
1

ACCESSING CC99/1999/000181
FINITE ELEMENT ANALYSIS
RESULTS THROUGH AN EXTENSIBLE
OBJECT-ORIENTED QUERY LANGUAGE

K. Orsborn
Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology, Cambridge, United States of America and
Department of Computer and Information Science, Linköping University, Linköping, Sweden

(Presented at The Seventh International Conference on Civil and Structural Engineering (CC99),
Oxford, United Kingdom, 13-15 September 1999)

Abstract

Database technology will play an important role in provid-
ing an efficient management of the information resources in
future computational environments in science and engineer-
ing. Its powerful capabilities for data management can pro-
vide great leverage to the implementation of complete
engineering information systems as well as for single scien-
tific and engineering applications.

This paper presents how modern extensible database tech-
nology can be utilized within engineering software to provide
a query-based interface for accessing and evaluating numeri-
cal results from finite element analysis computations. By inte-
grating database technology, the application will be equipped
with and can take advantage of general database mechanisms
making all data immediately available at the query-language
level.

Examples show how the abilities to access and compose
data increase dramatically by the introduction of domain mod-
els, i.e. a high-level query language-based conceptualization
and representation of application-specific concepts and opera-
tions.

1 Database Technology as a Foundation for Engineering
Software

Database technology is more and more becoming an inte-
gral part of engineering information system (EIS) environ-
ments. Its role as a key enabling technology for managing
product data is already established, Cattell [1], but the use of
general database technology within computationally intensive
applications is not yet well investigated. However, earlier
work has shown how modern database technology can be inte-
grated with engineering software, such as software for finite
element analysis (FEA) [2, 3, 4, 5] and multibody system
(MBS) analysis [6], to support general database capabilities.
This paper will present how to provide a query-based interface
for accessing and evaluating numerical results from finite ele-
ment analysis computations.

The earlier work on the FEAMOS [2, 3, 4, 5] system has
shown how the AMOS II [7, 8] extensible and main-memory
resident database management system (DBMS) can be inte-
grated with the TRINITAS [9, 10] FEA program. Hence, by

embedding the DBMS within the FEA application, the appli-
cation can take immediate advantage of generic database
facilities, such as a storage manager, data model, metadata,
query language, query processing, transactions, and remote
access to data sources. Furthermore, true extensibility makes
it possible to handle tailored data representations and opera-
tors that the application requires.

In AMOS II, new data representations and operations can
be seamlessly integrated and made available in the AMOSQL
query language [7]. This means that complex and composite
analysis operations can be performed explicitly in a database
query without any influential performance degradation [4].
Database mechanisms, such as indexing, can even help make
computations more efficient without requiring specialized
implementations.

The result evaluation activity includes calculation and
interpretation of various physical quantities, such as stresses,
displacements, and eigenvalues that is evaluated according to
some design criteria. In a conventional FEA application the
evaluation process is supported through “hard-wired” and
compiled program procedures that restricts the set of possible
options the engineer has at his hands. The evaluation process
is usually an interactive process where computer graphics
plays an important role. For instance, the engineer can choose
to evaluate stress and displacement fields by displaying single
or multiple values from the analysis and displaying the results
in a graph, as an iso-contour plot or another of the available
display options. Hence, normally the engineer evaluates an
analysis by making various menu-based selections that acti-
vate the appropriate program routines that display the result.

In our approach, all analysis data is immediately made
accessible through the query language. Since all data are
available at the query language level, the user has numerous
capabilities to compose queries for retrieving, combining,
constraining and transforming data.

The paper will show how to associate, aggregate, compose,
and constrain data for retrieving single and multiple results. It
will also be shown how derived functions can be used to filter
data in the retrieval process. Furthermore, it will be shown
how tailored data structures can be used, how user defined
operations can transparently extend the query language and
how to perform composite analysis operations explicitly in a
database query. Ideas how to combine the query interface with
graphical capabilities will also be presented.

2

2 Database Management Systems and Query Languages

Database technology has traditionally been used primarily
for administrative applications. However, through the devel-
opment of modern technology that supports richer and exten-
sible data models, Stonebraker [13], such as object-oriented
data models, database management systems (DBMSs) have
started to attract more interest from the technical engineering
community.

Current standardization efforts like SQL:1999 by ISO/
ANSI [11] and ODMG 2.0 (including the OQL query lan-
guage) from the Object Database Management Group
(ODMG) [12] that will provide standards to support object-
orientation in database languages will hopefully bring a more
solid ground for developing scientific and engineering data-
base applications.

AMOS II [7, 8] is a light-weight and main-memory resident
DBMS. It is based on an extensible object-oriented data model
that include the three basic constructs object, type, and func-
tion. AMOS II also include a complete declarative, object-ori-
ented and extensible query language, AMOSQL [7], used for
defining, querying, and updating the database. The AMOS II
can be classified as an object-relational DBMS according to
Stonebraker and Moore [13] but it is not an extended rela-
tional DBMS since it is based on an extensible object-oriented
data model.

AMOS II is further designed to act as a mediator [8, 14]
software for mediating data between a heterogeneous set of
data sources and applications in a distributed computing envi-
ronment.

3 Query Access to Finite Element Analysis Results

In the FEAMOS system [4, 5] was shown how the AMOS
II DBMS could be integrated with the TRINITAS FEA pro-
gram. The embedding of the DBMS equips the FEA applica-
tion with the functionality of a general-purpose DBMS. This
means that the FEA application can take immediate advantage
of these facilities. Furthermore, the extensibility of the DBMS
also allows the introduction of application-specific types and
operators as well as tailored data structures and algorithms.
All types of extensions can be transparently integrated in the
query language and handled by the query processor. The
query processor can also be extended to take advantage of
information required to be able optimize queries that include
this extended functionality, such as cost measures, new types
of indexes, and optimization algorithms.

The query language can be accessed programmatically
from within the application or interactively through a database
browser or correspondingly.

Programmatically, the query language is accessed through
an application programming interface (API) by calling
precompiled database functions or by evaluating complete
database queries. This functionality can be applied both
locally in the same process and globally between remote proc-
esses. Currently, their are interfaces implemented that uses
Java, C, or LISP. Actually, the interface capabilities exceeds

that of a normal API since it, for instance, can handle and opti-
mize multi-database queries [15, 16]. Hence, the query proc-
essor can handle and optimize access to multiple and
heterogeneous data sources.

This section will present how data can be accessed, through
a database query language, applying two different approaches
for integrating the database. The difference between the two
approaches are dependent on at which level the database inte-
gration has been performed. First, it is shown how an integra-
tion can be done at a fairly low level where a database array
representation replaces an application-specific representation.
A second approach is then presented where it is shown how
additional capabilities can be gained by introducing a concep-
tualization at a higher level.

Examples shown later in this paper will show how the
AMOSQL language can be used interactively by posing que-
ries to the database and retrieving data from the database. It
will also be shown how expressions for data and operator
modelling can be defined.

3.1 Conventional FEA Result Evaluation

The result evaluation activity includes calculation and
interpretation of various physical quantities, such as stresses,
displacements, and eigenvalues that should be evaluated
according to some design criteria. As illustrated in Figure 1,
TRINITAS supports this evaluation graphically by facilities
for displaying, for instance, stress and displacement fields as
either single values or multiple values as graphs or contour
plots. The calculated results are stored in main-memory arrays
that are accessed by a set of built-in FORTRAN procedures.
By making various menu-based selections, the user can acti-
vate appropriate routines and display the result.

Figure 1. An example that shows how analysis results can be
presented to the user in TRINITAS. The picture includes coloured iso-
levels of von Mises stresses, the displacement field, and two single
stress values.

3

3.2 FEA Data Access Through Queries

The provision of a DBMS and a query language provides
general database capabilities to the application including a
storage manager, data model, metadata, query language, query
processing, transactions, and remote access to data sources.
The query language makes it possible to retrieve and manipu-
late data in a declarative manner that relieves the user from
specifying the procedure for how to access data.

DBMSs that permits the use object-oriented data modelling
usually permits the user to extend the system with user-
defined types and operations. Advanced systems also handles
optimization of queries including this type of user-defined
information.

With a glance on our application domain, AMOSQL que-
ries can for example be stated for retrieving:
• single, multiple, and composite values such as min, max,

and intervals of stresses, displacements, etc.
• composition of data can be accomplished by associations,

aggregations, constraints, and by extended computations.
For example, in a query retrieval it is easy to associate the
name of a point or node, its position, and maybe some addi-
tional quantity like the stress state. Various weighted quan-
tities, such as von Mises stresses, may not have to be stored
in the database. They could instead be computed using sys-
tem- and user-defined functions accessible in queries. Fur-
ther examples of these possibilities will be shown in later
examples.

• physical (such as mechanical, spatial, and temporal) and ab-
stract data (such as names, versions, and administrative da-
ta) can be freely combined within queries.

• user-defined functions can be composed by a combination
of system-supported base functions or external functions
implemented in some programming language like Java, C,
or LISP. Independently on how they were defined they will
be transparently available within AMOSQL as any other
base function.
Advanced DBMSs like AMOS II can even allow for exten-

sions of the DBMS with new data representations and the
ability to extend the query processor with indexes and cost
measures to be able to optimize queries that relies on these
data representations. Important in this context is mechanisms
to handle tailored data representations for numerical data such
as arrays and matrices.

3.3 Database Access Using an Array Representation

A first integration of TRINITAS with the AMOS II DBMS
replaced the basic FORTRAN-based array representation with
a corresponding representation in the database that takes
advantage of the AMOS II object-oriented data model. For
instance, this adds true object identifiers and AMOS II func-
tions for defining attributes and access methods. This replace-
ment also meant that all data were immediately made
accessible at the array level from the query language. Without
any further conceptual modelling, it was possible to state que-
ries over all data, including calculated analysis results.

Since all data are available at the query language level, the
user has numerous capabilities to compose queries for retriev-

ing, combining, filtering and transforming data. The following

query selects a single value from an array1 of von Mises
stresses, where the index corresponds to a certain node:

ref(array_named(“VON1 ”),0);
844.779

The same query can also be stated more “SQL-ish”, using a
syntax similar to standard SQL, as follows:

select vonmises
from array v, real vonmises
where name(v) = “VON1 ” and

 vonmises = ref(v,0);

If one would like to extract the maximum von Mises stress
this query can be extended to traverse the complete array and
then apply the max aggregation operator:

select max((select vonmises
from integer i, integer j, real vonmises
where
i = iota(0,j) and
j = size(array_named(“VON1 “)) - 1 and
vonmises = ref(array_named(“VON1 ”),i)));

2269.62

Further, it is not necessary to store every type of result in
the database. Instead, derived functions can be defined that
calculate these measures. The ability to do calculations within
queries is exemplified in the following ad-hoc query where the
previous query is reformulated in terms of the basic stress
components:

select max((select vonmises
from integer i, integer j,

 real sigmaxx, real sigmayy,
 real sigmaxy, real vonmises

where
j = size(array_named(“VON1 ”)) - 1 and
i = iota(0,j) and
sigmaxx = ref(array_named(“SXX1 ”),i) and
sigmayy = ref(array_named(“SYY1 ”),i) and
sigmaxy = ref(array_named(“SXY1 ”),i) and
vonmises = sqrt(abs(

sigmaxx*sigmaxx +
sigmayy*sigmayy -
sigmaxx*sigmayy +
3*sigmaxy*sigmaxy))));

2269.62

Associated information can be retrieved by selecting sev-
eral results in the same query, as in the subsequent query
where the stress value is combined with a number correspond-
ing to the node number:

select max((select vonmises,i+1
from integer i, integer j, real vonmises
where
i = iota(0,j) and
j = size(array_named(“VON1 ”)) - 1 and
vonmises = ref(array_named(“VON1 ”),i)));

<2269.62,83>

The query results can further be filtered by adding addi-

1. The array_named function maps a name of an array to an array ob-
ject.

4

tional constraints in the query. Here, the von Mises stresses
that exceed 2000.0 (MPa) are extracted along with the node
numbers.

select vonmises,i+1
from integer i, integer j, real vonmises
where
i = iota(0,j) and
j = size(array_named(“VON1 ”)) - 1 and
vonmises = ref(array_named(“VON1 ”),i) and
vonmises > 2000.0;

<2269.62,83>
<2128.4,90>

The previous examples showed how the current array rep-
resentation was directly accessible from the query language.
In comparison to the original TRINITAS program, the
expressibility for accessing and composing data have
increased dramatically in FEAMOS, even if the queries
became a bit clumsy on occasion. In addition, it is not so criti-
cal if some relevant evaluation functionality has been over-
looked in the implementation. It will be relatively simple to
add this through the query language. In TRINITAS, this must
be done by implementing some new FORTRAN routines and
recompile at least part of the system. An alternative would be
to use a macro language to specify user-defined functionality,
if such a language is available to the application and can be
used for that purpose.

3.4 Database Access Using a Domain Model

By introducing more structure within analysis result infor-
mation within the database and through the AMOSQL object-
oriented data model, information can be retrieved very con-
veniently. We call this usage of a domain model that is a con-
ceptualization and database representation of concepts and
operations of the application domain. As an example the
information about the stress fields can be associated to the
nodes and we can take a look at how to retrieve von Mises
stresses using a threshold value. This simple example include
a selection of nodes constrained by the condition that the von
Mises stress should not exceed 1500.0 MPa. In the AMOSQL
language this could be expressed as:

select n
from node n
where vonmises(n) > 1500.0;

Hence, the query expression retrieves (select) the set
(sometimes a multiset) of n objects from the set of objects that
is of type node and that fulfils the selection condition (the
where clause). The selection condition, i.e. “vonmises(n) >
1500.0”, constrains the selection to those nodes that have a
von Mises stress that do not exceed 1500.0 [MPa]. Additional
constraints can easily be introduced in the where clause of the
query.

As was pointed out earlier, the examples in the previous
section implied a rather clumsy and unattractive use of the
query language. Further, to get rid of this disadvantage, one
could introduce much more structure within the result infor-
mation through object-oriented modelling. For instance, by
associating the stress components to the nodes, the former

queries can be expressed and interpreted much more conven-
iently. This can be accomplished as:

create function stresses(node n) -> farray(3) as
stored;

As we only consider stress components in the xy-plane, the
stresses function stores an array of three reals that can rep-
resent the stress components σxx, σxy, and σyy. These can be

explicitly referenced and defined by derived functions.

create function sigmaxx(node n) -> real as
select ref(stresses(n),0);

create function sigmaxy(node n) -> real as
select ref(stresses(n),1);

create function sigmayy(node n) -> real as
select ref(stresses(n),3);

It is further possible to add functions that improves the
intuition of the domain without wasting any storage space. For
instance, we can add an alias derived function for the σyx

component:

create function sigmayx(node n) -> real as
select sigmaxy(n);

We can even add some alias functions if we rather would
like to use “tao” (τ) to refer to the skew components.

create function taoxy(node n) -> real as
select sigmaxy(n);

create function taoyx(node n) -> real as
select sigmayx(n);

Since these functions are compiled and optimized when
they are defined, there is no performance loss for using these
alias functions. The function for computing the von Mises
stress can now be expressed as follows:

create function vonmises(node n) -> real vm as
select sqrt(abs(

sigmaxx(n) * sigmaxx(n) +
sigmayy(n) * sigmayy(n) -
sigmaxx(n) * sigmayy(n) +
3*taoxy(n) * taoyx(n)));

By structuring the stresses along these lines, the previous
query for retrieving the maximum von Mises stress can now
be expressed as:

select max((select vonmises(n)
from node n));

2269.62

Likewise, the node1 can be associated and retrieved
together with the von Mises stress:

select max((select vonmises(n),n
from node n));

<2269.62,OID[0x0:1543]>

Additional constraints can easily be introduced in a similar
manner as in the former example, but here there is a more
direct association to the stress function.

1. Note that the node is here an object and not a number as in the previ-
ous example.

5

select vonmises(n)
from node n
where vonmises(n) > 2000.0;

2269.62
2128.4

It is also easy to express queries that include more complex
constraints. This will be illustrated by means of another exam-
ple shown in Figure 2. The following query retrieves nodes
and their corresponding von Mises stresses within a certain
area:

select n, vonmises(n)
from node n
where x_coordinate(n) >= 50.0 and

 x_coordinate(n) <= 70.0 and
 y_coordinate(n) >= 40.0 and
 y_coordinate(n) <= 60.0;

<OID[0x0:1708],630.798>
<OID[0x0:1712],1982.9>
<OID[0x0:1713],958.276>
<OID[0x0:1714],876.571>
<OID[0x0:1715],1728.37>
<OID[0x0:1716],1310.12>

Here, it is presupposed that coordinate functions are
defined for nodes. As pointed out earlier, query expressions
can sometimes be easier to interpret visually by alias func-
tions. In a mathematical expression it can for example be
clearer to use a more mathematically-oriented notation such
as:

select n, x(n), y(n), vonmises(n)
from node n
where x(n) >= 50.0 and

 x(n) <= 70.0 and
 y(n) >= 40.0 and
 y(n) <= 60.0;

<OID[0x0:1708],70.,40.,630.798>
<OID[0x0:1712],53.6603,43.6603,1982.9>
<OID[0x0:1713],60.406,47.935,958.276>
<OID[0x0:1714],70.,55.,876.571>
<OID[0x0:1715],50.,50.,1728.37>
<OID[0x0:1716],60.,60.,1310.12>

Switching to infix notation in AMOSQL can further
increase the readability:

select vonmises(n)
from node n
where 50.0 <= x(n) <= 70.0 and

 40.0 <= y(n) <= 60.0;

While still looking at the example in Figure 2, the subse-
quent query shows how to select nodes and stress components
along a horizontal line with a specific y-coordinate such as:

select n,x(n),sigmaxx(n),sigmayy(n),sigmaxy(n)
from node n
where y(n) = 0.0;

<OID[0x0:1678],0.,-766.462,1497.83,5.11513>
<OID[0x0:1681],15.,-841.216,484.575,187.309>
<OID[0x0:1686],30.,-953.525,-1267.17,-330.958>

Yet another query, also corresponding to Figure 2, shows
how to select nodes and the von Mises stress along the line
with the equation :

select n, x(n), y(n), vonmises(n)
from node n
where y(n) = x(n);

<OID[0x0:1678],0.,0.,1994.76>
<OID[0x0:1680],10.,10.,1152.1>
<OID[0x0:1684],20.,20.,936.039>
<OID[0x0:1690],30.,30.,2342.41>
<OID[0x0:1715],50.,50.,1728.37>
<OID[0x0:1716],60.,60.,1310.12>
<OID[0x0:1717],70.,70.,1171.47>

Figure 2. An analysis model used to show retrieval of analysis data
constrained by various geometric conditions.

Functions can further be overloaded on several other types
(or combinations of types) to add capabilities to retrieve a
wealth of additional analysis information. For example, by
overloading stress functions on other types, in addition to
nodes, it is possible to select stresses on boundaries, curves,
surfaces, or other geometrical concepts. A general capability
to retrieve values from continuous field quantities at arbitrar-
ily spatial positions require that interpolation of discrete data
is handled appropriately. An interesting area related to this
matter is the potential need for indexing of interpolated data
as treated in Lin [18, 19].

3.5 User Interaction Through Queries

A user of the FEAMOS system can currently use a web-
browser as a database client to directly interact with the FEA-
MOS database through the query language as shown in
Figure 3. This web-based database client uses a general web-
server-interface implemented in AMOS II to compose queries
and retrieve query results textually.

Furthermore, in a recent contribution to the AMOS II
project a Java programming interface and a database browser
have been developed to support development of AMOS II-
based database systems.

Current studies investigates possible solutions on how toy x() x=

6

implement mechanisms to support graphical query response,
i.e. capabilities to automatically display query results graphi-
cally whenever it is relevant. This means that the user should
be able to evaluate a graphical representation of the result of a
query instead of having to browse through a large set of tex-
tual result tuples. This include an ability to present spatial
information in an appropriate form which is of great impor-
tance for various scientific and engineering applications.

Figure 3. An illustration of the use of a www-based database client
in combination with FEAMOS for providing ad-hoc query
capabilities.

4 Summary

It has been shown in this paper how it is possible to use an
extensible and object-oriented query language to access and
manipulate FEA results. This makes it possible to leverage on
general computing mechanisms provided by modern database
technology that otherwise would have had to be specifically
implemented for the application. The advantages of this
approach are manifold including an enhanced flexibility of the
data resources and even a potential capability of improving
the processing efficiency [4].

More specifically, the accessibility has increased dramati-
cally in FEAMOS where all data are available at the query
language level. It is neither as critical if some relevant func-
tionality for evaluating the analysis has been overlooked in the
implementation, since it is very simple to add this through the
query language. In conventional applications like TRINITAS,
this must normally be done by implementing some new pro-
gramming procedures and recompile the system.

Furthermore, by introducing more conceptualization
through the domain models, the expressibility for composing
data also increased considerably. The query language facili-
tates retrieving, combining, constraining, and transforming of
data through its general and declarative capabilities for posing
queries and the abilities to incorporate extensions into the lan-
guage.

The author also argues that a more high-level and declara-
tive expression of domain models provide a more intuitive and
simpler representation that is easier to understand than con-
ventional and more procedural-oriented representations. Sim-
pler models will eventually lead to better quality and higher
security in the design and analysis process. Simplicity will
also result in more efficient development, use, and mainte-
nance (reuse) of these domain models. By relying on general
mechanisms for optimizing data access one will also facilitate
an efficient use of computational resources - especially when
EISs become more and more complex.

In a wider perspective, the introduction of database tech-
nology into computational scientific and engineering applica-
tions will provide a sound base for supporting data mediation
in the EIS environment. This include capabilities to transform,
integrate, separate, locate, and monitor data to be able to keep
data consistency while sharing, exchanging, and combining
data in a heterogeneous and distributed EIS environment.

Within this context there are also two database mechanisms
that ought to be studied in further research. As indicated in
other areas of FEA, indexes can be of great importance for
supporting efficient processing. FEA results, such as stress
and temperature fields, are examples of spatial quantities
where spatial indexing techniques [18, 19] could be applied.
Furthermore, in studying the issue of whether a stored or a
derived representation of analysis results is preferable, it
should be of interest to evaluate how function materialisation
techniques [17] could support these decisions in an automatic
manner.

Even if the user can get great support from graphics and a
query language, as described here, the result interpretation is
mainly a manual activity. The efficiency and quality could
probably be increased for this activity by taking advantage of
the rule system in AMOS II. By defining active rules [20, 21]
that interpret the results, parts of the evaluation activity could
be automated. The applicability of these ideas also requires
additional study.

5 Acknowledgements

This research has been sponsored by The Swedish Founda-
tion for International Cooperation in Research and Higher
Education and by The Swedish National Board for Industrial
and Technical Development.

The author is currently on leave from The Engineering
Databases and Systems Laboratory at The Department of
Computer and Information Science, Linköping University,
Linköping, Sweden.

Bibliography

[1] Cattell, R. G. G., “Object Data Management: Object-Ori-
ented and Extended Relational Database Systems”, Add-
ison-Wesley, 1992.

[2] Orsborn, K., “Applying Next Generation Object-Oriented
DBMS to Finite Element Analysis”, 1st Int. Conf. on Ap-
plications of Databases, ADB94, Lecture Notes in Com-
puter Science, 819, Springer Verlag, 1994, p. 215-233.

7

[3] Orsborn, K. and Risch, T., “Next Generation of O-O Da-
tabase Techniques in Finite Element Analysis”, 3rd Int.
Conf. on Computational Structures Technology (CST96),
Budapest, Hungary, August, 1996.

[4] Orsborn, K., “On Extensible and Object-Relational Data-
base Technology for Finite Element Analysis Applica-
tions”, PhD Thesis (Linköping studies in science and
technology. Dissertations 452), ISBN 91-7871-827-9,
Linköping University, Linköping, Sweden, October
1996.

[5] Flodin, S., Orsborn, K., and T. Risch, “Using Queries
with Multi-Directional Functions for Numerical Database
Applications”, Second East-European Symposium on
Advances in Databases and Information Systems (AD-
BIS'98), Poznan, Poland, September 1998.

[6] Tisell, C., and Orsborn, K. “A System for Multibody
Analysis Based on Object-Relational Database Technol-
ogy”, The 1st Intl. Conf. on Engineering Computational
Technology (ECT98), Edinburgh, Scotland, August
1998.

[7] Flodin, S., Josifovski, V., Risch, T., Sköld, M. and Wern-
er, M., “AMOS II User's Guide”, available at http://
www.ida.liu.se/˘edslab.

[8] Fahl, G., Risch, T. and Sköld, M., “AMOS, an Architec-
ture for Active Mediators”, Int. Workshop on Next Gen-
eration Information Techn. and Systems, Haifa, Israel,
June 1993.

[9] Torstenfelt, B., Allestam, H., and Klarbring, A., “Shape
Optimization Implemented in an Object-Oriented Finite
Element Program Environment”, 6th Nordic Seminar on
Computational Mechanics, Linköping, 1993.

[10] Torstenfelt, B., “An Integrated Graphical System for Fi-
nite Element Analysis”, User’s Manual Version 2.0,
LiTH-IKP-R-737, Linköping University, Linköping, Jan-
uary 1993.

[11] Eisenberg, A. and Melton, J., “SQL:1999, Formerly
Known as SQL3”, SIGMOD Record, v. 28, n. 4, March
1999, p. 131-138.

[12] Cattell, R. G. G., et al., “The Object Database Standard:
ODMG 2.0”, Morgan Kaufmann Publishers, Inc., 1997.

[13] Stonebraker, M. and Moore, D., “Object-Relational
DBMSs: The Next Great Wave”, Morgan Kaufmann
Publishers, Inc., 1996.

[14] Wiederhold, G. and Genesereth, M., “The Conceptual
Basis for Mediation Services”, IEEE Expert, Intelligent
Systems and their Applications, v. 12, n. 5, October 1997,
p. 38- 47.

[15] Josifovski, V., “Design, Implementation and Evaluation
of a Distributed Mediator System for Data Integration”,
PhD Thesis (Linköping studies in science and technolo-
gy. Dissertations 582) ISBN 91-7219-482-0, Linköping
University, Linköping, Sweden, June 1999.

[16] Josifovski, V., and Risch, T., “Integrating Heterogeneous
Overlapping Databases Through Object-Oriented Trans-
formations”, to be presented at 25th Intl. Conf. On Very
Large Databases, Edinburgh, Scotland, September 1999.

[17] Kemper, A., Kilger, C., and Moerkotte, G., “Function
Materialization in Object Bases: Design, Realization, and
Evaluation”, IEEE Transactions on Knowledge and Data
Engineering, v. 6 n. 4, August 1994, p. 587-608.

[18] Lin, L. and Risch, T., “Querying Continuous Time Se-
quences”, 24th International Conference on Very Large
Data Bases (VLDB'98), New York City, USA, August
1998.

[19] Lin, L., “Management of 1-D Sequence Data - from Dis-
crete to Continuous”, PhD Thesis (Linköping studies in
science and technology. Dissertations 561), ISBN 91-
7219-402-2, Linköping University, Linköping, Sweden,
March 1999.

[20] Sköld, M. and Risch, T., “Using Partial Differencing for
Efficient Monitoring of Deferred Complex Rule Condi-
tions”, In The 12th International Conference on Data En-
gineering (ICDE’96), (IEEE), New Orleans, Louisiana,
February 1996.

[21] Sköld, M., “Active Database Management Systems for
Monitoring and Control”, PhD Thesis (Linköping studies
in science and technology. Dissertations 494), ISBN 91-
7219-002-7, Linköping University, Linköping, Sweden,
September 1997.

