Distributed View Expansion in Composable
Mediators

Timour Katchaounov, Vanja Josifovski and Tore Risch

Uppsala Database Laboratory,
Uppsala University, Sweden
first_name. last_name@dis.uu.se

Abstract. Data integration on a large scale poses complexity and per-
formance problems. To alleviate the complexity problem we use a mod-
ular approach where many heterogeneous and distributed data sources
are integrated through composable mediators. Distributed mediators are
defined as object-oriented (OO) views defined in terms of views in other
sub-mediators or data sources. In order to minimize the performance
penalty of the modular approach we have developed a distributed ex-
pansion strategy for OO views where view definitions are selectively im-
ported from sub-mediators. Our performance analysis has shown that the
distributed view expansion can support modularity through distributed
and composable mediators with little overhead.

1 Introduction

There has been substantial interest in using the mediator/wrapper approach
for integrating heterogeneous data [9,21,7,19,4]. Most mediator systems inte-
grate data through a single mediator server accessing one or several data sources
through a number of *wrapper’ interfaces that translate data to a common data
model (CDM). However, one of the original goals for mediator architectures [22]
was that each mediator should be a relatively simple modular abstraction of the
integration of some particular kind of data. Larger systems of mediators would
then be defined through these primitive mediators by composing new media-
tors in terms of other mediators and data sources. Different mediator servers
distributed on the network would define different logical views of data. Such a
modular logical composition of mediators allows to overcome complexity prob-
lems of data integration on a large scale with many data sources and mediators
involved. However, very few projects have used a distributed mediator architec-
ture, e.g. [15], and there is little work on implementation issues of distributed
mediators.

This paper investigates query processing in a distributed mediator system,
AMOS II [20], where distributed mediators are composed as object-oriented
(O0) views in terms of views in other sub-mediators or data sources. The views
make the distributed mediators appear to the user as a single virtual database
consisting of a number of types (classes) and functions (methods, attributes).
However, unlike regular OO systems the extents of these types and functions

are not explicitly stored in a database but are derived, through an OO multi-
database query language, from data in the underlying data sources and other OO
mediators [5,10, 12]. Even though such an architecture addresses the complexity
problems of data integration it also has some performance problems. Unlike
distributed databases, the distributed mediators do not have any central schema
and each mediator server has only limited knowledge about the structure of other
mediators. This makes it difficult to find an optimal distributed query execution
plan. In our approach the distributed mediator servers communicate with other
known mediator servers to import some of the schema information, such as some
OO view definitions. Exchanging OO view definitions in a composable mediator
framework poses new problems compared to relational distributed databases as
information about unknown user-defined types has to pass through intermediate
servers. In order to deal with this problem we have developed a technique to
process queries when incomplete type information is available, to be described
in an upcoming work.

In [11] we described how to decompose distributed queries and then re-
balance the decomposed query execution plans to minimize the communication
overhead by generating an optimized data flow pattern between the distributed
mediator servers. In that strategy the sub-mediators did not export their view
definitions but only executed queries and provided query costing information.
Such a strategy can be suboptimal when there are more than two distributed
mediator layers. In this paper the importance is analyzed of a method based on
distributed selective view expansion (DSVE) to minimize the penalty of several
mediator server levels. The combination of DSVE, query decomposition and re-
balancing is shown to significantly improve query performance. The method can
drastically reduce query execution time when information from several hidden
sub-mediators can be combined. A performance study of this case shows exe-
cution time improvement between 20 and 144 times for a test query selectivity
varying between 1 and 0.01 [13]. Our measurements also show that savings in
time are achieved in every component of the mediator composition (mediators,
network, datasources). The performance improvements are due to more selective
queries, smaller data flows between the servers, and fewer servers involved in the
data exchange.

As our research platform we use the AMOS II mediator database system [20].
The core of AMOS II is an extensible and distributed main-memory OO DBMS.
For more details about the architecture, query language and data integration
capabilities the interested reader is referred to [5,10,12,20]

2 Distributed Selective View Expansion

The following two subsections first describe the mechanism for view definition
exchange and expansion in a hierarchy of AMOS II servers. After that a new
heuristic based approach to selectively perform view expansion is proposed. Due
to space limitations only an outline of the algorithms is given, while a detailed
description can be found in [13].

2.1 Basic View Expansion Algorithm

Distributed view expansion is implemented as an extension to the query pro-
cessor of AMOS II. Figure 1 illustrates the extended query processing with dis-
tributed view expansion. The view expansion is placed after the original query
has been decomposed into distributed subqueries over the participating media-
tors. This improves query compilation time by minimizing the sizes of the query
expressions. The grouped predicates are compiled and rewritten together at the
coordinating mediator. In the distributed view expansion phase (the grayshaded
boxes in Figure 1) the client mediator sends a view expansion request to each
server where a subquery is to be executed and an expanded view definition of
the subquery is retrieved. The subqueries are communicated between the servers
in the form of declarative expressions [14]. At the server accepting the subquery
expansion request, the subquery processing starts with query transformations
and continues in the same manner as with other queries until the distributed
selective view expansion phase. In this phase subqueries that contain themselves
subqueries to other AMOS II mediators are selectively expanded. The process
might span several levels of mediators, and, it terminates according to the strat-
egy described in the next subsection.

top level (client) Query decomposition

Distr. view

Subquery . > . Schedule ,
> i » i Scheduling P Rebalancing [|

generation expansion

AT TEEEZ - Y N

level 1

Subquery > Distr. view
generation expansion

v

TEHTZZAMIHHHHHHHHHijH HHHHHHIHHHHHnUuaanins

R ZEEZ I HEHEHIIHHHHTITITTHIHI_aHs

level k

Subquery » Distr. view
generation expansion

Fig. 1. Distributed selective view expansion process

After collecting the definitions of the remote subqueries selected for expan-
sion, the next phase in the DSVE combines again all these expressions into

one in order to be reoptimized by the subsequent optimization phases. Next a
query scheduler generates distributed execution plan. In a final step this plan is
rebalanced by a distributed algorithm [11].

The benefits of the proposed view expansion are the following:

1. Calculus based rewrites can be performed at the client to eliminate overlap
in the calculation among the different servers.

2. Each subquery to be executed at another AMOS II server could be expanded
into expressions derived from multiple AMOS II servers. These expressions
might in turn have sub-expressions that are executed at a common AMOS II
server. Putting them together in a single predicate may increase it’s selec-
tivity and allows for optimizations that eliminate overlap or achieve a better
execution strategy.

3. The expanded expressions returned from the DSVE may contain predicates
that could be combined/replicated with predicates at different data sources
where they can act as selections, reducing the query execution time and the
intermediate result sizes.

4. A richer space of data flow patterns will be considered by the query scheduler.

2.2 Controlling the view expansion process

While the view expansion can eliminate redundant computation and data ship-
ment, it may also introduce extra costs in the optimization. Therefore we turn
our attention to the problem of deciding when to perform expansion of the views
and how to control the depth of DSVE.

An exhaustive cost-based algorithm determining which views to expand would
need to fully compile the query for each combination of the views at the inter-
mediate nodes, thus resulting in prohibitively long compilation times. To reduce
the complexity of this problem each node makes a decision if a view is to be
expanded based only on locally available data - the number of sub-subqueries of
each subquery.

Whenever a multidatabase (sub)query is to be processed by the query de-
composer, before DSVE is performed, a budget based decision procedure is used
to control the depth of view expansion. The main goal of this procedure is to
favor view expansion in cases of deep mediator hierarchies, and prohibit view
expansion explosion when the number of direct sub-mediators is too large.

The query site starts with some initial budget. Whenever a view expansion
request is to be sent, part of the budget is sent along with that request. The
receiving site starts it’s compilation process with the received part of the initial
budget and proceeds in the same manner. The view expansion process stops
when all of the initial budget is distributed among some of the participating
mediators.

3 Related Work

This work is related to work on query optimization in distributed databases and
mediators. Distributed databases [18,3,8,1] have complete global schemas de-

scribing on what sites different (fractions of) tables are located, while distributed
mediators do not have complete knowledge of meta-data from all mediators and
data sources. Full expansion of all possible views in a distributed system with
many nodes may be very costly. By contrast selective view expansion allows
compositions of very many servers. In [16] a view expansion strategy for the
System R* distributed database is briefly mentioned but not evaluated.

Mediator systems are usually not distributed (e.g. [9, 21,17]) and thus do not
use our strategies. In [4] it is indicated that a distributed mediation framework is
a promising research direction without reporting any results. The DIOM system
[19] is also a distributed mediator system using distributed query scheduling
similar to our decomposer. However, no distributed view expansion is reported.

To our knowledge no work has addressed problems related to the use of
0O features and more specifically user-defined types in a distributed mediator
system.

4 Summary and Future Work

We described a distributed view expansion technique in composable mediators.
Our results show that even in a simple mediator composition this approach leads
to significant performance improvements, compared to a “black-box” approach
to distributed query optimization. The main contribution of this work is that
it shows that OO mediators may be logically composed to solve integration
problems with very little execution overhead.

Though not addressed in this paper, we have also investigated performance
problems in more complex composition scenarios. Preliminary results show that
DSVE will be beneficial to use to discover optimal data flow in a non-homogeneous
network with different communication speeds between the mediator nodes.

An issue not addressed in our current work is compilation time of large dis-
tributed queries. Our current experience shows that while mediator compositions
of less than 10 mediators works reasonable with our framework, larger systems of
distributed mediators require scalable and distributed compilation techniques.

References

1. P. Apers, A. Hevner and S. Yao: Optimization Algorithms for Distributed Queries.
IEEE Transactions on Software Engineering, 9(1), 1983

2. O. Bukhres, A. Elmagarmid (eds.): Object-Oriented Multidatabase Systems, Pretince
Hall, 1996.

3. D. Daniels et al.: An Introduction to Distributed Query Compilation in R*. In H.
Schneider (ed): Distributed Data Bases, North-Holland, 1982

4. W. Du and M. Shan: Query Processing in Pegasus, In O. Bukhres, A. Elmagarmid
(eds.): Object-Oriented Multidatabase Systems, Pretince Hall, Englewood Cliffs, 1996.

5. G. Fahl, T. Risch: Query Processing over Object Views of Relational Data. The
VLDB Journal, Springer, 6(4), November 1997.

6. S. Flodin, T. Risch: Processing Object-Oriented Queries with Invertible Late Bound
Functions, 21st Conf. on Very Large Databases (VLDB’95), Zurich, Switzerland, 1995

7. H.Garcia-Molina, et al: The TSIMMIS Approach to Mediation: Data Models and
Languages. Intelligent Information Systems (JIIS), Kluwer, 8(2), 1997

8. N. Goodman, P. Bernstein, E. Wong, C. Reeve and J. Rothnie: Query Processing
in SDD-1: A System for Distributed Databases. ACM Transactions on Database
Systems (TODS), 6(4), 1981

9. L. Haas, D. Kossmann, E. Wimmers, J. Yang: Optimizing Queries across Diverse
Data Sources. 23th Intl. Conf. on Very Large Databases (VLDB’97), Athens, Greece,
1997

10. V.Josifovski and T.Risch: Functional Query Optimization over Object-Oriented
Views for Data Integration, Intelligent Information Systems (JIIS) Vol. 12, No. 2/3,
Kluwer, 1999.

11. V.Josifovski, T.Katchaounov, T.Risch: Optimizing Queries in Distributed and
Composable Mediators, 4th Conference on Cooperative Information Systems,
CoopIS’99, Edinburgh, Scotland, Sept. 1999.

12. V.Josifovski, T.Risch: Integrating Heterogeneous Overlapping Databases through
Object-Oriented Transformations, 25th Conf. on Very Large Databases (VLDB’99),
Edinburgh, Scotland, Sept. 1999.

13. T. Katchaounov, V. Josifovski, T. Risch: Distributed View Expansion in Compos-
able Mediators, Research Report 2000:2, Uppsala University, Department of Infor-
mation Science, 2000.

14. W. Litwin and T. Risch: Main Memory Oriented Optimization of OO Queries using
Typed Datalog with Foreign Predicates. IEEE Transactions on Knowledge and Data
Engineering, 4(6), 1992

15. L.Liu, C.Pu: An Adaptive Object-Oriented Approach to Integration and Access
of Heterogeneous Information Sources, Distributed and Parallel Databases, Kluwer,
5(2), April 1997.

16. G.Lohman, C.Mohan, L.Haas, D.Daniels, B.Lindsay: Query Procesing in R*, in
W.King, D.S.Reiner, D.S.Batory (eds.): Query Processing in Database Systems,
Springer Verlag, 1985.

17. S. Nural, P. Koksal, F. Ozcan, A. Dogac: Query Decomposition and Processing in
Multidatabase Systems. OODBMS Symposium of the European Joint Conference on
Engineering Systems Design and Analysis, Montpellier, July 1996.

18. M.T.OZSH, P.Valduriez: Principles of Distributed Database Systems, Prentice Hall,
1999.

19. K.Richine: Distributed Query Scheduling in DIOM, Tech. report TR97-03, Com-
puter Science Dept., University of Alberta, 1997.

20. T.Risch, V.Josifovski, T. Katchaounov: AMOS II Concepts, available at
http://www. dis.uu.se/~udbl/amos/doc/, 2000.

21. A. Tomasic, L. Raschid, P. Valduriez: Scaling Access to Heterogeneous Data
Sources with DISCO. IEEE Transactions on Knowledge and Date Engineering, 10(5),
1998

22. G. Wiederhold: Mediators in the Architecture of Future Information Systems,
IEEE Computer, 25(3), Mar. 1992.

