to interface the DBMS extensibility frameworks. 

Table 4 Number of code lines 
 GiST SP-GiST Mexima Factor 

B-tree 5031 -- 116 43 

KD-tree -- 572 118 5 

R-tree 1133 -- 120 9.5 

Trie -- 580 120 5 

In PostgreSQL, the GiST-based B-tree was implemented as a fully 
separate module from the GiST core, while parts of the R-tree 
implementation are present in the GiST core. Thus, the number of 
code lines for R-trees with GiST is underestimated in the table.  
Table 4 shows that the code size of including a main-memory 
index implementation in Mexima is 5–43 times smaller than the 
corresponding disk based index plug-in with GiST.  
Notice that the Gist based index implementations are specially 
designed to follow the Gist coding conventions, while with the 
Mexima framework all used index implementation code is left 
unchanged, including memory allocation, which is particularly 
complex in Judy-tries. 
To conclude, Mexima provides introduction of domain indexes 
with relatively little coding effort for the interface between the 
untouched domain index implementation and the Mexima kernel. 
This allows to plug-in very complex main-memory index 
implementations with small efforts. 
Experiment B – Mexima BAO overhead 



The purpose of this experiment is to investigate the performance 
overhead of plugging-in an existing index implementation in 
Mexima. Figure 6 illustrates how the execution time is spent in 
different layers of a plugged-in index implementation.  
Here: 

 op: time spent to call algebra operations on an indexed table 
to add, delete, access, or map. 

 mc: time spent to dispatch and call the BAO function in an 
algebra operation. This includes time spent for type checking 
and automatic garbage collection. 

 ed: time spent in the index extension drivers for BAOs and 
SSFs.  

 st: time spent on actually running the untouched index 
implementation code. This is the actual work to manipulate 
the index, i.e. the time to run the stand-alone C/C++ 
implementation. 

In the experiment, we measured the execution times for the 
different index implementations both when plugging-in the 
implementation into Mexima and when running the 

implementation as a stand-alone C/C++ 
program. The total execution time for 
using a plugged-in index implementation 
is tot = op + mc + ed + st. The Mexima 
overhead, o, of calling a plugged-in index 
implementation is calculated as o= op + 
mc + ed. 

Figure 6 Execution layers 
In the experiments the performance of B-tree, Linear Hashing, 
and Judy-Trie implementations were measured for a database of 
size S with uniformly distributed random key/value pairs. The 

execution times of put(), get(), and delete() per call were 
measured by loading the database and then measuring the time of 
doing 1000 random inserts, lookups, and random deletes, 
respectively. The time to call map() was measured by iterating 
over the indexed table and dividing the total time with S. The time 
for generating data and populating the reference tables were 
excluded in all measurements. 

Table 5 shows the average Mexima overheads o in microseconds 
for the BAOs put(), get(), delete(), and map(). The database size S 
was 5 million key/value pairs. The total overhead was measured 
with both boxed keys bo and unboxed keys o. The standard 
deviations in all cases were less than 0.03 µs. The overhead of 
Mexima is well below one µs per call and particularly low for 
unboxed keys, so unboxed keys are used in all remaining 
experiments. Table 5 furthermore breaks down the percentages of 
how the overhead o is spent in the different layers op, mc, and ed. 

Table 5 Mexima overhead for different BAO calls (µs) 
BAO Index bo   o  %op %mc %ed 

Put LH 0.89 0.56 51.7% 36.2% 12.1% 

B-tree 0.89 0.53 52.3% 35.8% 11.9% 

Judy-trie 0.87 0.54 52% 35.3% 11.7% 

Get LH 0.57 0.26 37.2% 47.1% 15.7% 

B-tree 0.59 0.23 36.6% 47.6% 15.7% 

Judy-trie 0.57 0.22 36% 48% 16% 

Map LH 0.21 0.07 32.1% 50.9% 17% 

B-tree 0.19 0.07 34.4% 49.2% 16.4 

Judy-trie 0.23 0.07 33.7% 49.7% 16.6% 

Delete LH 0.65 0.42 45% 41.3% 13.7% 

B-tree 0.64 0.42 43.3% 42.5% 14.2% 

Judy-trie 0.63 0.41 43.4% 42.5% 14.1% 

Figure 7 shows insert times in microseconds of different index 
implementations with unboxed keys compared with the 
corresponding stand-alone implementations for different database 
sizes. Analogously, Figures 8, 9, and 10 show lookup, delete, and 

map time per call with unboxed keys.  
As expected, stand-alone index implementations were faster than 
their corresponding plug-in indexes using the same 
implementation because of the Mexima overhead. The overhead is 
not dependent on the database size for any of the methods as 
shown in Figures 7, 8, 9, and 10. The system carefully makes sure 
that an index is not accessed more than once in an operation, as 
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that would make the overhead larger as the database grows. For 
unboxed keys, the overhead is less than 0.6 µs and depends on the 
index driver implementation of the BAO, not the database size. 
The ease of plugging-in index implementations in Mexima 
without code changes with very low overhead shows that Mexima 
is an excellent tool for comparing domain index implementations. 
In particular not changing the index implementation allows to 
easily comparing highly optimized and complex domain-index 
implementations such as Judy-tries with other implementations. 
For example, Figures 7, 8, and 10 show that Judy-tries are better 
than B-trees for inserts and lookups, but not for mapping. 
Experiment C – Impact of SSF translation rules 
The purpose of this experiment is to show the importance of 
Mexima rewrite rules for scalable processing of user queries 
utilizing plugged-in domain indexes. In Figure 11 the 
performance of range search query Q1 (Form (i)) with and 
without the SSF translation rules is investigated for B-trees and 
Judy-tries. Without the SSF translation rules the index is not 
utilized, so the system has to use the map() function to iterate over 
the index and then do post-filtering on every row. Figure 11 also 
shows that B-trees are better than Judy-tries for interval search. 
In Figure 14, the performance of 2D KNN-search is investigated 
for X-trees and R*-trees. Query Q3 (Form (ii)) is used with the 
relation Images populated with 2D point vectors from a real data 
set [9], which is a collection of California road points. We 
enlarged the original data set to different data sizes by randomly 
generating points from 1.S to 14.S with S=210480 with the same 
range distribution as the origin. When SSF translation is enabled, 
Q3 with k =10 scaled substantially better since the index was 
utilized.  We also notice that the X-tree implementation performed 
as good as the R*-tree implementations for the given 2D database.  
In Figure 12, the performance of high dimension 9D proximity 
search for Q2 (Form (iii)) is measured with the X-tree 
implementation, with and without SSF translation rules enabled. 
In this experiment, we used the ColorHist database [6]. The 
database comprises of 9D (3 x 3) - color histograms extracted 
from S=70000 images provided by the Corel Image Database. As 
for the road points, we enlarged the size of the database from 1.S 
to 14.S.  
Figure 13 shows the scalability improvement by rewriting 
similarity queries for Q4 (Form (v)) using the X-tree 
implementation and the ColorHist database.  
From experiment C, we conclude that SSF translation rules are 
critical   for   scalability   of  Mexima’s   extensible   indexing,   because  
they make the indexes be utilized in queries. To evaluate the 
quality of domain index implementations, plugging-in and 
comparing with ease proposed domain index implementations, as 
in Experiment C, are critical.  

9. CONCLUSIONS & FUTURE WORK 
The Mexima framework allows transparent plugging-in of main-
memory domain index implementations into a main-memory 
DBMS without code changes. To plug-in a domain index 

implementation, the extension developer writes a simple Mexima 
driver for the universal index operations (BAOs) and the domain 
index specific search functions (SSFs).  
To provide transparent utilization of SSFs in queries the extension 
developer populates an SSF translation table in which each row is 
an SSF translation rule that describes parameters for the query 
processor matching different query fragment forms. Combined 
with algebraic rewrites, the SSF translation rules provide the 
necessary meta-data for the query processor to generate scalable 
execution plans that utilize the index by calling its SSF operators.  
To validate the correctness of new indexes, Mexima generates test 
queries based on index-specific data generators specified as 
queries by the extension developer. The index key generator table 
contains queries that generate index keys to be tested for correct 
BAO behavior. The SSF parameter generator table contains 
queries that generate arguments of the SSF operators to be tested. 
Based on these two tables and the SSF translation table, Mexima 
automatically generates and executes test queries for the new 
index.  
To show that existing index implementations can be transparently 
plugged into Mexima, five different main-memory index 
implementations were evaluated without changing their source 
code. In particular, the very complex Judy-trie index 
implementation [2] was included and compared with a textbook 
B-tree implementation. 
The overhead of Mexima for BAOs of the different plugged-in 
index implementations was evaluated, showing that the current 
Mexima implementation has overhead in the sub-µs range per 
BAO call. 
The importance of SSF translations was investigated for chosen 
index implementations showing the SSF translation rules provide 
scalable performance of declarative queries over tables indexed by 
plugged-in domain indexes.  
The ease of plugging-in index implementations in Mexima 
without code changes and with very low overhead shows that 
Mexima is an excellent tool for comparing domain index 
implementations. In particular not changing the index 
implementation allows to easily utilizing highly optimized and 
complex domain-index implementations such as Judy-tries. 
For future work, other kind’s indexes will be plugged into 
Mexima to meet the specific requirements from other application 
domains. This is likely to put additional requirements on 
Mexima’s  query  processor.  Furthermore,  also index performance 
measurements can be automated by extending the  Mexima’s  tester  
to include performance tests.  
Altogether, Mexima provides a complete and extensible platform 
for domain index integration and evaluation, as required in many 
scientific applications.  
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