
Transparent inclusion, utilization, and validation of main
memory domain indexes

Thanh Truong, Tore Risch
Department of Information Technology

Box 337, SE-751 05, Sweden
Uppsala University, Sweden

{thanh.truong,tore.risch}@it.uu.se

ABSTRACT
Main-memory database systems (MMDBs) are viable solutions
for many scientific applications. Scientific and engineering data
often require special indexing methods, and there is a large
number of domain specific main memory indexing
implementations developed. However, adding an index structure
into a database system can be challenging. Mexima (Main-
memory External Index Manager) provides an MMDB where new
main-memory index structures can be plugged-in without
modifying the index implementations. This has allowed to plug-
into Mexima complex and highly optimized index structures
implemented in C/C++ without code changes. To utilize new user-
defined indexes in queries transparently, Mexima automatically
transforms query fragments into index operations based on index
property tables containing index meta-data. For scalable
processing of complex numerical query expressions, Mexima
includes an algebraic query transformation mechanism that
reasons on numerical expressions to expose potential utilization of
indexes. The index property tables furthermore enable validating
the correctness of an index implementation by executing
automatically generated test queries based on index meta-data.
Experiments show that the performance penalty of using an index
plugged into Mexima is low compared to using the corresponding
stand-alone C/C++ implementation. Substantial performance
gains are shown by the index exposing rewrite mechanisms.

Keywords
Domain Indexing, Extensible Databases, Query Processing,
Automatic Testing.

1. INTRODUCTION
Indexing is a key factor for scalable database query processing.
Most DBMSs support one or several indexing structures, such as
B-trees and hashing. It is well recognized that many scientific
applications involving, e.g., data mining, temporal queries, and
spatial analyzes, require customized indexing to improve
performance, which motivates the need for extensible indexing
frameworks [16][26][1]. These frameworks allow implementing
new indexing algorithms by strictly following framework specific
coding conventions and primitives, which requires knowledge
about DBMS internals. To include a new domain indexing

structure into a DBMS can also be challenging because of third
party ownership, having only binary code available, or simply
being very challenging to re-engineer.

There are many domain-indexing algorithms developed for main-
memory, for example, T-Trees [31], Cache Sensitive B+-
Trees[34], Fast Architecture Sensitive Trees [32], and Adaptive
Radix Trees [33]. The issue addressed in this paper is how to
include a new main-memory domain indexing structure into a
DBMS with minimal effort. The generalized extensible indexing
framework Mexima (Main-memory eXternal Index Manager)
enables plugging-in main-memory index implementations in an
MMDB without changing their implementations.

When using Mexima the index extension developer needs not
have knowledge about the DBMS internals, since there is a clean
separation between the database kernel and a plugged-in domain
index implementation. Only a simple interface that bridges
Mexima with the untouched index implementation needs to be
developed.

Another important issue with domain indexing is how to extend
the query processor so that the plugged-in index algorithms are
utilized in a scalable and transparent way in queries. To utilize a
new index without re-formulating queries, Mexima supports
automatic query transformations based on user-provided index
property tables populated by the index extension developer to
specify meta-data about the index.

Basic access operators (BAOs) of an index are operators available
for all kinds of indexes, i.e. methods for creating, dropping,
updating, accessing, and mapping over indexed elements. In
addition, each kind of index usually has special search functions
(SSFs) to utilize index specific properties for efficient search, e.g.,
interval search on B-trees, and K-nearest neighbor and proximity
search on R-trees and X-trees. To utilize SSFs transparently in
queries the system must rewrite query conditions into calls to
SSFs, for which Mexima allows the index extension developer to
declare SSF translation rules that specify the rewrites.

For example, spatial proximity search can be expressed in queries
using an index sensitive function (ISF), such as distance(). The
following query compares indexed color histograms with a given
one. Here, ? denotes query parameter:
SELECT name FROM Images i
WHERE distance(i.colorHistogram, ?) <= 0.11;

If there is a spatial index on i.colorHistogram, Mexima translates
the query into an SSF call, rather than scanning all images to
apply the ISF distance().

If an indexed attribute is hidden inside expressions, the query
processor cannot directly apply the SSF translation rules and fails
to utilize the index. For example, in the following similarity query

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SSDBM '15, June 29 - July 01, 2015, La Jolla, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3709-0/15/06…$15.00

DOI: http://dx.doi.org/10.1145/2791347.2791375

the index on i.colorHistogram is hidden inside a numerical
expression, which prohibits a direct translation into an SSF call:
SELECT name FROM Images i
WHERE 1/ (distance(i.colorHistogram , ?) + 1 >= ?;

To expose indexes hidden inside numerical expressions Mexima
transparently reformulates queries to call SSFs in order to utilize
indexes in numerical query expressions.

An important aspect when plugging-in a new index
implementation is to test that the index functionality is correct.
Mexima has built-in automatic tests procedures for both BAOs
and SSFs. Mexima utilizes index meta-data stored in the index
property tables to generate test queries. This is a form of model-
based testing [19] where a model of index properties stored in
Mexima is used for automatically generating and executing test
queries. For this, the index extension developer specifies as meta-
data index-specific data generating queries expressed in terms of
an extensible library of built-in data generating functions.

In summary, our contributions are:

1. The extensible indexing system, Mexima, allows inclusion of
complex main-memory domain-specific index
implementations in an MMDB without code changes. In
addition, Mexima makes the plugged-in main-memory index
data structures persistent.

2. In order to transparently utilize a new index in queries, the
SSF translator rewrites query fragments over indexed
attributes into SSF calls. The rewrites are driven by user
populated index property tables containing SSF translation
rules that describe the operations supported by the index.

3. Complex queries involving numerical expression over
indexed attributes are automatically reformulated so that the
SSF translator can rewrite them.

4. To validate correct functionality of a domain index, Mexima
generates automatic test procedures driven by meta-data
stored in the index property tables.

5. The experimental evaluation investigates the overhead of
using main-memory index extensions in queries via Mexima
compared to directly executing hard-coded C/C++
implementations1. Furthermore, the substantial impact of the
query rewrites is investigated.

The following main-memory index structures have been plugged-
into Mexima: Main memory B-trees [30], Linear-Hashing [30],
Judy-Tries [2], X-trees [30], and R*-trees [7].
The paper is organized as follows. Section 2 discusses related
work. Section 3 defines some terminology. Section 4 presents the
architecture of Mexima in details. Section 5 presents queries used
to illustrate Mexima’s query processor in Section 6. Section 7
discusses Mexima’s model-based test generators for both BAOs
and SSFs. Section 8 shows our experimental results and
evaluations. Finally, Section 9 concludes and outlines future
work.

2. RELATED WORK
Several index structures beyond B-trees and hash tables have been
developed for domain-specific data, for example: R-trees [14],
Quad-trees [10], KD-trees [23], and Tries [11]. Very few of them
were implemented in DBMSs, even though the necessity of

1 Even though MEXIMA supports Java as well, here we assume

C/C++ as implementation languages.

including new and domain-specific index structures as database
indexes has been observed [1][16][26]. Some extensible indexing
frameworks have been proposed for both commercial DBMSs and
database research prototypes e.g, Oracle [27], Gist [16], and SP
Gist [1]. Extensible indexing can be divided into three stages, as
illustrated by Figure 1

Figure 1 History of extensible indexing frameworks

Stage 1: In DBMSs without support for extensible indexing all
index structures have to be implemented and integrated with the
DBMS kernel. This requires writing access method (AM) code
and tightly integrating it with other components in the kernel,
such as the storage manager, the query optimizer, and the query
executor.

Stage 2: GiST (Generalized Search Trees) [16] is a template index
structure for disk-based search trees, i.e., B-trees and R-tree-like
indexes. GiST reduces the implementation effort by providing
implementation code for commonly invariant properties of search
trees and leaving other characteristics to be specified as user-
defined index extensions. GiST itself is part of the DBMS kernel.
The index extension developer writes extension code as user
defined functions following GiST’s conventions, without need to
integrate the access method code with DBMS internals.

Stage 3: To improve performance and simplify the index
implementations, the GiST approach was generalized in
IDS/UDO [17] and later in SP-GiST [1] to support spatial
indexes. In IDS/UDO, the main idea is to redesign and separate
the GiST implementation to reduce the number of calls to user-
defined functions. Furthermore, unlike GiST, IDS/UDO and SP-
GiST dynamically load the index implementation at runtime. The
extended GiST system is divided into three sub-components [17]:
the GiST core, the access method extensions (AME) for index-
specific accesses, and the data type adaptor (DTA) for
manipulating index keys. The GiST core is part of the DBMS
kernel and provides interfaces to the AME for each new kind of
index. The AME is written by the index extension developer
following GiST’s coding conventions. It interacts with the GiST
core through a set of C interfaces and callback functions. The
AME developer needs to supply 11 such callback functions. In
addition, the developer must supply DTA code. SP-GiST (Space
Partitioning GiST) is a framework for space-partitioning trees [1]
supporting a wide range space partition algorithms.

Mexima: While all Gist-based approaches require re-engineering
the index code in terms of the Gist coding conventions, Mexima
allows using existing main-memory index implementations or
binary code without any code modifications. An index structure
implemented by a third party without knowledge of DBMS kernel
functionality can be integrated with the DBMS though Mexima by
writing some simple interface code. For index implementations
without support for persistence, Mexima provides transparent
storage persistence. Thus, Mexima makes inclusion of main-
memory index implementations possible with very limited
implementation efforts.

Oracle’s extensible indexing is an SQL-based framework for
integrating domain-specific indexing schemes [26]. The index
developer provides operations in C, C++, Java, or SQL/PSQL for
index creation, index update, and index-scans following the
complex Oracle Data Cartridge Interface (ODCIIndex) interfaces
and coding conventions [26]. By contrast, Mexima allows
including new index implementations without changing any code.

While the approaches above address how to add index
implementations to DBMS kernels, another critical issue is how to
extend the query processor so that it can transparently utilize the
new index structures without forcing users to reformulate queries.
For example, in order to utilize a new index in queries, Oracle’s
ODCIIndex allows associating an ISF with an index access path
[26]. Conjunctive predicates where terms have the following
forms are supported:
 isf(…) relop <value expression>, where relop is one of the

relational operators: ≤, ≥, <,or >.
 isf(…) LIKE <value expression>

Oracle provides guidance [3] [21] on how to reformulate a query
to utilize indexes when it is not exactly matching the above forms.

Rather than manual query reformulations, Mexima transforms a
wide range of query forms containing index sensitive functions
and numerical expressions into queries that contain SSF calls
utilizing domain index structures.

Starburst and DB2 [22] contains an internal rule engine for
transformations of queries represented by a Query Graph Model
(QGM) in C++ structures. Rewrite rules are stored in a rule table,
and classified into different classes. Each class of rewrite rules has
different rewrite heuristics. These rules rely heavily on a rich
function library in C++ to exploit and manipulate queries
representing QGMs. A rule engine is responsible for selecting
rules to be executed along with controls how rules are fired.
Similarly, Volcano [13], Cascades [12], and Exodus [5] also use
rules to transform relational algebra expression into physical
operators.

Rather than procedural code, in Mexima the SSF rewrites are
specified as declarative index meta-data stored in the index
property tables. This is possible since the SSF rewriter is designed
particularly for index utilization rather than for general query
transformations as [5][12][13][22].

QuEval [20] is a framework for performance evaluating spatial
index implementations. Based on parameters specified for each
evaluated spatial index implementation, built-in data generators
produce data sets for performance evaluations. By contrast, the
purpose of Mexima’s test generator is to automatically generate
correctness tests based on index specific meta-data and queries.
Furthermore, unlike QuEval, new complex indexes in C/C++ can
be plugged into Mexima without code changes.

The database generator QAGen [15] provides general purpose
testing of DBMS components. It generates test databases and test
queries based on symbolic execution of queries. In [4] an inverse
relational algebra generates query inputs for given query results.
To implement unit testing for the query optimizer, the framework
in [8] generates test queries based on user-defined transformation
rules specified as trees of relational algebra operators.

In conclusion, no other system provides inclusion, validation, and
utilization of unchanged complex index implementations plugged
into an extensible main-memory DBMS.

3. PRELIMINARIES
The terminology used in the rest of the paper is defined along with
requirements on an index implementation for being suitable to be
plugged into Mexima.

3.1 Terminology
Figure 2 illustrates the components of an index extension:
The index implementation (a) is the code implementing the index
structure. It is left unchanged when plugged into Mexima.
The index API (b) is the provided public interface to the index
implementation.

The index driver (c) is the implementation of
the BAOs and SSFs of an index calling the
index API. Properties of the index driver are
stored as meta-data in the index property
tables.

Figure 2 Index extension components

The above components are implemented by two kinds of
developers:
 The index developer, who fully understands the algorithms and

data structures used in the index implementation, develops the
index code and API independent of Mexima.

 The index extension developer, who has sufficient
understanding of the index and Mexima APIs but no knowledge
of the index implementation and the DBMS kernel, develops the
index driver.

Finally, the end-user defines indexes on tables and uses them in
queries without concern for how they are implemented.

3.2 Prerequisites for index implementations
Mexima is designed bearing in mind the motto: It should not be
necessary to be a database kernel expert to introduce a new
domain index. An index implementation should thus meet the
following two criterion:

 The candidate index implementation should be written in a
regular programming language such as C, C++, or Java. In order
to achieve high performance, C or C++ is preferable, for
example to be able to plug in highly optimized C code such as
the Judy-tries package [2].

 The candidate index implementation should provide APIs for
the functionality of the BAOs and optional SSFs. Missing
mandatory BAOs, e.g. mapping over indexed elements, may
need to be implemented in the driver.

4. MEXIMA
Figure 3 shows the software layers of Mexima. Query processing
uses the query processor of Amos II [29] to call operations that
access the Mexima core. The Mexima core calls implementations

of the BAOs and SSFs in
the extension driver of an
index extension.

In the next section, we
elaborate the
implementation by first

describing aspects of the query processing in Amos II followed by
presentation of Mexima core.

Figure 3 Mexima architecture

4.1 Amos II
Figure 4 illustrates the details of Mexima, including how in
utilizes the Amos II engine.
Amos II provides an object-oriented and functional query
language, AmosQL. The parser translates a query into an object
calculus representation [18] in ObjectLog, which is an extension
of Datalog with objects, types, overloading, and foreign functions.
Then the calculus rewriter transforms the un-optimized object
calculus expression to improve performance. After the rewrites,
the cost-based optimizer produces an execution plan sent to the
execution plan interpreter. Mexima extends the query processor
with calculus rewrite rules for transparent utilization of new
indexes.
AmosQL functions can be defined as foreign functions
implemented in some regular programming language, e.g. C or
Java. In Mexima SSFs are specified as foreign functions to enable
query transformation of user queries into equivalent queries
calling them. By contrast, BAOs are standard operations on
domain indexes implemented as C functions called from the
Mexima core when executing the operations.
In Amos II all data is stored in a continuous memory block called
the database image. The storage manager is responsible for
allocation and de-allocation of physical objects inside the database
image. All data in a database are internally represented as physical
objects managed by the storage manager. Physical objects
allocated inside the image are persistent, which means that they
can be saved on disk and later restored. A physical object, po, is
accessed through an object handle, hdl, which is an indirect
pointer to po. Amos II uses reference counting to manage memory
allocation and automatic real-time garbage collection. When the
reference counter of an object po in the image reaches zero, it is
passed to the garbage collector and thereafter the memory
occupied by po is marked as available for other memory
allocation. Mexima extends the storage manager of Amos II with
specialized external index storage managers for each index type.
The garbage collector is called by the Mexima core when
executing index updates.

4.2 Mexima core components
We now discuss in details the components of the Mexima core. To
illustrate the functionality, we shall use an external index structure
package named IDS through our discussion and examples. It
indexes integers only.
The extension loader

The extension loader loads at run-time the index extension IDS as
a dynamic library or shared object (step 1). It calls the
initialization function (step 2) a_initialize_extension() of the index
driver when the index extension has been loaded to register the
index interfaces as C functions with Mexima (step 3). The index
name IDS and its registered C functions are stored in Mexima’s
BAO table (step 4).

 Figure 5 Extension loader’s steps

The five mandatory BAOs registered in step 3 are: create(),
drop(), put(), delete(), get(), and map(), where create() creates a
new index while drop() removes it, put() inserts a key/value pair
while get() retrieves it, and delete() removes it. The BAO map()
scans the index by applying a specified mapper function on each
index entry.

Some indexes require transforming the keys into integers used as
actual keys, e.g. hashing or space filling curves. This is specified
by the optional BAO compute_key() while the optional BAO
compare_key() compares two computed keys for (in)equality.

For the representation of keys there are two variants supported:

 The index extension stores boxed keys, which are object handles
managed by the storage manager. The data type of object
handles is unsigned integer, so any index extension supporting
integers can store boxed keys. In this case, the BAO
compare_key() is not needed in Mexima, since comparisons of
handles is built-in.

 If an index stores unboxed keys, i.e. the key values themselves,
compare_key() compares keys, while compute_key() unboxes
them.

Index interface dispatcher
When the end-user has placed an index of type IDS on an attribute
of a table, the index interface dispatcher (Figure 4) accesses the
index by invoking the corresponding registered BAOs (create(),
put(), get(),etc.,) in the BAO table.

The index interface dispatcher is also responsible for maintaining
reference counters of boxed keys and values so that the extension
developer need not know about garbage collection.

Index storage manager
If the index implementation has storage facilities to persist index
structures and has registered to Mexima the optional persistency
BAOs save() and restore(), the index storage manager will invoke
them upon saving and restoring the database.

If an index implementation is not persistent, i.e. it is all
implemented in main-memory, Mexima automatically serializes
and de-serializes the index entries. To save the index on disk, the
index storage manager scans over the index entries using the BAO
map() and streams them to disk. Only the primary index is made
persistent, since, when restoring a table by streaming its rows
from disk, the index storage manager also builds the secondary
indexes. In case the index implementation does not balance the

Figure 4 Mexima details

index structure on insertion, the restored index structure might
become unbalanced, and the extension developer can then register
a bulk loader and hook it to restore().

Internally, the index storage manager relies on two system hooks
executed at different states of the system: the before-image-roll-
out hook is executed when a database is saved, and the after-
image-initialized hook is executed when a database is restored.
The index storage manager keeps track of all created indexes to
save and restore them.

Mexima Query Rewriter
In order to utilize a new index in queries, the Mexima query
rewriter transforms them to expose the SSFs of the new index.
The index property table contains the necessary meta-data to do
the transformations. This is further described in Section 6 below.
Mexima Tester
In order to validate that an index implementation is correct, the
Mexima tester automatically generates and runs tests based on
meta-data in the index property tables, as described in Section 7.

4.3 Implementation of an SSF
The index driver bridges Mexima and an index extension by
implementing BAOs and SSFs. SSFs are defined as foreign
functions that also can be used in queries. For example, if the
index type IDS supports range search, it can be implemented by
the SSF foreign function IDS_select_range() registered as follows
in the initialization function of the index driver:
1 // Definition of the foreign function’s signature:
2 a_amosql("create function IDS_select_range(Function

tbl, Integer pos, Number lower, Number upper)
-> Object as foreign 'IDS-range-search';");

3 // Bind C function IDS_range_search address to the
symbol 'IDS-range-search':
a_extfunction("IDS-range-search", IDS_range_search);
Here:
The signature of the foreign function IDS_select_range() is
defined by the a_amosql() call. In the signature the parameter pos
is the indexed position on the function tbl representing an indexed
table, while lower and upper define the range in a search.

 a_extfunction() associates the address of the C-function
implementing the SSF with a symbol used in the signature
definition.

The first two arguments tbl and pos are bound when the SSF is
called in a query. The remaining arguments, here lower and
upper, are called SSF parameters. They are different for different
SSFs and are bound in queries rewritten by the SSF translator
based on meta-data in the index property tables. Even though the
user can also call an SSF with explicit parameters specified in
queries, this is not recommended since it makes the index access
non-transparent.
The following snippet shows the C implementation of
IDS_range_search() in the index driver of the IDS:
1 void IDS_range_search(m_context cxt){
2 a_handle tbl = a_arg(cxt,0); // Table handle
3 int pos = a_int_arg(cxt,1); // Indexed pos
4 int l = a_int_arg(cxt,2); // lower range
5 int u = a_int_arg(cxt,3); // upper range
6 IDShead *ind=(IDShead *)mexima_identifier(pos,

tbl,ids_type);
7 IDScomparer cmp = mexima_get_comparer(pos, tbl,

ids_type);
8 // call the map function of IDS-API:
9 IDSmap(ind->root, l, u,
10 (IDSmapper)rangemapper, cmp, cxt);}

// the function rangemapper() is defined as:
11 int rangemapper(IDSitem *kv,m_context cxt){
12 a_bind(cxt, 4, kv->value);
13 a_emit(cxt);}
The IDS_range_search() accesses the first four function
parameters from the binding context cxt on lines 2-5. Lines 2 and
4-5 dereference the handles to get integer values2. Line 6 assigns
the pointer ind to the index structure on position pos of table tbl.
Line 7 retrieves the compare function of the IDS registered in the
BAO table. On line 9 the index API IDSmap() iterates over the
index ind and calls the function rangemapper(kv,cxt), defined on
lines 11-13, on each index key/value pair kv. On line 12, the row
(value part) of kv is bound to the result (5th parameter). Finally,
the macro a_emit() emits a result tuple to Mexima.

5. ILLUSTRATIVE QUERY EXAMPLES
In this section, we present a database schema and queries to serve
as examples when discussing Mexima’s query processor.
In the table images(id, hist) each row represents an image
identified by id. Search on table image often requires comparing
images. However, it is expensive to compare images bit by bit.
The most common technique is approximating an image with its
features. Thus, a comparison between images becomes the
cheaper comparison between the images’ features. In our
example, the features on an image are represented by its color
histogram stored in the attribute hist as a vector of numbers.
To speed up search on table images, there is a B-tree index on
column id and an X-tree index [27] on column hist. X-trees
supports efficient proximity search of high-dimensional data.
Main-memory implementations of B-trees and X-trees [30] are
plugged-in to Mexima.
In the following example, we use the ObjectLog representation
into which the queries are translated to illustrate the query
processing.
Q1: find images q whose identifiers are between 30 and 100. In
this case, there is no input parameter:
Q1(q):-
1 images(q, hist_q) AND
2 q >= 30 AND
3 q <= 100

Q2: For a given image x find the images q whose feature vectors
are closer than epsilon (eps = 0.11). In the query, the function
distance() computes the Euclidean distance of two vectors.
Q2(x, q) :-
1 images(x, hist_x) AND

2 images(q, hist_q) AND

3 distance (hist_x, hist_q) <= 0.11

Q3: find the k = 10 closest images compared to a given image
bound to x. We use the ‘knn’ function to return the k nearest
neighbors in table ‘images’ to the input color histogram of x. knn()
uses the table ‘images’ that maps from an object identifier to its
feature vectors.
Q3(x, q) :-

1 images(x, hist_x) AND
2 images(q, hist_q) AND
3 (q, hist_q) in knn(hist_x, 10, #’images’)

2 The system raises an error if the parameters are not integers.

Q4: We note that the distance() function used in Q2 expresses the
distance between vectors, but not similarity. To define similarity,
we define query Q4 using the following formula:

threshold
qpancedist

),(1

1

Q4 finds images q that are 90 percent similar to a given image
bound to x:
Q4(x, q):-
1 images(x, hist_x) AND
2 images(q, q) AND
3 1/(1+distance(hist_x, hist_q)) >= 0.90

6. MEXIMA QUERY REWRITER
This section presents the SSF Translator. It transforms a query
into an equivalent one where SSF calls are exposed to the query
optimizer. If this transformation is not done, the optimizer is
unable to utilize the index.
The system also does other rewrite tasks not related to indexing,
e.g.: view expansion, elimination of common sub-expressions,
and compile-time evaluation, which are not focus of this paper.

6.1 SSF translation rules
An SSF translation rule describes how query fragments are
translated to a new format to expose SSFs. The translation rules
can rewrite conjunctions in queries having terms of one the
following query fragment forms:
Form (i): P(…iv,..) AND (iv r1 expression) AND
 (iv r2 expression) AND
 . . .
 (iv rn expression)
Here, iv is a variable bound to an indexed column of table P(…).
We say iv is an indexed variable. ri are comparison operators in
the set relop, ri relop, where relop ={=, <, >, >=, <=}.
For example, the following fragment in Q1 is of Form (i):
images(q, hist_q) AND q >= 30 AND q <= 100.
Form (ii): P(…iv,..) AND isf(…,iv, …) r1 expression AND
 isf(…,iv, …) r2 expression AND
 . . .
 isf(…,iv, …) rn expression
Here, iv is an indexed variable occurring in parameter position of
an index sensitive function isf().
For example, the following fragment in Q2 is of Form (ii):
images(q, hist_q) AND distance(hist_x, hist_q) <= 0.11
Form (iii): P(…,iv,…) AND (..,iv,..) in isf(…..,P,..)
Here the isf() is an index sensitive function that takes a table P as
argument and emits a set of rows. For example, Form (iii) occurs
in Q3:
images(q, hist_q) AND (q,hist_q) in knn(hist_x, 10, #’images’)
If a query contains some fragment that matches any of Form (i),
(ii), or (iii), the query has the potential of being supported by the
index on iv. If this is the case, the query fragment should be
transformed into a format where the index is exposed through an
SSF call. For each kind of index, the index developer can define
SSF translation rules, which transform query fragments that match
Form (i), (ii), or (iii), into the corresponding SSF call. The SSF
translation rules are defined as rows in the SSF translation table.
Table 1 is an example of translation rules for B-trees and X-trees
indexes.

Table 1 SSF translation table

itype pr ISF Relops SSF pf
1 B-tree 1 Nil >=, <= btree_select_range F
2 B-tree 2 Nil <= btree_select_open F
3 X-tree 1 distance <= xt_proximity_search T
4 X-tree 2 Knn nil xt_knn_search F
Each row represents an SSF translation rule. It has the attributes
itype, pr, isf, relops, ssf, and pf where:
 itype is a user-defined index type.
 pr is the translation rule priority for a given itype.

 isf() is an index sensitive function. isf is nil in Form (i).

 relops is a set of allowed relational operators in {=, <, >, >=,
<=}. relops is nil in Form (iii). The system knows how to infer
open inequalities from closed ones.

 ssf() is a special search function supported by the index type.

 pf is the prune and filter flag. When it is true (T), the Mexima
query rewriter applies the two-step paradigm [24], in which the
prune step first prunes irrelevant data by calling the SSF to
return a small set of candidates and then the filter step applies
the original condition to carefully examine each candidate. Here
it is important that pruning is done before the filtering.

For a given query fragment of Form (i), (ii), or (iii), the system
finds the matching SSF translation rules. Form (i) matches SSF
translation rules where isf is empty, Form (ii) matches rules where
both isf and relops are non-empty, while Form (iii) matches rules
where there is an isf but no relops. If more than one rule matches,
the priority pr determines which one. If pr is nil and more than
one rule applies, the system will pick one of the matching rules.

In Table 1 the translation rules TR1 – TR2 together define query
fragments where B-trees interval search should be used, while
TR3 define when X-trees proximity search should be used. The
proximity search requires pruning so pf is true. Lastly, TR4
defines the translation from the ISF knn() to the SSF
xt_knn_search().

If an SSF translation rule for index type itype matches a query
fragment of Form (i), (ii), or (iii) where iv the indexed variable,
the SSF translator will replace P(.., iv, …), isf(…), and relops with
the corresponding SSF defined by the rule. If the index translator
finds no applicable translation rule, the query is kept intact.

For example, by applying rule TR1 on Q1, it is translated into
calling the SSF btree_select_range():

TQ1(q):-
1 (q,_) in btree_select_range(#’images’, 0, 30,100)

The first argument of the SSF btree_select_range() is the table
images and the 2nd argument is position 0 of the indexed column
id. We say that the corresponding B-trees index on column id is
exposed by the SSF btree_select_range().

Analogously, applying rule TR3 on Q2 yields the transformed
query TQ2:

TQ2(x, q):-
1 image(x, hist_x) AND
2 (q, hist_q) in xtree_proximity_search(#’images’,

 1, hist_x, 0.11) SAND

3 distance (hist_x, hist_q) <= 0.11

Since TR3 has the prune and filter flag set, line 2 in TQ2 prunes
away most images and then line 3 filters them with the full
condition. The operator SAND is an order-preserving conjunction.
TQ2 exposes the X-trees index on column hist by the SSF
xtree_proximity_search().

Finally, applying rule TR4 on Q3 yields the transformed query
TQ3 that exposes the X-trees index by the SSF xt_knn_search():

TQ3(x, q):-
1 image(x, hist_x) AND
2 (q,_) in xt_knn_search (#‘images’, 1, hist_x, 10)

For query Q4, neither of Form (i), (ii), or (iii) match since the ISF
distance() is hidden inside the numerical expression. We next
discuss our general solution for this case.

6.2 Extended Algebraic Query Inequality
Transformation
The AQIT algorithm [28] translates a class of numerical
expressions with inequalities over variables indexed by B-trees
into query fragments of Form (i). The translations use a set of
algebraic inequality transformations. AQIT can transform
conjunctive query fragments having terms of Form (iv):

Form (iv) P(…iv,..) AND F(iv) relop expression
Here iv is an indexed variable and F(iv) is an expression
consisting of a combination of transformable functions T.
Currently T {+, -, /, *, power, sqrt, abs} and the set can be
extended. AQIT tries to reformulate the query condition into an
equivalent condition
iv relop’ F’(expression) of Form (i) where the index is exposed to
the query optimizer. The algebraic inequality transformations in
AQIT automatically determine relop’ and F’(expression). If
AQIT fails to transform the condition, the original query is
retained.
However, AQIT cannot translate numerical expressions as in Q4
because the ISF distance() is hidden inside the expression.
Therefore, in Mexima, AQIT is generalized to translate
inequalities over ISFs into query fragments of Form (ii). The
extended AQIT automatically transforms conjunctive fragments
with terms of Form (v):

Form (v) P(…,iv,…) AND F(isf(…,iv, …)) relop expression
Here F(isf(…,iv,…)) is an expression consisting of a combination
of transformable functions T, and relop is an inequality
comparison. The extended AQIT tries to reformulate the query
fragment into isf(…,iv,…) relop’ F’(expression) of Form (ii)
where the index on iv is exposed.
For Q4, the system first applies the following algebraic inequality
transformation:

 (A/x >= B A >0 B >0) x <= A/B
The query will be transformed to TQ4-intermediate0:

TQ4-intermediate0(x, q):-
1 images(x, hist_x) AND
2 images(q, hist_q) AND
3 (1+ distance (hist_x, hist_q)) <= 1/ 0.9
Then, the system applies the transformation:

 x + A <= B x <= B – A
The query will be transformed to TQ4-intermediate1:
TQ4-intermediate1 (x, q):-
1 images(x, hist_x) AND
2 images(q, hist_q) AND
3 distance (hist_x, hist_q) <= 1/0.9 -1

TQ4-intermediate1 matches Form (ii), which allows the SSF
translator to apply translation rule TR3. This transformation
produces the final TQ4:

TQ4 (x, q):-
1 images(x, hist_p) AND
2 (q, hist_q) in xtree_proximity_search(

 ‘image’, 1, hist_p, (1/0.9 - 1))
AND

3 1/(1+distance (hist_p, hist_q)) >= 0.9

7. THE MEXIMA TESTER
To validate that a plugged-in index implementation is correct,
Mexima provides automatic testing procedures of BAOs and
SSFs. Both BAOs and SSFs are tested based on meta-data in the
index property tables. For each index type, a number of test
queries are automatically generated and executed. The test queries
use data generators, which are queries specified by the extension
developer that generate index keys for testing BAOs and SSFs.
The system has a library of predefined data generators
implemented as foreign functions calling the C++ library
random.h to support randomly generated numbers and vectors of
numbers respecting various distributions. New data generators can
easily be defined is terms of these as queries.
For example, the built-in data generator uniform_int(n,l,u)
generates n integers in range [l,u]. For complete testing, the result
set always includes the border values l and u. The data generator
uniform_vec_real(n,d,l,u) generates a set of n vectors of
dimension d where each element is a real number in the range
[l,u], including l and u.

7.1 The BAO Tester
The BAO tester automatically tests that the BAOs of an index
implementation are correct, i.e. correct behavior of put(), get(),
delete(), map(), and drop(). It also provides a function to produce
a report of the execution times of each BAO.
The BAO tester is based on data generators specified as queries
stored in the index key generator table (Table 2). The extension
developer populates the table and specifies how index keys to be
tested are generated. Based on the generated keys, the BAO tester
runs a number of built-in algorithms described below to test basic
index functionality.

Table 2 Index key generator table
Idxtype Index key

type
Index KeyGenerators

1 B-tree Number select uniform_int(1000,0,10000)

2 X-tree Vector-
Number

select uniform_vec_real(1000,5,0,1)

3 X-tree Vector-
Number

select
CSV_file_rows(“colorhistogram.csv”)

In Table 2 the first row specifies a correctness test of B-tree
indexes by generating 1000 uniformly distributed integer keys in
range 0-10000. The 2nd row specifies a correctness test for X-trees
by generating 1000 uniformly distributed vectors of real numbers
of dimension 5 in range [0, 1]. The last row tests X-trees by
reading index keys from a file “colorHistogram.csv”.
Based on the index key generator table, the BAO tester will run
the following tests:

 Lookup tests that all inserted keys are also stored in the
index.

 Mapping tests that the mapper iterates over all inserted
key/values.

 Deletion tests that iteratively deleting one key at the time
works.

 Remaining verifies that no keys are remaining after all keys
have been deleted individually.

 Dropping tests that the drop() operation removes all
key/values.

The result of the BAO tester is an error report that specifies for
each test case, which BAO functionality failed.
The BAO tester does the following:
1. Create two tables, the indexed table: I_Table(k, v), and the

reference table: R_Table(k, v). On column I_Table.k the
system puts an index of type IDS, idx(I_Table.k), while on
column R_Table.k there is a hash index idx(R_Table.k).

2. For each test case, the BAO tester first calls the key
generator. For each generated key k and a corresponding
random number v, it inserts a row (k,v) into both I_Table and
R_Table using put(k,v).

3. For lookup, the BAO-tester iterates though the R_Table to
test correctness of put() and get(). For each key/value in
R_Table it tests that the result of accessing the key in I_Table
calling get() returns the same value.

4. For mapping the BAO tester iterates over each (k,v) in
I_Table using map() and tests that the key/value pair is
present in R_Table.

5. For deletion, the BAO tester uses map() to iterate over all
(k,v) in I_Table calling delete(k) followed by get(k) to check
that each value is actually deleted.

6. For remaining, the system verifies that the table is empty
after step 5.

7. For dropping, the table is repopulated, then drop() is called,
and eventual remaining keys are reported.

7.2 The SSF tester
The purpose of the SSF tester is to validate that the result from an
SSF is correct. Based on user-defined generators of SSF
parameters, the system automatically generates test queries for
each SSF translation rule of an index type IDS. The tests are
based on that the SFF translation rules provide transparent
rewrites of a generated test query to utilize the index through the
SSF. When an index is defined for some attribute and can be
utilized by some SSF translation rules in a test query, the query
should return the same result as when there is no index or no
matching SSF translation rule.
In order to test an SSF, the user needs to specify data generators
for SSF parameters as queries stored in the SSF parameter
generator table (Table 3).

Table 3 SSF parameter generator table
Index

type
SSF name SSF parameter generator SSF

Parameter
types

1 B-tree btree_select_ran
ge

select l, u
from Number l,
Number u
 where l in uniform_int(100,
0,10000) and u in
uniform_int(100,0,10000)

(Number,
Number)

2 B-tree btree_select_ope
n

select u
from Number u
 where u in uniform_int(100,
0,10000)

(Number)

3 X-tree xtree-proximity-
search.

select x, d from Vector of
Number x, Number d where
x in
uniform_vec_real(100,5,0,1)
and d in uniform_real(100,0,
1.4)

(Vector
of
Number,
Number)

4 X-tree xtree_knn-search select x, k from Vector of
Number x, Number k where x
in
uniform_vec_real(100,5,0,1)
and k in uniform_int(0,5)

(Vector
of
Number,
Number)

In Table 3 the first row tests btree_select_range() by generating
the two SSF parameters as 100 pairs of random integers in range
[0, 1000]. The 2nd test case validates btree_select_open() by 100
random numbers in range [0,1000]. The 3rd test case validates X-
trees proximity search by generating 100 pairs (x,d) where x is a
5D vector of random numbers in range [0,1] and d is a random
number in range [0,1.4]. The fourth test case validates KNN
search with an X-tree by generating 100 pairs (x,k) where k is the
number of closest neighbors to be tested. There can be several test
cases specified per SSF.
For each test case in the SSF parameter generator table (Table 3),
the SSF tester generates one SSF validation query VQ for each
SSF translation rule TR in the SSF translation table (Table 1). The
generated validation query VQ contains a query fragment of form
Fm matching the TR.
The SSF translator will rewrite the VQ using the translation rule
TR when VQ contains query fragments of form Fm matching the
TR. In order to guarantee that no other TR matches VQ, all other
translation rules matching Fm are temporarily turned off when
executing VQ. For each index type, this test procedure validates
both the TRs and the SSFs.
Meta-data to generate each VQ is obtained by joining the SSF
translation rule table (Table 1), the SSF parameter generator table
(Table 3), and the index key generator table (Table 2), to get for
each test case the index key type, the SSF name, the SSF
parameter generator, and the SSF parameter types, respectively.
For each test case and TR, two queries VQi and VQr are generated.
VQi is a query over I_Table, which is rewritten by the chosen TR
to call the SSF. VQr is the same query over the R_Table. If the
SSF is correct, both queries should return the same result.
Depending on which form Fm is matching TR the validation
queries are generated as follows:
Case 1: TR matches Form (i).
Assume the SSF parameters types in the SSF parameter generator
table are T1,.., Tm (Table 3), that IT is the index key type in the
index key generator table (Table 2), that SPG is the SSF
parameter generator (Table 3) for parameters p1,…,pm, and that ri
are the relops in Form (i). Then the validation query VQi has the
following format:

select iv, v
from IT iv, Number v,
 T1 p1, T2 p2,.., Tm pm
where I_Table(iv, v) and
 (p1, p2, …,pm) in (SPG) and
 (iv r1 p1) and
 (iv r2 p2) and
 . . .
 (iv rm pm);

For example, the automatically generated validation query VQi for
test case 1 in Table 3 is:
select iv, v
from Number iv, Number v, Number p1, Number p2
where I_Table(iv, v) and
 (p1, p2) in (select l, u from Number l, Number u
 where l in uniform_int(100, 0,10000) and
 u in uniform_int(100,0,10000)) and
 iv >= p1 and iv <= p2;
VQr is the same query with I_Table replaced with R_Table.
Case 2: TR matches Form (ii).
VQi has the following format, assuming the ISF() has arity j.

select iv, v
from IT iv, Number v,
 T1 p1, T2 p2,.., Tm pm,,
 Tj res
where I_table(iv, v) and
 (p1, p2, …,pm) in (SPG) and
 res = ISF (iv, p1,..,pj-1) and
 (res r1 pj) and
 . . .
 (res rm pm);

For example, the generated validation query VQi for test case 3 in
Table 3 is:
select iv, v
from Vector of Number iv, Number v, Vector of Number p1,
 Number p2, Number res
where I_Table(iv, v) and
 (p1, p2) in (select x, d from Number x, Number d
 where x in uniform_vec_real(100,5,0,1) and
 d in uniform_real(100,0, 1.4)) and
 res = distance(iv, p1) and res<= p2;
Case 3: When TR matches Form (iii) the generator validation
query has the form:
select iv, v
from IT iv, Number v,
 T1 p1, T2 p2,.., Tm pm,,
where I_table(iv,v) and
 (p1, p2, …,pm) in (SPG) and
 (iv,v) in ISF (p1,..,pm, I_Table)
For example, the generated validation query VQi for test case 4 in
Table 3 is:
select iv, v
from Vector of Number iv, Number v, Vector of Number p1,
 Number p2
where I_Table(iv, v) and
 (p1, p2) in (select x, k from Number x, Number k
 where x in uniform_vec_real(100,5,0,1) and k in
 uniform_int(0,5)) and
 (iv,v) in knn(p1, p2, #’images’);

The BAO and SSF testers are run on all chosen index
implementations to validate that they were correct. One bug in the
R* package [7] and two bugs in the X-tree implementation [30]
were found by the SSF tester.

8. EXPERIMENTS
We measured the performance of using Mexima for main memory
implementations of B-trees [30], Linear-Hashing [30], Judy-Tries
[2], X-trees [30], and R*-trees [7].
We conducted experiments in several perspectives. First, in
Experiment A we compared the coding effort of the different

index implementations based on disk-based GiST and SP-GiST
with the corresponding main-memory index extensions in
Mexima w.r.t. code size.
In Experiment B, we compared the execution times of calling a
plugged-in index through the BAOs put(), get(), map(), and
delete() with the execution times of the corresponding stand-alone
implementations in C/C++. The absolute time difference was
calculated as overhead. The overhead of both boxed and unboxed
keys were investigated.
In Experiment C, the importance for scalability of using SSF
translation rules is investigated. The queries were run with and
without SSF translation enabled.
All performance experiments were repeated 10 times, from which
the average figures were calculated after removing outlier results
if any.
The experiments were run under Windows 7 on an Intel (R)
Core(TM) i5 760 @2.80GHz 2.93 GHz CPU with 4GB RAM,
using the Visual Studio 10 32 bits C compiler.
Experiment A – Code size
Table 4 shows the number of C/C++ code lines of different index
interface implementations in PostgreSQL version 9.3.5
(http://www.postgresql.org/ftp/source/v9.3.5/) and SP-GiST
version 0.0.1 [25], compared to the corresponding Mexima
drivers. We excluded comments in the comparisons. The
compared code is what an index extension developer needs to
provide to interface the DBMS extensibility frameworks.

Table 4 Number of code lines
 GiST SP-GiST Mexima Factor

B-tree 5031 -- 116 43

KD-tree -- 572 118 5

R-tree 1133 -- 120 9.5

Trie -- 580 120 5

In PostgreSQL, the GiST-based B-tree was implemented as a fully
separate module from the GiST core, while parts of the R-tree
implementation are present in the GiST core. Thus, the number of
code lines for R-trees with GiST is underestimated in the table.
Table 4 shows that the code size of including a main-memory
index implementation in Mexima is 5–43 times smaller than the
corresponding disk based index plug-in with GiST.
Notice that the Gist based index implementations are specially
designed to follow the Gist coding conventions, while with the
Mexima framework all used index implementation code is left
unchanged, including memory allocation, which is particularly
complex in Judy-tries.
To conclude, Mexima provides introduction of domain indexes
with relatively little coding effort for the interface between the
untouched domain index implementation and the Mexima kernel.
This allows to plug-in very complex main-memory index
implementations with small efforts.
Experiment B – Mexima BAO overhead

The purpose of this experiment is to investigate the performance
overhead of plugging-in an existing index implementation in
Mexima. Figure 6 illustrates how the execution time is spent in
different layers of a plugged-in index implementation.
Here:

 op: time spent to call algebra operations on an indexed table
to add, delete, access, or map.

 mc: time spent to dispatch and call the BAO function in an
algebra operation. This includes time spent for type checking
and automatic garbage collection.

 ed: time spent in the index extension drivers for BAOs and
SSFs.

 st: time spent on actually running the untouched index
implementation code. This is the actual work to manipulate
the index, i.e. the time to run the stand-alone C/C++
implementation.

In the experiment, we measured the execution times for the
different index implementations both when plugging-in the
implementation into Mexima and when running the

implementation as a stand-alone C/C++
program. The total execution time for
using a plugged-in index implementation
is tot = op + mc + ed + st. The Mexima
overhead, o, of calling a plugged-in index
implementation is calculated as o= op +
mc + ed.

Figure 6 Execution layers
In the experiments the performance of B-tree, Linear Hashing,
and Judy-Trie implementations were measured for a database of
size S with uniformly distributed random key/value pairs. The

execution times of put(), get(), and delete() per call were
measured by loading the database and then measuring the time of
doing 1000 random inserts, lookups, and random deletes,
respectively. The time to call map() was measured by iterating
over the indexed table and dividing the total time with S. The time
for generating data and populating the reference tables were
excluded in all measurements.

Table 5 shows the average Mexima overheads o in microseconds
for the BAOs put(), get(), delete(), and map(). The database size S
was 5 million key/value pairs. The total overhead was measured
with both boxed keys bo and unboxed keys o. The standard
deviations in all cases were less than 0.03 µs. The overhead of
Mexima is well below one µs per call and particularly low for
unboxed keys, so unboxed keys are used in all remaining
experiments. Table 5 furthermore breaks down the percentages of
how the overhead o is spent in the different layers op, mc, and ed.

Table 5 Mexima overhead for different BAO calls (µs)
BAO Index bo o %op %mc %ed

Put LH 0.89 0.56 51.7% 36.2% 12.1%

B-tree 0.89 0.53 52.3% 35.8% 11.9%

Judy-trie 0.87 0.54 52% 35.3% 11.7%

Get LH 0.57 0.26 37.2% 47.1% 15.7%

B-tree 0.59 0.23 36.6% 47.6% 15.7%

Judy-trie 0.57 0.22 36% 48% 16%

Map LH 0.21 0.07 32.1% 50.9% 17%

B-tree 0.19 0.07 34.4% 49.2% 16.4

Judy-trie 0.23 0.07 33.7% 49.7% 16.6%

Delete LH 0.65 0.42 45% 41.3% 13.7%

B-tree 0.64 0.42 43.3% 42.5% 14.2%

Judy-trie 0.63 0.41 43.4% 42.5% 14.1%

Figure 7 shows insert times in microseconds of different index
implementations with unboxed keys compared with the
corresponding stand-alone implementations for different database
sizes. Analogously, Figures 8, 9, and 10 show lookup, delete, and

map time per call with unboxed keys.
As expected, stand-alone index implementations were faster than
their corresponding plug-in indexes using the same
implementation because of the Mexima overhead. The overhead is
not dependent on the database size for any of the methods as
shown in Figures 7, 8, 9, and 10. The system carefully makes sure
that an index is not accessed more than once in an operation, as

 Figure 7 Put() overhead Figure 8 Get() overhead Figure 9 Delete() overhead

Figure 10 Map() overhead Figure 11 Q1 - Range search

that would make the overhead larger as the database grows. For
unboxed keys, the overhead is less than 0.6 µs and depends on the
index driver implementation of the BAO, not the database size.
The ease of plugging-in index implementations in Mexima
without code changes with very low overhead shows that Mexima
is an excellent tool for comparing domain index implementations.
In particular not changing the index implementation allows to
easily comparing highly optimized and complex domain-index
implementations such as Judy-tries with other implementations.
For example, Figures 7, 8, and 10 show that Judy-tries are better
than B-trees for inserts and lookups, but not for mapping.
Experiment C – Impact of SSF translation rules
The purpose of this experiment is to show the importance of
Mexima rewrite rules for scalable processing of user queries
utilizing plugged-in domain indexes. In Figure 11 the
performance of range search query Q1 (Form (i)) with and
without the SSF translation rules is investigated for B-trees and
Judy-tries. Without the SSF translation rules the index is not
utilized, so the system has to use the map() function to iterate over
the index and then do post-filtering on every row. Figure 11 also
shows that B-trees are better than Judy-tries for interval search.
In Figure 14, the performance of 2D KNN-search is investigated
for X-trees and R*-trees. Query Q3 (Form (ii)) is used with the
relation Images populated with 2D point vectors from a real data
set [9], which is a collection of California road points. We
enlarged the original data set to different data sizes by randomly
generating points from 1.S to 14.S with S=210480 with the same
range distribution as the origin. When SSF translation is enabled,
Q3 with k =10 scaled substantially better since the index was
utilized. We also notice that the X-tree implementation performed
as good as the R*-tree implementations for the given 2D database.
In Figure 12, the performance of high dimension 9D proximity
search for Q2 (Form (iii)) is measured with the X-tree
implementation, with and without SSF translation rules enabled.
In this experiment, we used the ColorHist database [6]. The
database comprises of 9D (3 x 3) - color histograms extracted
from S=70000 images provided by the Corel Image Database. As
for the road points, we enlarged the size of the database from 1.S
to 14.S.
Figure 13 shows the scalability improvement by rewriting
similarity queries for Q4 (Form (v)) using the X-tree
implementation and the ColorHist database.
From experiment C, we conclude that SSF translation rules are
critical for scalability of Mexima’s extensible indexing, because
they make the indexes be utilized in queries. To evaluate the
quality of domain index implementations, plugging-in and
comparing with ease proposed domain index implementations, as
in Experiment C, are critical.

9. CONCLUSIONS & FUTURE WORK
The Mexima framework allows transparent plugging-in of main-
memory domain index implementations into a main-memory
DBMS without code changes. To plug-in a domain index

implementation, the extension developer writes a simple Mexima
driver for the universal index operations (BAOs) and the domain
index specific search functions (SSFs).
To provide transparent utilization of SSFs in queries the extension
developer populates an SSF translation table in which each row is
an SSF translation rule that describes parameters for the query
processor matching different query fragment forms. Combined
with algebraic rewrites, the SSF translation rules provide the
necessary meta-data for the query processor to generate scalable
execution plans that utilize the index by calling its SSF operators.
To validate the correctness of new indexes, Mexima generates test
queries based on index-specific data generators specified as
queries by the extension developer. The index key generator table
contains queries that generate index keys to be tested for correct
BAO behavior. The SSF parameter generator table contains
queries that generate arguments of the SSF operators to be tested.
Based on these two tables and the SSF translation table, Mexima
automatically generates and executes test queries for the new
index.
To show that existing index implementations can be transparently
plugged into Mexima, five different main-memory index
implementations were evaluated without changing their source
code. In particular, the very complex Judy-trie index
implementation [2] was included and compared with a textbook
B-tree implementation.
The overhead of Mexima for BAOs of the different plugged-in
index implementations was evaluated, showing that the current
Mexima implementation has overhead in the sub-µs range per
BAO call.
The importance of SSF translations was investigated for chosen
index implementations showing the SSF translation rules provide
scalable performance of declarative queries over tables indexed by
plugged-in domain indexes.
The ease of plugging-in index implementations in Mexima
without code changes and with very low overhead shows that
Mexima is an excellent tool for comparing domain index
implementations. In particular not changing the index
implementation allows to easily utilizing highly optimized and
complex domain-index implementations such as Judy-tries.
For future work, other kind’s indexes will be plugged into
Mexima to meet the specific requirements from other application
domains. This is likely to put additional requirements on
Mexima’s query processor. Furthermore, also index performance
measurements can be automated by extending the Mexima’s tester
to include performance tests.
Altogether, Mexima provides a complete and extensible platform
for domain index integration and evaluation, as required in many
scientific applications.

 Figure 12 Q2 – Proximity search Figure 13 Q2 - Similarity search Figure 14 Q3-KNN search

10. ACKNOWLEDGMENTS
This work was supported by the Swedish Foundation for Strategic
Research, grant RIT08-0041 and by the EU FP7 project Smart
Vortex.

11. REFERENCES
[1] W. G. Aref and I. F. Ilyas: An extensible index for spatial

databases, Proc. SSDBM, pp 49–58, 2001.
[2] D. Baskins: Judy home page [http://judy.sourceforge.net/],

2003.
[3] D. Benoit, D. Das, K. Dias, K. Yagoub, M. Zait, and M.

Ziauddin: Automatic SQL tuning in Oracle 10g, Proc. VLDB
Conf, pp 1098-1109, 2004.

[4] N. Bruno, S. Chaudhuri and D. Thomas: Generating Queries
with Cardinality Constraints for DBMS Testing, IEEE
Transactions on Knowledge and Data Engineering, 18(12),
pp 1721-1725, 2006

[5] M. Carey, et al: The architecture of the EXODUS extensible
DBMS, Proc. 1986 international workshop on Object-
oriented database systems. IEEE Computer Society Press,
1986.

[6] Color Histogram Data Set:
http://archive.ics.uci.edu/ml/datasets/Corel+Image+Feature
s

[7] Efficient and Lightweight In-Memory Implementation of R*-
Tree: http://www.ics.uci.edu/~salsubai/rstartree.html.

[8] M. Elhamali and L. Giakoumakis: Unit-testing Query
Transformation Rules, Proc. 1st International Workshop on
Testing Database Systems, 2008

[9] L. Feifei, D. Cheng, M. Hadjieleftheriou, G. Kollios, and
S.H. Teng: On trip planning queries in spatial databases,
Proc. Symposium on Spatial and Temporal Databases, pp.
273 - 290, 2005.

[10] R. A. Finkel, and J. L. Bentley: Quad trees: A data structure
for retrieval on composite keys. Acta Inf., vol. 4, pp 1–9,
1974.

[11] E. Fredkin: Trie memory, Communications of the ACM, 3(9),
pp 490–499, 1960.

[12] G. Goetz: The cascades framework for query optimization,
IEEE Data Eng. Bull. 18(3), pp 19-29, 1995.

[13] G. Goetz, W. J. McKenna: The Volcano optimizer generator:
Extensibility and efficient search, Proc. ICDE Conf., IEEE,
pp. 209-218, 1993.

[14] A. Guttman: R-trees: A dynamic index structure for spatial
searching, Proc. SIGMOD Conf., pp 47–57, 1984.

[15] F. Haftmann, D. Kossmann and E. Lo: A framework for
efficient regression tests on database applications, The VLDB
Journal, 16(1), pp. 145-164, 2007

[16] J Hellerstein. M., J. F. Naughton, and A. Pfeffer:
Generalized search trees for database systems, Proc. VLDB
Conf., pp 562–573, 1995.

[17] M. Kornacker: High-performance extensible indexing, Proc.
VLDB Conf., pp 699–708, 1999.

[18] W. Litwin and T.Risch: Main Memory Oriented
Optimization of OO Queries Using Typed Datalog with
Foreign Predicates, IEEE Transactions on Knowledge and
Data Engineering, 4(6), 1992

[19] A. C. D. Neto, R. Subramanyan, M. Vieira, and G. H.
Travassos: A survey on model-based testing approaches: a
systematic review. Proc of the 1st ACM international
workshop on Empirical assessment of software engineering
languages and technologies, in conjunction with the 22nd
IEEE/ACM International Conference on Automated Software
Engineering (ASE), ACM, New York, NY, USA, pp 31-36,
2007.

[20] M. Schäler, A. Grebhahn, R. Schröter, S. Schulze, V.
Köppen, and G. Saake. 2013: QuEval: beyond high-
dimensional indexing à la carte, Proceedings of the VLDB
Endowment, 6(14), pp 1654-1665, 2013.

[21] Oracle Inc: Query Optimization in Oracle Database 10g
Release 2. http://www.oracle.com/technetwork/database/bi-
datawarehousing/twp-general-query-optimization-10gr-
130948.pdf , 2005.

[22] H. Pirahesh, T.C. Leung, & W. Hasan: A rule engine for
query transformation in Starburst and IBM DB2 C/S DBMS.
Proc. ICDE Conf., pp. 391-400, 1997.

[23] J. T. Robinson: The KDB-tree: a search structure for large
multidimensional dynamic indexes, Proc SIGMOD Conf., pp
10-18, 1981.

[24] S. Shekhar and S. Chawla: Spatial Databases: A Tour,
Prentice Hall, ISBN:013-017480-7, 2003

[25] SP-GiST: https://www.cs.purdue.edu/spgist/
[26] J. Srinivasan, R. Murthy, S. Sundara, N. Agarwal, and S.

DeFazio: Extensible indexing: a framework for integrating
domain-specific indexing schemes into oracle8i. Proc. ICDE
Conf., pp 91–100, 2000. 

[27] B. Stefan, A.K. Daniel, H-P. Kriegel: The X-tree : An Index
Structure for High-Dimensional Data, Proc. VLDB Conf., pp
28-39, 1996.

[28] T. Truong, T. Risch: Scalable Numerical Queries by
Algebraic Inequality Transformations, Proc. Database
Systems for Advanced Applications (DASFAA), pp 95-109,
2014.

[29] T.Risch, V.Josifovski, and T.Katchaounov: Functional Data
Integration in a Distributed Mediator System, in P.Gray,
L.Kerschberg, P.King, and A.Poulovassilis (eds.): Functional
Approach to Data Management - Modeling, Analyzing and
Integrating Heterogeneous Data, Springer, ISBN 3-540-
00375-4, 2004.

[30] http://www.it.uu.se/research/group/udbl/mexima
[31] T. J. Lehman and M. J. Carey: A study of index structures for

main memory database management systems,” in PVLDB
’86, 1986.

[32] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T.
Kaldewey, V. W. Lee, S. A. Brandt et al.: Fast: Fast
architecture sensitive tree search on modern cpus and gpus,
in SIGMOD ’10, 2010

[33] V. Leis, A. Kemper, and T. Neumann: The adaptive radix
tree: Artful indexing for main-memory databases, in ICDE
’13, 2013

[34] J. Rao, and K. A. Ross: Making B+-trees cache conscious in
main memory. ACM SIGMOD Record. Vol. 29. No. 2.
ACM, 2000

http://www.ics.uci.edu/~salsubai/rstartree.html
https://www.cs.purdue.edu/spgist/

