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Abstract. Object-oriented database management systems are often motivated by their
support for new emerging application areas such as computer-aided design and analysis
systems. The object-oriented data model is well suited for managing the data complexity
and representation needs of such applications. We have built a system for finite element
analysis using an object-relational database management system. Our application
domain needs customized numerical data representations and an object-oriented data
model extended with multi-methods where several arguments are used in type
resolution. To efficiently process queries involving domain functions in this
environment without having to copy data to the application, support is needed for
queries calling multi-methods with any configuration of bound or unbound arguments,
called multi-directional functions. We show how to model multi-directional functions
views containing matrix algebra operators, how to process queries to these views, and
how to execute these queries in presence of late binding.

1  Introduction

Object-oriented database management systems (OODBMSs) [8][3][34] are often
motivated by applications such as systems for computer-aided design and analysis
[4][5][19]. The object-oriented data model is well suited for managing the complexity
of the data in such applications. We have built a system for finite-element analysis
(FEA) storing numerical data in an object-relational DBMS [25][26][27]. The
performance requirements on the numerical data access in an FEA model are very
high, and special methods have been developed for efficient representation of, e.g.,
matrices used in FEA. For instance, a fundamental component in an FEA system is a
equation solving sub-system where one is interested in solving linear equation



systems such as K  × a = f where a is sought while K  and f are known. Special
representation methods and special equation solving methods must be applied that are
dependent on the properties of the matrices. To get good performance in queries
involving domain operators it is desirable to store both domain-oriented data
representations and functions in the database. It is desirable to be able to evaluate the
functions in the database server in order to avoid data shipping to the client. For this
modern Object-Relational DBMS therefore provide User Defined Functions (UDFs)
[20].

View in an object-oriented data model can be represented as functions (or
methods) defined using queries containing operators from the domain, e.g. for matrix
algebra [23]. Such derived functions expressed by side-effect free queries have a high
abstraction level which is problem oriented and reusable. Query optimization
techniques can be used to optimize such function definitions. To represent the model,
an object-relational DBMS with extensible storage representation and query
optimization is needed. The query optimizer needs to have special optimization
methods and cost formulae for the FEA domain operators.

In pure object-oriented models the function (method) invocation is based on the
message-passing paradigm where only the receiver of the message (the first argument
of a function) participate in type resolution, i.e. selecting which resolvent (variant of
an overloaded method or function name) to apply. The message-passing style of
method invocation restricts the way in which relations between objects can be
expressed [2].

In order to model a computational domain such as the FEA domain it is desirable
to also support multi-methods [2] corresponding to functions with more than one
argument. With multi-methods all arguments are used in type resolution. Thus, by
extending the data model to incorporate multi-methods e.g. matrix operators applied
on various kinds of matrix representations can be expressed in a natural way. In Sect.
4 we show how matrix operators are modeled as multi-methods in our application.

DECLARE mx1 AS matrix_type_1
DECLARE mx2 AS matrix_type_2
SELECT x FROM Matrix x

WHERE mx1 * x = mx2 AND x IN f();

Fig. 1. A sample query exemplifying a multi-directional method

High level declarative queries with method calls do not specify exactly how a
function is to be invoked in the query. We will show that multi-directional functions
are needed in the database query language [15][16] for processing of queries
involving inverses of functions. A function in the database query language is multi-
directional if, for an arbitrary function invocation m(x) = y, it is possible to retrieve
those arguments x that are mapped by the function m to a particular result, y. Multi-
directional functions can furthermore have more than one argument. This ability
provides the user with a declarative and flexible query language where the user does
not have to specify explicitly how a function should be called. To exemplify a multi-
directional function, consider the AMOSQL [17] query in Fig. 1 that retrieves those



matrices which, when multiplied by the matrix bound to the variable mx1, equals the
matrix bound to the variable mx2.

This query is a declarative specification of the retrieval of the matrix x  from the
result set of the function f()  where x  solves the equation system mx1 * x = mx2

(mx1 and mx2 are assumed given). It is the task of the query processor to find an
efficient execution strategy for the declarative specification, e.g. by using the inverse
of the * method (matrix multiplication) that first solves the equation system to get a
value for x . An alternative execution strategy is to go through all matrixes x  in f(x)
and multiply them with mx1 to compare the result with mx2. The first strategy is
clearly better.

To provide a query optimizer with all possible execution plans it must be able to
break encapsulation to expand the definitions of all referenced views [32]; thus the
optimization is a global optimization method. In global optimization the
implementations of all referenced views are substituted by their calls at compile time.
For ORDBMS this means that the definitions of derived functions must be expanded
before queries can be fully optimized, a process called revelation [12]. With
revelation the query optimizer is allowed break encapsulation while the user still
cannot access encapsulated data.

The object-oriented features include inheritance, operator overloading, operator
overriding and encapsulation [3]. The combination of inheritance in the type
hierarchy and operator overriding results in the requirement of having to select at run-
time which resolvent to apply, i.e. late binding.

A function which is late bound obstructs global optimization since the resolvent
cannot be selected until run-time. This may cause indexes and other properties that
are important to achieve good performance to be hidden for the optimizer inside
function definitions and remain unused during execution. Thus, late bound functions
may cause severe performance degradation if not special query processing techniques
are applied. This is why providing a solution that enables optimization of late bound
functions is an important issue in the context of a database [12].

A special problem is the combination of late bound functions and multi-directional
functions. This problem is addressed in [16] where late bound function calls are
represented by a special algebra operator, DTR, in the execution plan. The DTR

operator is defined in terms of the possible resolvents, i.e. the resolvents eligible for
execution at run-time. Each resolvent is optimized with respect to the enclosing query
plan. The cost model and selectivity prediction of the DTR operator is defined in terms
of the costs and selectivities of the possible resolvents. The DTR-approach in [16] has
been generalized to handle multi-methods [15].

In this paper we show, by using excerpts from our FEA application, that extending
a pure object-oriented data model with multi-directional functions results in a system
where complex applications can be modeled easily compared to modeling within a
pure object-oriented data model. We furthermore show how such queries are
translated into an algebraic representation for evaluation.



2  Related Work

Modeling matrix computations using the object-oriented paradigm has been
addressed in e.g. [28][29]. In [21] an algebra for primitive matrix operations is
proposed. None of those papers address late binding, multi-methods, or multi-
directional functions. We will show the benefits of having these features when
modeling complex applications.

OODBMSs have been the subject of extensive research during the last decade, e.g.
[3][4][5][34]. Several OO query languages [9][24][23] have been proposed.
However, to the best of our knowledge processing queries with multi-directional
functions in OODBMSs has not yet been addressed.

Multi-methods require generalized type resolution methods compared to the type
resolution of pure object-oriented methods [1][2]. In the database context good query
optimization is another important issue.

Advanced applications, such as our FEA application, require domain dependent
data representations of matrixes and an extensible object-relational query optimizer
[33] to process queries over these representations. For accessing domain specific
physical representations we have extended the technique of multi-directional foreign
functions described in [22].

In [15][16] the optimization of queries with multi-directional late bound functions
in a pure object-oriented model is addressed and the DTR operator is defined and
proven to be efficient. In this paper that approach is generalized to multi-methods.

3  Background

In this section we first give a short introduction to the data model we use. Then
properties of multi-directional functions are discussed followed by an overview of the
issues related to late binding.

3.1  The Functional Data Model

The functional data model DAPLEX [31] has the notions of entity and function. A
function is a mapping from entities to sets of entities. Based on DAPLEX the AMOS
[13] data model contains stored functions and derived functions. Stored functions
store properties of objects and correspond to attributes in the relational model and the
object-oriented model. Derived functions are used to derive new properties which are
not explicitly stored in the database. A derived function is defined by a query and
corresponds to a view in the relational model and to a function (method) in the object-
oriented model. In addition to stored and derived functions AMOS also has foreign
functions which are defined using an auxiliary programming language such as C++
and then introduced into the query language [22]. In Fig. 1 the operator *  is
implemented by foreign functions. The only way to access properties of objects is
through functions, thus functions provide encapsulation of the objects in the database.



3.2  Multi-Directional Functions

Multi-directional functions are functions which may be called with several different
configurations of bound or unbound arguments and result, called binding-patterns.
The query compiler must be capable of generating an optimal execution plan
choosing among the possible binding-patterns for each multi-directional function.
Sometimes such an execution plan may not exist and the query processor must then
report the query as being unexecutable.

To denote which binding-pattern a function is called with, the arguments, ai, and
result, r, are annotated with b or f meaning bound or free as ab

i or af

i if ai is bound or
free, respectively. In Fig. 1 the function *  is called with its second argument unbound
and with the first argument and the result bound. Thus, the call to *  in that example
will be denoted as xb × yf → rb.

CREATE FUNCTION times(SymmetricMx x, ColumnMx y) -> ColumnMx r AS
MULTIDIRECTIONAL

‘bbf’ FOREIGN MatrixMultiplication COST MultCost
‘bfb’ FOREIGN GaussDecomposition COST GaussCost;

Fig. 2. Creation of a multi-directional foreign function

Recall the three types of functions in the AMOS data model; stored, foreign and
derived functions. Stored functions are made multi-directional by having the system
automatically derive access plans for all binding-pattern configurations. Derived
functions are made multi-directional by accessing their definitions and finding
efficient execution plans for binding-patterns when needed. For multi-directional
foreign functions the programmer has to explicitly assign each binding-pattern
configuration an implementation, as illustrated in Fig. 2.

SELECT x FROM ColumnMx x WHERE mx1 ∗ x = mx2;

<mx1,mx2>

γGaussDecomposition (mx1,mx2)

<x>

Fig. 3. Multi-directional function execution

In Fig. 2 the function times  (implements * ) is defined for two arguments and
made multi-directional by defining which implementation to use for a certain
binding-pattern. For times(ab,bf)→rb the foreign function definition
GaussDecomposition  implements times , while MatrixMultiplication  will be
used for times(ab,bb)→rf. The functions GaussDecomposition  and
MatrixMultiplication  are implemented in a conventional programming language
such as C++. The implementor also provides optional cost functions, MultCost  and



GaussCost , which are applied by the query optimizer to compute selectivities and
costs.

The query processor translates the AMOSQL query into an internal algebra
expression. Fig. 3 gives an example of a query with a multi-directional function and
the corresponding algebra tree. Here the query interpreter must use times(ab,bf)→rb

which is a multi-directional foreign function (Fig. 2). The chosen implementation of
times , i.e. GaussDecomposition , depends on the types of mx1 and mx2. It will be
called by the apply  algebra operator, γ, which takes as input a tuple of objects and
applies the subscripted function (here GaussDecomposition ) to get the result.

Multi-directional functions enhance the expressive power of the data model but the
query processor must include algorithms for type resolution of multi-methods [2] and
for handling ambiguities [1].

3.3  Function Overloading and Late Binding

In the object-oriented data model [3] types are organized in a hierarchy with
inheritance where subtypes inherit properties from their supertypes. Overloading is a
feature which lets the same name denote several variants. For function names such
variants are called resolvents. Resolvents are named by annotating the function name
with the type of the arguments and result. The naming convention chosen in AMOS
(and in this paper) is: t1.t2.....tn.m -> tr  for a function m whose argument
types are t1,t2,...,tn  and result type is tr .

When names are overloaded within the transitive closure of a subtype-supertype
relationship that name is said to be overridden.

In our object-oriented model an instance of type t is also an instance of all
supertypes to that type, i.e. inclusion polymorphism [7]. Thus, any reference declared
to denote objects of a particular type, t, may denote objects of type t or any subtype,
tsub, of that type. This is called substitutability. As a consequence of substitutability
and overriding, functions may be required to be late bound.

For multi-directional functions the criteria for late binding is similar as for pure
object-oriented methods [16] with the difference that for multi-directional functions,
tuple types are considered instead of single types.

The query compiler resolves which function calls require late binding. Whenever
late binding is required a special operator, DTR, is inserted into the calculus
expression. The optimizer translates each DTR call into the special algebra operator
γDTR which, among a set of possible resolvents, selects the subplan to execute
according to the types of its arguments. This will be illustrated below. If the call does
not require late binding it is either substituted by its body if a stored or derived
function is called, or to a function application if a foreign function is called.

Special execution sub-plans are generated for the possible resolvents of the
specific binding-patterns that are used in the execution plan. Thus available indexes
will be utilized or other useful optimization will be performed on the possible
resolvents. If any of the possible resolvents are unexecutable the enclosing DTR will
also be unexecutable. The cost and selectivity of the DTR operator is calculated based
on the costs and selectivities of the possible resolvents as their maximum cost and



minimum selectivity, respectively. Hence, DTR is used by a cost-based optimizer [30]
to find an efficient execution strategy [16].

4  A Finite Element Analysis Example

A finite element analysis application has been modeled using the AMOS object-
relational (OR) DBMS prototype. The purpose of this work is to investigate how a
complex application can be built using the queries and views of an ORDBMS, and to
develop suitable query processing algorithms.

4.1  Queries for Solving Linear Equations

A fundamental component in an FEA system is a linear equation solving sub-system.
To model an equation solving system we define a type hierarchy of matrix types as
illustrated in Fig. 4. Furthermore, the matrix multiplication operator, ×, is defined as
functions on this matrix type hierarchy for several combinations of arguments. Fig. 5
illustrates how each variant of the multiplication function takes various matrix types
(shapes) as arguments.

Matrix

SquareMxColumnMx RowMx

SymmetricMx TriangularMx

UpperTMx. LowerTMxDiagonalMx

UUnitMx LUnitMx

Fig. 4. A matrix type hierarchy for linear matrix algebra

The functions for multiplication are used to specify linear equation systems as
matrix multiplications as K × a = f, where a is sought while K  and f are known.
Special representation methods and special equation solving methods have been
developed that are dependent on the properties of the matrices. In our system, the
function times  (= infix operator * ) is overloaded on both its arguments and has
different implementations depending on the type (and thus representations) of the



matrices used in its arguments. For example, when K  is a symmetric matrix, i.e.
× = , it can be solved by a method that explores the symmetric properties of the

first argument. One such method, LDL T decomposition [18] illustrated in Fig. 6,
substitutes the equation system with several equivalent equation systems that are
simpler to solve.

The linear equation system is solved by starting with the factorization, K  = UT × D
× U, that transforms K into the three matrices UT, D, and U. Then the upper triangular
equation system UT × y = f is solved to get y. The diagonal equation system D × x = y
is then solved to get x, and finally the solution of the lower triangular equation system
U × a = x gets a. If the equation on the other hand is typed as × =  some other
method to solve it must be used, e.g. Gauss decomposition.

=×

× =

× =

=×

=×

× =

× =

× =

=×

× =

Fig. 5. A graphical notation for various matrix multiplication operators

The rationale for having these different overloaded matrix multiplication functions
is efficiency and reusability. Efficiency because mathematical properties of the more
specialized matrix types can be considered when implementing multiplication
operators for them. Furthermore, specialized physical representations have been
developed for many of the matrix types, e.g. to suppress zeroes or symmetric
elements, and the matrix operators are defined in terms of these representations. The
more specialized operators will in general have lower execution costs than the more
general ones. The overloading provides reusability because every multiplication
operator may be used in different contexts. To exemplify this consider the example in
Fig. 7 over the type hierarchy in Fig. 4 and the multiplication operators from Fig. 5.

K
b

a
f× f

b
=( )

K
b

U
T( )

f
D

f
U

f××=

Ub af× xb=

D
b

x
f× y

b
=

UT( )
b

y f× fb= 
 
 
 
 
 
 
 
 

→



Fig. 6. The rewrite of a matrix multiplication expression to solve the equation system using
LDL T decomposition.

In this example a query is stated that solves an equation system by taking one
square and one column matrix as arguments and calculating the solution by using the
multiplication function. Depending on the type of the arguments the appropriate
function from the type hierarchy below SquareMx  will be selected at run-time, i.e.
late binding. Also note that here the multiplication function (* ) is used with the first
argument and the result bound and the second argument unbound. This is only
possible when multi-directional functions are supported by the system.

With multi-directional functions the equation system in Fig. 7 can be written as K
× a = f which is a more declarative and reusable form than if separate functions were
needed for matrix multiplication and equation solving, respectively. It is also a more
optimizable form since the optimizer can find ways to execute the statement which
would be hidden if the user explicitly had stated in which direction the *  function is
executed.

Hence, multi-directional functions relieve the programmer from having to define
all different variants of the operator in the query language and also from deciding
which variant to use in a particular situation. The latter is the task of the query
optimizer which through multi-directional functions is given more degrees of
freedom for optimization.

DECLARE K AS SymmetricMx;
DECLARE f AS ColumnMx;
SELECT a FROM ColumnMx a WHERE K ∗ a = f;

Fig. 7. A simple query illustrating function overloading.

The implementor can often define different implementations of *  depending on if
an argument or the result is unknown. For square matrices, × = , two variants
are required. The first variant does matrix multiplication when both arguments are
known and the result is unknown. When the first argument and the result are known
and the second argument is unknown, *  will perform equation solving using Gauss
decomposition. There are also two variants for symmetric matrices, × = , the
difference is that instead of using Gauss decomposition when the second argument is
unknown, the more efficient LDL T decomposition is used.

Late binding relieves the programmer from having to decide when any of the more
specialized multiplication operators can be used since the system will do this at run-
time. Thus, the general matrix multiplication will at run-time be selected as the most
specialized variant possible, e.g. × = , when the first argument is a symmetric
matrix. Note that the types of all arguments participate in type resolution to select
which resolvents of the multiplication operator to use from all the possible
multiplication operators in Fig. 5. Contrast this with a pure object-oriented data model
without multi-methods where the system cannot select the correct resolvent when the
type of another argument than the first one has to be considered. This imposes
restrictions on how object relations can be expressed in a pure object-oriented data
model. In some models, e.g. C++, the types of all arguments are used to select



resolvent if the function is early bound but not when it is late bound. Thus, the
introduction of an overriding function may become problematic.

Our example shows that multi-directional functions are useful to support the
modeling of complex applications. A system that supports both late binding and
multi-directional multi-methods offers the programmer a flexible and powerful
modeling tool. It is then the challenge to provide query processing techniques to
support these features. This will be addressed next.

5  Processing Queries with Multi-Directional Functions

We will show through an example how queries with multi-directional functions are
processed in AMOS for a subset of the functions in Fig. 5. In Fig. 8 the function
definitions in AMOSQL are given that are needed for the previous example in Fig. 6.

CREATE FUNCTION factorise(SymmetricMx K) ->
<DiagonalMx D, UUnitMx U> AS

FOREIGN Factorise;
CREATE FUNCTION transpose(UUnitMx U) -> LUnitMx L AS

FOREIGN Transpose;
CREATE FUNCTION times(LUnitMx L, ColumnMx y) -> ColumnMx f AS

MULTIDIRECTIONAL
‘bbf’ FOREIGN LUnitMult
‘bfb’ FOREIGN LUnitSolve;

CREATE FUNCTION times(DiagonalMx D, ColumnMx x) -> ColumnMx y AS
MULTIDIRECTIONAL

‘bbf’ FOREIGN DiagonalMult
‘bfb’ FOREIGN DiagonalSolve;

CREATE FUNCTION times(UUnitMx U, ColumnMx a) -> ColumnMx x AS
MULTIDIRECTIONAL

‘bbf’ FOREIGN UUnitMult
‘bfb’ FOREIGN UUnitSolve;

CREATE FUNCTION times(SymmetricMx K, ColumnMx a) -> ColumnMx f AS
MULTIDIRECTIONAL
‘bbf’ FOREIGN SymmetricMult,
‘bfb’ AMOSQL SymmetricSolve;

CREATE FUNCTION SymmetricSolve(SymmetricMx K,ColumnMx f)->ColumnMx 
AS SELECT a
FROM UUnitMx U,DiagonalMx D,ColumnMx x,ColumnMx y

WHERE
factorise(K) = <U,D> AND
transpose(U) * y = f AND
D * x = y AND
U * a = x;

Fig. 8. Multi-method function definitions needed in the example

The multi-directional function times  is overloaded and defined differently
depending on the shape and representation of the matrixes. It is multi-directional to
handle both matrix multiplication and equation solving. The primitive matrix
operations are implemented as a set of User Defined Functions (UDFs) in some
programming language (i.e. C). For symmetric matrixes the multiplication is
implemented by the UDF SymmetricMult  while equation solving uses the LDL
method (SymmetricSolve ) above.



(<DiagonalSolve,SymmetricSolve > ,K,f )

<K,f >

<a>

γDTR

Fig. 9. The top level query algebra tree for the query in Fig. 7

The query optimizer translates the query into an optimized execution plan represented
as an algebra tree (Fig. 9). During the translation to the algebra the optimizer will
apply type resolution methods to avoid late binding in the execution plan when
possible. In cases where late binding is required the execution plan may call subplans.

γFactorise(K)

<K>

<D>

γ Transpose(U)

<UT>

γ LUnitSolve(UT,f)

<f>

<y>

γDiagonalSolve(D,y)

<x>

γ UUnitSolve(U,x)

<a>

<U>

<U>

Fig. 10. Algebra tree showing the execution order for the transformed matrix expression

In the example query of Fig. 7 there are two possible resolvents of the name times :
1. DiagonalMx.ColumnMx.times →ColumnMx

2. SymmetricMx.ColumnMx.times →ColumnMx

The example thus requires late binding where resolvent 2 will be chosen when the first
argument is a SymmetricMx  and 1 will be chosen otherwise. When resolvent 2 is chosen
the system will be solved using the LDL T-decomposition, while a trivial diagonal solution
method is used for case 1. The optimizer translates the query into the algebra tree in Fig. 9,
where the algebra operator γDTR implements late binding. It selects at run time the subplan to
apply on its arguments K and f  based on their types. In the example there are two subplans,
DiagonalSolve  and SymmetricSolve . DiagonalSolve  is implemented as a foreign
function in C (Fig. 8), while SymmetricSolve  references the subplan performing the
LDL T-decomposition in Fig. 10.

The subplan in Fig. 10 has K and f  as input parameters (tuples) and produces a as
the result tuple. K is input to the application of the foreign function factorise  that
does the LDL T factorization producing the output tuple <D,U> . The U part is
projected as the argument of the functions transpose  and UUnitSolve (the
projection operator is omitted for clarity), while the projection of D is argument to
DiagonalSolve . The application of LUnitSolve  has the arguments f  and the result



of transpose(U) , i.e. UT. Analogous applications are made for DiagonalSolve

and UUnitSolve  to produce the result tuple <a>.

 6 Summary and Future Work

Domain-oriented data representations are needed when representing and querying
data for numerical application using an ORDBMS, e.g. to store matrices. To avoid
unnecessary data transformations and transmissions, it is important that the query
language can be extended with domain-oriented operators, e.g. for matrix calculus.
For high-level application modeling and querying of, e.g., matrix operators multi-
directional functions are required.

Although multi-directional functions require generalized type checking, the
benefits gained as increased naturalness and modeling power of the data model are
important for many applications, including ours.

Our example illustrates how multi-directional functions can be utilized by the
query optimizer. This is a new area for query optimization techniques.

We also showed that the system must support late binding for multi-directional
functions. In our approach each late bound function in a query is substituted with a
DTR calculus operator which is defined in terms of the resolvents eligible for
execution. Each DTR call is then translated to the algebra operator γDTR that chooses
among eligible subplans according to the types of its arguments. Local query
execution plans are generated at each application of γDTR and optimized for the
specific binding-patterns that will be used at run-time, as illustrated in our examples.

Further interesting optimization techniques to be investigated include the
identification of common subexpressions among the possible resolvents,
transformations of DTR expressions, and performance evaluation.
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