
1

USING AN EXTENSIBLE
OBJECT-ORIENTED QUERY
LANGUAGE IN MULTIBODY SYSTEM ANALYSIS

Claes Tisell Kjell Orsborn
Machine Elements Intelligent Engineering Systems Laboratory
Department of Machine Design Department of Civil & Environmental Engineering
Royal Institute of Technology Massachusetts Institute of Technology
Stockholm,  Sweden Cambridge, USA

Abstract

As the modern software tools produce large amount of
engineering data the demand for efficient data management
may be met by integrating database technology with engineer-
ing applications. This approach is taken in MECHAMOS,
which is a previously reported system for symbolic and
numeric multibody system (MBS) analysis. This work focuses
on the high level analysis performed with the available query
language in MECHAMOS. The data management is consid-
erably improved in this system compared to a traditional
MBS analysis tool. For instance MECHAMOS can easily
combine and compare MBS data not only within the same
MBS model but also over several MBS models each
governing different equations of motion. To avoid redundant
computations in such analyses a simplified materialisation
mechanism is implemented. Examples are given on combin-
ing and comparing both symbolic and numeric MBS data

1. Introduction

The rapid development of computer technology and
software tools has enabled engineers to build larger models
and to perform more advanced analyses on these models.
Consequently this generates large amounts of heterogeneous
engineering data. Therefore sharing and combining heteroge-
neous engineering data as well as transforming engineering
data to a suitable form for further analysis have become
important issues in the design process today. To meet these
demands, full availability of data and efficient data access are
important. One way to accomplish this is to access data
through a query language, which is faster and requires less
coding than using a conventional programming language [1].
This will add to the requirements on future generation
engineering applications to supply database technology and a
general query language for data management.

In the field of multibody system (MBS) analysis the
development of computer technology has, apart from larger
models, also opened the possibility to perform the analysis in
the symbolic domain and move on to the numerical domain in
a later stage of the analysis. A previously reported system for
MBS analysis based on object-relational database technology
[2] shows how the future requirements can be met with
increased availability of MBS data and how the data manage-
ment is facilitated. In this system, named MECHAMOS,
symbolic and numeric MBS data is fully available through a

general query language and can be put into a suitable form for
further analysis. A similar approach is taken in [3] where a
system for finite element analysis (FEAMOS) is based on the
same database technology as MECHAMOS.

This work focus on the MBS analysis in MECHAMOS
where large amount of MBS data can be generated, compared
and searched for by taking advantage of the data management
capabilities and the extensible query language integrated into
the application.

2. The MECHAMOS System

MECHAMOS is an MBS analysis tool based on the
object-relational database management system (ORDBMS)
AMOS II [4-6]. This provides MECHAMOS with a general
object oriented and extensible query language (QL) for
accessing the MBS data. In MECHAMOS the mathematical
capabilities of AMOS II has been extended with Matlab [7]
and MapleV [8] enabling the system to perform both numeri-
cal and symbolical MBS analysis. MBS data is passed from
the query language to Matlab and Maple through a general
application-programming interface using LISP, C and Java
and is thus not based on file transfer. However, some MBS
results are stored on file due to limitations in the architecture
of Matlab and Maple. In Figure 1 the MECHAMOS system is
illustrated with base data and the extended mathematical
capabilities through Matlab and MapleV.

The MBS analysis is based on Kane's equations which
aims towards a minimal set of constraint reaction free equa-
tions of motion in a minimal set of generalised coordinates.
To obtain these equations MECHAMOS utilise the SOPHIA
system [9-10], which is a set of routines, implemented in
MapleV for vector algebra and vector analysis including
routines supporting Kane's equations. This provides MECH-
AMOS with an efficient tool for formulating the equations of
motion on symbolic form and the resulting equations is put
into a form for efficient numeric evaluation.

The MBS data is divided into MBS concepts in a basic
form called base data and is stored in the database. Further,
the database also contains MBS concepts derived from these
base data. The former can be further divided into data on
component level and data on system level. On the component
level six quantities has to be stored for each rigid body in the
mechanism:

m fAa ar F J MA (1)



2

where the first three items represent the translational part and
are the mass, position vector of the centre of mass and the
applied force vector. The representations of the rotational part
are the moments of inertia dyad, a body fixed reference frame
and the applied moment vector. On system level the
generalised coordinates (q), generalised speeds (u) and their
relations (kinematic differential equations, kde) has to be
declared. Further, the gravity vector and reference frames are
also defined on system level. To enable numerical analysis
and simulations, different sets of numerical values of the
parameters and initial values are also defined.

Figure 1. The MECHAMOS system selects dynamic information
derived from base data through a general QL.

3. Data Retrieval and Materialisation

With a system based on this technology large amounts of
MBS data (velocities, momentum, potential and kinetic
energies, trajectories etc.) can be easily and automatically
generated through the QL. This MBS data can be retrieved on
many different forms. A scalar quantity is of course
represented on scalar form whereas a vector quantity is either
a vector representation in a given reference frame or a scalar
representing the magnitude of the vector. In the combined
symbolic and numeric domains, MBS data can be retrieved on
pure symbolic form or with the numeric values of the
parameters substituted and thus maintaining the state
variables and their derivatives on symbolic form. Selecting
scalars and vectors on pure numeric form requires a numeric
solution of the equations of motion (commonly referred to as
a simulation). The retrieved object is then a numeric sequence
with one value for each time step of the integration.

Different forms of MBS data require various computa-
tional efforts. For instance, to obtain the velocity vector on
symbolic form for a given body B in a given MBS model the
necessary sequence of operations is

B11 declare time dependent coordinates (q and u)
B12 declare the kinematic differential equations
B13 declare relations between reference frames
B14 differentiate the position vector with respect

to time and relative to the inertial frame

For MBS models with reasonable degrees of freedom
these symbolic computations (B1x) are usually simple and
fast to execute. To select the same velocity vector on pure
numerical form, a simulation has to be performed for a given
set of parameter values and a given set of initial conditions.
The necessary sequence of operations for the numerical case
(B2x) is shown below where each of the B21 and B22
operations usually involves costly computations.

B21 derive the equations of motion for the MBS
model on symbolic form

B22 solve these equations numerically to obtain
numeric values for the state space variables
(q and u)

B23 get the velocity vector symbolically
(B11-B14 above)

B24 evaluate the symbolic vector numerically for
each time step of the integration

In a traditional MBS analysis software the user accesses
the MBS data through a command menu structure that usually
activates function calls in some programming language. The
possibility of composing user-defined macros is also sup-
ported in most traditional software. This type of software
usually allow analysis of one MBS model at a time and thus
perform B11-B13 and B21-B22 once in the beginning of the
session. Various MBS data is then derived from the model
and with the current set of numerical parameter values (e.g.
B23-B24 for different vectors).

In comparison, MECHAMOS has several MBS models
that are simultaneously available in the database and the MBS
data can be accessed or derived on a higher level through a
general query language. To derive the velocity vector of body
B on symbolic form the following AMOSQL query is
processed

MA1> SELECT velvec(b)

FROM  body b

WHERE name(b) = "B"

  AND name(model_oid(b)) =

      "Sliding Pendulum";

OID[0x0:2474]

MA2>

where MA1> is the prompt and the number indicates the
generation of the database population. The query searches the
database for all objects of type body  where the attribute name

equals "B" and this object is related to an object of type
MBS_model named "Sliding Pendulum ". For that object
of type body  the derived function velvec  derives the
velocity vector using the information stored in the object. The
result is an object identifier (OID) to an object of the type
euclidean_vector  containing the velocity vector on
symbolic form and the reference frame in which the vector is
represented. It is the derived function velvec  that performs
the entire sequence of operations to derive the vector by
further AMOSQL queries (i.e. B11-B14).
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To derive the magnitude of the velocity vector on pure
numeric form, the name of a set of parameter values is also
required. This is done to enable numeric integration of the
equations. The select statement that derives the vector is
shown below where the derived function velvec  performs
B23 in the symbolic world whereas numseq first perform B21
in the symbolic world and then moves to the numeric world
by performing the operations B22 and B24.

MA2> SELECT numseq(magvec(velvec(b)), n)

FROM  body b, mbs_numeric n

WHERE name(b) = "B"

  AND name(model_oid(b)) =

      "Sliding Pendulum"

  AND name(n) = "s20"

  AND name(model_oid(n)) =

      "Sliding Pendulum";

OID[0x0:2478]

MA3>

The result is an object identifier (OID) to an object of the
type scalar_sequence  containing the magnitude of the
velocity vector on pure numeric form with one numeric value
for each time step of the integration.

To illustrate the need and the importance of function
materialisation [11] in the DBMS consider another body,
named C, in the same MBS model. Assume that the velocity
vector of this body C is selected on pure numerical form with
the same set of parameter values and initial conditions as for
body B above. The corresponding operations to perform this
task are named C11-C14 and C21-C24 respectively. The
computations in C11-C13 and C21-C22 are then identical
with their body B counterparts (assuming that the involved
base data has not changed between the occasions). It is thus
not necessary to perform C11-C13 and C21-C22 when the
second velocity vector is derived.

In a traditional MBS software this is normally taken care
of by the user since he/she performs the operations in an
appropriate sequence and the users insight that the equations
and the numerical results of the simulation are the same in the
two cases. In a system like MECHAMOS, where MBS data is
accessed and derived on a higher level and only when needed
for a specific query, the result of the query must be
independent of previously posed queries and results. This
implies that each query has to derive all the necessary data
and thus, the entire sequence of operations must be performed
through nested subqueries.

With function materialisation supported by the DBMS,
the query results are temporarily saved. If a query is posed a
second time and the relevant base data is not changed the
DBMS looks up the result of the query rather than process the
query again which means that unnecessary computation can
be avoided.

Currently, true functional materialisation is not supported
in AMOS II. However a specialised temporary storage
mechanism which provides a simplified materialisation
functionality has been implemented in MECHAMOS. This
implementation covers the most frequent operations (B11-
B13) and the most computational costly operations (B21 and
B22). It is obtained by introducing an object keeping track of
which MBS model or numeric data that occupies the Maple

and Matlab workspace. It also includes a file numbering
mechanism to handle the part of the MBS results stored on
file. True functional materialisation should also handle the
ability of detecting a change in the stored data and to
determine which computational results that are effected by
that change in data and thus no longer valid. This is not
implemented in MECHAMOS.

The conclusion from this section is that the derived
functions in the database have to include the entire sequence
of operations required to select the MBS data, e.g. B21-B24.
Materialisation capabilities and query optimisation in the
DBMS will then select the necessary operations, detect the
queries already processed and do the operations in an
efficient order.

4. Examples of Combining and Comparing MBS data

To illustrate how MBS data is combined and compared in
MECHAMOS a planar sliding pendulum is taken as an
example. The system (illustrated in Figure 2) has two degrees
of freedom described by two generalised coordinates (q1, q2)
and two generalised speeds (u1, u2) with the kde chosen on the
simplest form, i.e. �q uj j= . A spring-damper system with
zero equilibrium length is inserted between a moving wall and
the slider. The motion of the wall is governed by a
constrained function in time and described by

f t A t1 0( ) sin( )= ω (2)

This yields the applied force vector on the slider (body A)

( ) ( )F n n na
A

Ak f t q c f t u m g< = − + − −1 1 1 1 1 1 1 1 2( ) � ( ) (3)

The other required base data for each rigid body accord-
ing to Equation (1) is easily formulated by inspecting the
illustration in Figure 2.

Figure 2. A sliding pendulum example.

The parameters in the model are {mA, mB, JB, LB, k1, c1,
A0, ω, g} and their numeric values are all equal 1 except for
g = 9.81 [m/s2] and ω ranging from 0.1 to 4.0 [rad/s]. This
results in a total of 29 numerical sets (with only ω varying).
The initial conditions are all zero and the integration time
corresponds to approximately 10 cycles. The absolute and
relative tolerances are 10-6 and 10-3 respectively. Note that the
dimensions of the slider are not effecting the dynamics since
the slider is constrained to translate only. This concludes the
definition of base data to enable the MECHAMOS system to
perform MBS analysis. A more thoroughly discussion of the
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required base data is found in [2] where a crank-roller is
taken as an example. A shortened version of the text file that
populates MECHAMOS with this model is found in
Appendix 1. Most of the numerical sets are here left out.

The sliding pendulum example was used earlier to
illustrate the selection statements in the previous section.
Looking at the resulting object of the first query we find the
velocity vector on symbolic form represented in frame fB

MA3> representation(OID[0x0:2474]);

{"cos(q2)*u1+1/2*u2*LB","-sin(q2)*u1",0}

MA3> name(frame_oid(OID[0x0:2474]));

"fB"

MA4>

The second query, the magnitude of the vector on pure
numeric form, is graphically represented in Figure 3. This
plot is obtained by

MA4> plot(OID[0x0:2480],OID[0x0:2478]);

MA4>

assuming that the sequence of times of the integration points
is stored in the object numeric_sequence  with the object
identifier OID[0x0:2480] . The title is obtained manually in
a command like fashion through the QL.

The velocity of body "B" vs time at omega = 2.0 rad/s
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Figure 3. A graphic representation of the numeric sequence
representing the velocity of the pendulum.

In the remaining of this section further examples are given
on selecting MBS data for the sliding pendulum model
through the QL. Selecting MBS data usually involve combi-
nation and comparison of data and is not as strict as may be
indicated by the subsections below.

4.1 Combining Symbolic MBS data

The ability to combine data is important in MBS analysis.
Symbolic MBS data is usually combined within an MBS
model where data for different bodies can be combined to
obtain data for a system of bodies. Typically the derivation of
the equations of motion involves the combination of data
from individual bodies in the mechanism and their
interrelations to obtain equations for the entire set of bodies.
Combining and comparing symbolic MBS data over several
models requires some submodel strategy to avoid violation of
coordinate and reference frame definitions.

As a first example of combining symbolic MBS data, the
centre of mass for the mechanism is retrieved through the QL.

The common centre of mass for a group of bodies is simply a
mass-weighted mean value of the position vectors and is thus
given by

r
r* =

<∑
∑

m

m
i

i

i

(4)

The position vector, r<i, of the i:th body is given by the
derived function posvec(body)  and its mass, mi, by the
stored function mass_oid(body) . Selecting and combining
the appropriate data according to Equation (4) is obtained
with the AMOSQL query

MA4> SELECT div(sum(ev),sum(so))

FROM  mbs_model m,

         bag of euclidean_vector ev,

         bag of scalar_object so

WHERE name(m) = "Sliding Pendulum"

  AND ev = (SELECT mul(mass_oid(b),

                       posvec(b))

            FROM  body b

            WHERE model_oid(b) = m)

  AND so = (SELECT mass_oid(b)

            FROM  body b

            WHERE model_oid(b) = m);

OID[0x0:2487]

MA5>

This query has two subqueries that determine the
nominator and the denominator and both returns a bag of
objects. A bag is a collection of objects in no specific order.
These bags are summed separately by the overloaded
aggregation operator sum and then the nominator vector is
divided by the denominator scalar. The result is an object of
type euclidean_vector  containing the position vector of
the centre of mass. Two of the stored functions of the object
reveals the vector on symbolic form represented in frame fB.

MA5> representation(OID[0x0:2487]);

{"cos(q2)*q1" , "-1/2*(2*sin(q2)*mA*q1+

  2*mB*sin(q2)*q1+mB*LB)/(mA+mB)" , 0}

MA5> name(frame_oid(OID[0x0:2487]));

"fB"

MA6>

Another example of combining MBS data is to determine
the kinetic energy for a selected group of bodies. For each
body in the MBS system the kinetic energy consists of a
translational part and a rotational part

K
m

i
i i i i

i
i= ⋅ + ⋅ ⋅< < < <

2

1

2
v v Jω ω (5)

This equation is implemented as a derived function for the
object type body  named kinegy(body) . The object contains
information and refers to other objects containing the
information necessary to derive the kinetic energy (i.e. mass,
velocity, angular velocity and moments of inertia). For a
system of bodies, the total kinetic energy is the sum of the
kinetic energy for the individual bodies expressed as

K Ki= ∑ (6)
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and is retrieved by the following AMOSQL query

MA6> SELECT sum(so)

FROM  bag of scalar_object so,

         mbs_model m

WHERE name(m) = "Sliding Pendulum"

  AND so = (SELECT kinegy(b)

            FROM  body b

            WHERE model_oid(b) = m);

OID[0x0:2515]

MA7> scalar(OID[0x0:2515]);

"1/2*mB*cos(q2)*u1*u2*LB + 1/8*mB*u2^2*LB^2 +

 1/2*mB*u1^2 + 1/2*u2^2*JB + 1/2*mA*u1^2"

MA7>

This query returns an OID to a scalar_object

containing the total kinetic energy for the selected system of
bodies on symbolic form. In this case this is all the bodies in
the MBS model "Sliding Pendulum " and the query can be
defined as a derived function on the mbs_model  type as

MA7> CREATE FUNCTION kinegy(mbs_model m)

                -> scalar_object AS

  SELECT sum((SELECT kinegy(b)

              FROM  body b

              WHERE model_oid(b) = m));

OID[MBS_MODEL.KINEGY->SCALAR_OBJECT:2470]

MA8>

The function kineqy  is an example of an overloaded
derived function that is defined on the type body  and
returning the kinetic energy for the body. The same concept,
kineqy , is also defined on the type mbs_model  returning the
total kinetic energy for the entire set of bodies in the MBS
model. Thus, depending on the type of object, the appropriate
operations are performed to derive the kinetic energy.

In MECHAMOS this overloading is also applied on the
centre of mass example above where the derived function
posvec(mbs_model)  yields the position vector for the
centre of mass of the MBS model and posvec(body)  yields
the position vector of the body's centre of mass.

4.2 Combining Numeric MBS data

Combining numeric MBS data is preferably done over
several sets of numeric values. This opens up the possibility
to study a mechanism over a parameter space. In the sliding
pendulum example the different numerical sets vary only in
the frequency of the moving wall. Plotting the maximum
amplitude of the generalised coordinates for different ω
values yields information about critical frequencies of the
mechanism. This is accomplished with the following
AMOSQL query

MA8> SELECT applot_o("omega", max(ss), n)

FROM  mbs_numeric n,

         scalar_sequence ss

WHERE name(model_oid(n)) =

      "Sliding Pendulum"

  AND ss = numseq("q1",n);

MA9>

This query searches the database for all sets of numeric
values (mbs_numeric ) which are defined on the "Sliding

Pendulum " model. For each of these numerical sets the string
"q1" is evaluated numerically to obtain a sequence of
numeric values of the coordinate q1. The maximum value in
this sequence is then plotted versus ω. The result is the upper
curve in Figure 4 below. The lower curve is obtained by
simply append a plot of the minimum value (min ) of the same
numeric sequence. In Figure 5 this is done for the generalised
coordinate q2 ("q2").

As mentioned earlier it is the derived function numseq

that performs the sequence of operations corresponding to
B21-B24. The equations of motion (B21) have already been
derived in a previous query (generation MA2>) and are thus
not derived again since the result is available to the system.
Solving the equations (B22) for each numerical set are
performed for all the numerical sets in question except for the
set with ω = 2.0 [rad/s] since this has already been performed
(again in generation MA2>). The symbolic expression to be
evaluated (B23) is given in this case and thus not derived.
Finally the numeric evaluation (B24) is performed for each of
the numerical set.

To obtain the q2 plot in Figure 5 only the numeric
evaluation (B24) is performed since B21-B22 is already
performed for the involved MBS model and the numerical
parameter sets.

Maximum and minimum amplitude of q1 vs omega
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Figure 4. The maximum and minimum amplitude of the slider po-
sition for all defined numerical sets in the MBS model.

Maximum and minimum amplitude of q2 vs omega
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Figure 5. The maximum and minimum amplitude of the pendulum
angle for all defined numerical sets in the MBS model.

4.3 Comparing Numeric MBS data

Selection conditions are crucial in query processing. In the
examples above this comparison has been performed on
abstract characteristics such as names of objects, OIDs etc. In
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this section comparison and selection will be based on
simulation results and are therefore more computationally
intensive.

Figures 4 and 5 show a graph over the maximum and
minimum amplitude of q1 and q2 versus ω for the entire set of
parameter values defined on the "Sliding Pendulum "
model. Finding where in the ω-range the maximum amplitude
of q1 occurs is done with the following AMOSQL query
where equation()  composes a string of the parameter name
and its value.

MA12> SELECT

<equation(scalareqn_oid(n,"omega")), n>

FROM  mbs_numeric n

WHERE name(model_oid(n)) =

      "Sliding Pendulum"

  AND max(numseq("q1",n)) >= maxagg(

      (SELECT max(numseq("q1",n2))

       FROM  mbs_numeric n2

       WHERE name(model_oid(n2)) =

             "Sliding Pendulum"));

<"omega=0.65",OID[0x0:1675] >

MA13>

The query compare MBS data from different simulations
(which are reduced to numeric evaluations since the
simulation results are already available to the system) and the
result is a tuple of the ω-value and the OID associated to the
mbs_numeric  containing the numeric information. The
corresponding query for q2 yields the result

<"omega=1.85",OID[0x0:1965] >

and these two results correspond well to the maximum values
found in Figures 4 and 5.

The amplitude of the pendulum angle q2 is shown in
Figure 6 (the plot is based on the OID[0x0:1965] ) and it is
seen that this angle exceeds π/2. The final question is if there
are other numerical sets, i.e. ω-values, where the q2 angle also
exceeds π/2. This is answered with the following AMOSQL
query and its result can also be verified in Figure 5

MA15> SELECT

equation(scalareqn_oid(n,"omega"))

FROM  mbs_numeric n,

         scalar_sequence ss

WHERE name(model_oid(n)) =

      "Sliding Pendulum"

  AND ss = numseq("q2",n)

  AND max(ss) > 3.14159/2;

"omega=1.95"

"omega=1.85"

"omega=1.9"

MA16>

A closing remark to this section is that the examples and
queries presented here are general and can be used on other
MBS models defined in the database without any hands on
programming efforts. The MECHAMOS system is an MBS
analysis tool based on database technology. This provides the

system with general capabilities for combining and comparing
large amounts of data.

q2 vs time at omega = 1.85 rad/s
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Figure 6. A plot of the pendulum angle, q2, for the numeric object
yielding the maximum amplitude of the same q2.

5. Discussion and Conclusions

This work demonstrates the benefits of integrating MBS
analysis in a database environment. The available query
language enables MBS analysis on a higher level compared to
traditional MBS analysis tools.

The differences in retrieval of symbolic and numeric MBS
data are discussed and from this discussion the importance of
function materialisation emerges. The materialisation capa-
bilities avoid redundant and unnecessary computations and
the simplified implementation in MECHAMOS is focusing on
computational intensive operations and the most frequent op-
erations in the system. The importance of this implementation
is shown in some examples along with examples of combin-
ing and comparing of both symbolic and numeric MBS data.

Some of the advantages of the available database
technology in MBS analysis found in this work are:

• Several MBS models available to the analyst. In tradi-
tional MBS software each model is analysed separately
and usually each set of parameter values for the model are
also analysed separately. The results of these separate
analyses must then be stored and compared in a later stage
of the analysis where the MBS models are no longer
available to the analyst. This paper has presented and
shown through examples how the MECHAMOS system
handles MBS analysis and processes queries over several
models. The examples have only ranged over several sets
of parameter values within the same MBS model but it is
evident that extending the query processing to range over
several MBS models is supported in MECHAMOS.

• Improved MBS data management. The large number of
defined parameter sets (a total of 29) involved in the slid-
ing pendulum example shows how the available database
technology facilitates the data management of the MBS
analysis in MECHAMOS. Through the available query
language, the MBS analysis is performed on a higher level
compared to a traditional MBS analysis software. Further,
the MBS data is not generated in the beginning of the
session as in traditional tools but generated along the
analysis as the data is required to proceed the analysis.
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• Extend the optimisation analysis to include several MBS
models. In a traditional optimisation process a given
physical system is analysed in a parameter space where
each set of parameter values represent a variant of the
system. The aim of the optimisation is to determine the
parameter values giving a maximum or minimum value of
some response. With the possibility to easily analyse
several MBS models simultaneously the optimisation can
be performed over different physical concepts i.e.
different technical solutions to obtain a similar functional
response. The different concepts gives different equations
of motion and each of the concepts may also contain
variants in terms of different parameter sets. This has not
been shown in the examples of this work but it is possible
to perform such analyses in MECHAMOS.

• Combining data between engineering disciplines. This
work has focused on MBS analysis but in a wider perspec-
tive where MBS analysis represents one discipline among
others (e.g. CAD, FEA, CFD etc.) the ability to combine
engineering data can even be of greater importance. Finite
element analysis (FEA) may need to combine geometrical
data from a CAD model and dynamic loads from an MBS
model to perform a structural analysis. This issue is
further discussed in [2].

 Possible future development directions for MECHAMOS
has also been discussed in [2]. This work supports the idea
that the available database capabilities are an important factor
for a successful implementation of the following suggestions:

• Automatic submodel assembly. Implementing a submodel
representation and automatic assembly strategies will
improve the MBS analysis in MECHAMOS considerable.
Functional descriptions of physical components (e.g.
motors, gearboxes, couplings etc.) can then be stored in
the database as submodels. MECHAMOS should then be
able to combine these submodels and derive MBS data for
the assembled system. This implies that MECHAMOS
automatically can derive the different concepts discussed
in the optimisation section above. MECHAMOS should
then be able to select the assembled system that is optimal
in some sense.

• Trajectory analysis. Grossman [12-13] presents a
strategy for storing trajectories in a database and search
these trajectories to obtain information of the system
described by the trajectory. In "path-planning problems",
the path closest to a given desired path of a given point in
the mechanism can be selected. Further given a trajectory
that is a periodic orbit, other trajectories in the database
can then be compared and those, which also have a
periodic orbit, can be identified. The MECHAMOS
system generates trajectories by deriving the equations of
motion and solving these numerically. These trajectories
can then be searched and the trajectories that fulfil certain
criteria's could be detected.
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Appendix 1.

/*-----------------------------------------*/
/* This file populates the MECHAMOS system */
/* with the Sliding Pendulum model  990515 */
/* C - Claes Tisell, Machine Design, KTH   */
/*-----------------------------------------*/

/* Create & populate the mbs_model object  */
SET :mod6 =constr_model('Sliding Pendulum',2,2);
constr_kdeeq(:mod6, "q1t", "u1");
constr_kdeeq(:mod6, "q2t", "u2");
constr_timedepeq(:mod6,"f1","A0*sin(omega*t)");
constr_irf(:mod6, "fN");
constr_arf(:mod6, "fB", {"fN","fB",3,"q2"});
constr_gravityvec(:mod6, VECTOR(0,"-g",0),"fN");
constr_parameter(:mod6,
{"mA","mB","JB","LB","k1","c1","A0","omega","g"});
set_pval(:mod6, "g", 9.81);

/*-----------------------------------------*/

/**  Create and populate BODY "A"  **/
SET :b61  = constr_body(:mod6,"A","mA","fN");
constr_idyad(:b61,VECTOR(0,0,0,0,0,0),"fN");
constr_posvec(:b61,VECTOR("q1",0,0), "fN");
constr_aforvec(:b61,VECTOR("-k1*(q1-f1)",0,0),"fN");
constr_aforvec(:b61,VECTOR("-c1*(u1-f1t)",0,0),"fN");

/**  Create and populate BODY "B"  **/
SET :b62 = constr_body(:mod6,"B","mB","fB");
constr_idyad(:b62,VECTOR(0,0,"JB",0,0,0),"fB");
constr_posvec(:b62,VECTOR("q1",0,0), "fN");
constr_posvec(:b62,VECTOR(0,"-LB/2",0),"fB");

/*-----------------------------------------*/

/* Create & populate "mbs_numeric" objects */

SET :s601 = constr_mbsnum(:mod6, "s01");
set_pval(:s601, "omega", 0.1);
set_time(:s601, 0, 2*3.1415927*10/0.1);

SET :s603 = constr_mbsnum(:mod6, "s03");
set_pval(:s603, "omega", 0.3);
set_time(:s603, 0, 2*3.1415927*10/0.3);

SET :s605 = constr_mbsnum(:mod6, "s05");
set_pval(:s605, "omega", 0.5);
set_time(:s605, 0, 2*3.1415927*10/0.5);

SET :s6055 = constr_mbsnum(:mod6, "s055");
set_pval(:s6055, "omega", 0.55);
set_time(:s6055, 0, 2*3.1415927*10/0.55);

SET :s606 = constr_mbsnum(:mod6, "s06");
set_pval(:s606, "omega", 0.6);
set_time(:s606, 0, 2*3.1415927*10/0.6);

SET :s6065 = constr_mbsnum(:mod6, "s065");
set_pval(:s6065, "omega", 0.65);
set_time(:s6065, 0, 2*3.1415927*10/0.65);

SET :s607 = constr_mbsnum(:mod6, "s07");
set_pval(:s607, "omega", 0.7);
set_time(:s607, 0, 2*3.1415927*10/0.7);

SET :s608 = constr_mbsnum(:mod6, "s08");
set_pval(:s608, "omega", 0.8);
set_time(:s608, 0, 2*3.1415927*10/0.8);

SET :s609 = constr_mbsnum(:mod6, "s09");
set_pval(:s609, "omega", 0.9);
set_time(:s609, 0, 2*3.1415927*10/0.9);

SET :s610 = constr_mbsnum(:mod6, "s10");
set_pval(:s610, "omega", 1.0);
set_time(:s610, 0, 2*3.1415927*10/1.0);

SET :s611 = constr_mbsnum(:mod6, "s11");
set_pval(:s611, "omega", 1.1);
set_time(:s611, 0, 2*3.1415927*10/1.1);

SET :s613 = constr_mbsnum(:mod6, "s13");
set_pval(:s613, "omega", 1.3);
set_time(:s613, 0, 2*3.1415927*10/1.3);

SET :s615 = constr_mbsnum(:mod6, "s15");
set_pval(:s615, "omega", 1.5);
set_time(:s615, 0, 2*3.1415927*10/1.5);

SET :s617 = constr_mbsnum(:mod6, "s17");
set_pval(:s617, "omega", 1.7);
set_time(:s617, 0, 2*3.1415927*10/1.7);

SET :s618 = constr_mbsnum(:mod6, "s18");
set_pval(:s618, "omega", 1.8);
set_time(:s618, 0, 2*3.1415927*10/1.8);

SET :s6185 = constr_mbsnum(:mod6, "s185");
set_pval(:s6185, "omega", 1.85);
set_time(:s6185, 0, 2*3.1415927*10/1.85);

SET :s619 = constr_mbsnum(:mod6, "s19");
set_pval(:s619, "omega", 1.9);
set_time(:s619, 0, 2*3.1415927*10/1.9);

SET :s6195 = constr_mbsnum(:mod6, "s195");
set_pval(:s6195, "omega", 1.95);
set_time(:s6195, 0, 2*3.1415927*10/1.95);

SET :s620 = constr_mbsnum(:mod6, "s20");
set_pval(:s620, "omega", 2.0);
set_time(:s620, 0, 2*3.1415927*10/2.0);

SET :s621 = constr_mbsnum(:mod6, "s21");
set_pval(:s621, "omega", 2.1);
set_time(:s621, 0, 2*3.1415927*10/2.1);

SET :s622 = constr_mbsnum(:mod6, "s22");
set_pval(:s622, "omega", 2.2);
set_time(:s622, 0, 2*3.1415927*10/2.2);

SET :s623 = constr_mbsnum(:mod6, "s23");
set_pval(:s623, "omega", 2.3);
set_time(:s623, 0, 2*3.1415927*10/2.3);

SET :s624 = constr_mbsnum(:mod6, "s24");
set_pval(:s624, "omega", 2.4);
set_time(:s624, 0, 2*3.1415927*10/2.4);

SET :s626 = constr_mbsnum(:mod6, "s26");
set_pval(:s626, "omega", 2.6);
set_time(:s626, 0, 2*3.1415927*10/2.6);

SET :s628 = constr_mbsnum(:mod6, "s28");
set_pval(:s628, "omega", 2.8);
set_time(:s628, 0, 2*3.1415927*10/2.8);

/* and so on for the rest of the numeric objects */
/* That is for omega = 3.0, 3.3, 3.7 and 4.0     */


