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Abstract scope of the paper.

This paper presents a difference calculus for A difference calculusvill be defined for computations of
determining changes to rule conditions in an active DBMS. changes to the results of database queries and views.
The calculus has been used for implementing an algorithmQueries and relational views are regarded as functions over
to efficiently monitor rules with complex conditions. The sets of tuples and the calculus for monitoring changes is
calculus is based gpartial differencingof queries derived  regarded as an extension of set algebra. Let P be a function

from rule conditions. For each rule condition several dependenton the functions Q and R, denoteihfheentsof

partially differentiated queries are generated that eachthe affected function

P. The problem offinite

considers changes to a single base relation or view that thedifferencing14] is how to calculate changes to /&R, in

condition depends on.

The calculus considers bothterms of changes to its influents. Wihrtial differencing

insertions and deletions. The algorithm is optimized for changes to P are defined as the combination of the changes
deferred rule condition monitoring in transactions with few to P originating in the changes to each of its influents. Thus,
updates. The calculus allows us to optimize both space ancAP is a function of theartial differentialfunctionsAP/AQ

time. Space optimization is achieved since the calculus andand AP/AR. In this paper we define how to automatically
the algorithm does not presuppose materialization of derive the partial differentialBP/AQ andAP/AR, and how
monitored conditions to find its previous state. This is to calculateAP from them. The calculus is mapped to

achieved by using areadth-first, bottom-ugpropagation

relational algebra by defining partial differentials for the

algorithm and by calculating previous states by doing a basic relational operators. Partial differencing has the

logical rollback Time optimization is achieved through
incremental evaluation techniques. The algorithm has been
implemented and a performance study is presented at the®
end of the paper.

1 Introduction

When introducing rules into a database it is crucial that
the overall performance of the database is not impaired
significantly. Rule monitorings the activity of monitoring
changes to the state of rule conditionsnaive method of
detecting changes is to execute the complete condition wher,
an event that triggers the rule has occurred. This, however,
can be very costly, since a rule condition can span over large
portions of the database.

This paper presents a technique for efficient monitoring
of active rules integrated with a query language of an Object
Relational database system. The technique is especially
designed fordeferred rules, i.e. rules where the rule
execution is deferred until a check phase that usually occurs
when transactions are committed. The technique can also bt
used for immediate rule processing[4], but this is outside the

following properties compared to other approaches:

We assume that the number of updates in a transaction is
usually small and often very few (or only one) tables are
updated. Therefore, very few partial differentials are
affected in each transaction. Each partial differential gen-
erated by the rule compiler is a relatively simple database
guery which is optimized using traditional query opti-
mization techniques [22]. The optimizer assumes few
changes to a single influent.

We separately definositiveandnegativepartial differ-
entials, denotedP/A,Q andAP/A_Q, respectively, since
monitored conditions are often only dependent on inser-
tions in influents (not on deletions), as will be shown.
Furthermore, the partial differentials for handling inser-
tions and deletions do not have the same structure. Con-
ditions that depend on deletions are actually historical
gueries that must be executed in the database state when
the deleted data were present. This makes negative dif-
ferentials different and not easily mixable with positive
ones.



¢ The calculus allows us to optimize both space and timecondition.
Space optimization is achieved since the calculus and  The paper proceeds as follows. In section 2 related
the algorithm does not presuppose materialization ofwork is presented. In section 3 active rules in our DBMS are
monitored conditions to find their previous state. introduced with arunning example used throughoutthe rest of
Instead it gives a choice between materializationthe paper. In section 4 the calculus of partial differencing is
and computation of the old state from the new one,introduced, first intuitively and then formally. In section 5
given all the state change3ime optimization is the propagation algorithm is presented. In section6 a
achieved through incremental evaluation techniques. performance measurement of the algorithm is presented. In
section 7 some possible refinements to the implementation

 Based on the calculus, an algorithm has been developegre presented. Finally in section 8 a summary and future
for efficient rule condition monitoring by propagation of work is presented.

incrementathanges throughdependency netwarkor

correct handling of deletions in the absence of materiali-2  Related Work

zations and for efficient execution paeadth-first, bot- . .
Incremental evaluation of database queries was

tom-uppropagation is made through the network of both presented aginite differencing in [14] and in [3] as a

insertions and (only when applicable) deletions. The algo-, . . T ; .
. o .~ ~technique for continuously maintaining derived data in
rithm reduces memory utilization by only temporarily

saving the intermediate chanaes appearing durin théjnaterialized views. The technique was adopted for rule
0 ag ation 9 bp 9 9 M%ondition monitoring in  HiPac[4][20], Ariel[11],
bropag ' PARADISER][5], and[7]. Recent work on incremental
«  For explainability, one can easily determine which influ- maintenance of materialized views can be found in [10][13]

ents actually caused a rule to trigger and if it was triggerei"d On incremental evaluation of Datalog programs in [6].
by an insertion or a deletion. It is straight forward to Our work differs from the above in that we deal with the

determine this by remembering which partial differen- problem. of partial_differencing of database queries, i.g.
tials were actually executed in the triggering. automat_|c generation Qf several separate part|al.d|fferent|als
from a given rule condition rather than one large incremental
The method is implemented and a performanceexpression. Furthermore, we also deal with deletions and

measurement has been made. We have implemented both ofieremental evaluation of deferred rule conditions.
incremental algorithm and a ‘naive’ condition monitoring In [17] the relational algebra is extended with
algorithm that recomputes the whole rule condition every timeincremental expressions. In [1] a method is presented that
an update has been made to an influent affecting a conditiorflerives two optimized condition®reviously Trueand
The performance evaluation shows that for transactions witfPreviously Falsebased on a materialization of a simple
few updates our incremental algorithm scales better over th&uth value of a condition. Since our rules are set-oriented we
database size than the naive method. For transactions witheed to consider sets of truth values.
many updates to several influents the method is not as efficient I contrast to the work above we will also present a
as naive evaluation, but with a factor that is constant over thépace and time efficient propagation algorithm based on our
size of the database. calculus. By usingreadth-first, bottom-ugpropagation to

The default semantics of our active rules [19] uses thecorrectly and efficiently propagate both positive and
CA modelwhere each rule is a pair, <Condition,Action>, negative changes without retaining space consuming
where the condition is a declarative database query, and tH@aterializations of intermediate views our algorithm differs
action is a database procedural expression. The method cdf®m the PF-algorithm [12]. The materialized views can be
be used for ECA-rules as well; the event part just furthervery large and can even be considerably larger than the
restricts when the condition is tested. Set-oriented actiorPriginal database, e.g. where cartesian products or unions
execution[24] is supported since data can be passed from tr&F€ used. This may exhaust memory or buffers when many
condition to the action of each rule by using shared quengonditions are monitored and the database is large. Ariel[11]
variables. Condition evaluation is delayed unticleeck  Uses a propagation algorithm called TREAT[16] and avoids
phaseusually at commit time. In the check phase, changematerialization of intermediate results, but in a more
propagation is performed only when changes affectingrestricted way than in our approach, without using any
activated rules have occurred, i.e. no overhead is placed oiermal calculus.
database operations (queries or updates) that do not affect
any rules. After the change propagation, one triggered rule
is chosen through eonflict resolution methdd Then the
action of the rule is executed for each instance for which thel. Conflict resolution is the process of choosing one single
rule condition is true based on the net changes of the rule rule when more than one rule is triggered.




3 Monitoring Active Rule Conditions would be:

Active rules have been introduced into AMOSI[8][19] g;zg:: Eypg gﬁm’"er
(Active Mediators Object System), an Object Relati_onal create fﬁﬁctionpguar;tity(item) > integer;
DBMS. The data model of AMOS is based on the functional eate function max stock(item) -> integer:
data model of Daplex[21] and Iris[9]. AMOSQL, the query create function min_stock(item) -> integer;
language of AMOS, is a derivative of OSQL. The data create function consume_freq(item)
model of Iris is based on objects, types, and functions. In -> integer;
AMOS the data model is extended with rules. Everything increate function supplies(supplier) -> item;
the data model is an object, including types, functions, andreate functiondelivery_time(item,supplier)
rules. All objects are classified as belonging to one or _ ->integer;
several types, i.e. classes. Functions can be stored, deriveg/€ate function threshold(item i) -> integer
or foreign. Stored functions equal object attributes or base 25 .
tables, derived functions equal methods or relational views, Selec(tj C(.)nsum.e—fre.q(') . _

. . . . . elivery_time(i, s) + min_stock(i)
and foreign functions are functions written in some for each supplier s where supplies(s) =i;
procedural languade Procedures can be defined as create rule monitor_item(item i) as '
functions that have side-effects. AMOSQL extends OSQL when quantity(i) < threshold(i)

with active rules, a richer type system, and multidatabase do order(i, max_stock(i) - quantity(i));

functionality. create rule monitor_items() as
when for each item i
3.1 Rules in AMOSQL where quantity(i) < threshold(i)

Condition Action (CA) rules have been introduced into do order(i,max_stock(i) - quantity(i));

AMOSQL. The condition is an AMOSQL query and the
action is an AMOSQL procedural expression.
The syntax for rules is as follows:

The monitor_item  rule monitors the quantity of a
specific item in stock and orders new items when the
quantity drops below the threshold, considering the time to
get new items delivered. The procedwrder does the
actual ordering.

The consume-frequency defines how many instances of
a specific item are consumed on average per day. The
monitor_items  rule monitors all items instead of just
one at a time. This rule will be used as an example
throughout the rest of the paper.

Next we populate the database and activate the rule

. . . monitor_items
The predicate-expressiorcan contain any boolean = . 5 . )
create item instances :iteml , litem2;

expression, in.cluding conjunctipn, disjunction, and neg'ation.Set max_stock(:item1) = 5000;
Rules are activated and deactivated separately for differentet max_stock(:item2) = 7500;
parameters. set min_stock(:item1) = 100;

The semantics of a rule is as follows: If an event of theset min_stock(:item2) = 200;
database changes the truth value for some instance of the coset consume_freq(item1) = 20;
dition totrue, the rule is marked &isggeredfor that instance.  set consume_freq(:item2) = 30;

If something happens later in the transaction which causes thefeate supplier instances :supl, :sup2;
condition to become false again, the rule is no longer trig-Set supplies(:supl) = :item1;
gered. This ensures that we only react to net changésgi.e. €t supplies(:sup2) = :item2;
ical eventsA non-empty result of the query that represents St delivery_time(:item1, :supl) = 2;

o . . set delivery_time(:item2, :sup2) = 3;
the condition is regarded dsie and an empty result is . Lo i
regarded afalse activate monitor_items();

A classical example for active databases is that of moni-  This will ensure that the quantity of items of type 1 is

toring the quantity of items in an inventory. When the quan-giways kept between 5000 and 100, and new items will be

tity of an item drops below a certain threshold, new items argyqjivered if the quantity drops below 140. The quantity of
to be automatically ordered. The definitions in AMOSQL

create rulerule-name parameter-specificatias
whenfor-each-clause predicate-expression
do procedure-expression
where
for-each-clause:=
for eachvariable-declaration-commalist
where predicate-expression

2. These are interface variables and are not part of the stored
1. In AMOS foreign functions can be written in Lisp or C. database.



items of type 2 will be kept between 7500 and 200, and ne Acnd monitor items
items will be ordered if the quantity drops below 290. - -

3.2 Rule Compilation

The rule compiler generates the condition functior * Athreshold
cnd_monitor_items from the condition of the rule
monitor_items . This function returns all the items with
guantities below the threshold. Condition monitoring is
regarded as monitoring changes to the conditio
function[18]. Aquantity
create function cnd_monitor_items() -> item

as

select i for each item i

where quantity(i) < threshold(i);

Adelivery_time Asupplies
Aconsume_freq Amin_stock
Figure 1: Dependency network of the rule condition

fig. 1). The dependency network is constructed from the
definition of the condition function and its sub-functions.
The action part of the rule generates a procedure that takes " OUr system AMOSQL functions are compiled into a

an item as argument and orders new items to fill the inven-d0main calculus language called ObjectLog[15], which is a
tory. variant of Datalog where facts and Horn Clauses are

create function act_monitor_items(item i) augmented with type signatures. In AMOS stored functions

->boolean las are compiled into facts (base relations) and derived
order(i, max_stock(i) - quantity(i)); functions are compiled into Horn Clauses (derived
relations). In our example the system can deduce the
At run-time theact_monitor_items procedure will be dependency network by looking the definitions of the
applied to the set afhangesalculated from the differential ~ functionscnd_monitor_items andthreshold
denotedicnd_monitor_items cnd_monitor_items  jiem ()«
act_monitor_ijtems( Acnd_monitor_items()); quantity  jemiinteger (L_G1) O

threshold e integer (1,_G2) O
AMOSQL is a stream-oriented language so the _Gl<_G2
procedure is executed for every changed value of thethreshold o (T
condition. We distinguish betweestrict and nervousrule tem.integer 1% -
. . . . . . consume_freq jem integer (1L_G1) U
execution semantics. With strict semantics the action ., - _ o L G2 G3) [
. elivery_time item,supplier,integer (‘_ — )
procedure is executednly when the truth value of the supplies  iom suopter (b G2) O
monitored condition changes from false to true in some _G4=_Gl*_’6§3p o
transaction. With nervous semantics the rule sometimes min_stock jem integer (1L,_G5) O
triggers when there has been an update that causes the ruleT=_G4 + G5
condition to become true without having been false
previously. Nervous semantics is often sufficient; however,4 The Calculus of Partial Differencing
in our example strict semantics is preferable since we only  The calculus of partial differencing is our basis for

want to order an item once when it becomes low in stockncremental evaluation of rule conditions. It formalizes

Note that before the action part of a triggered rule iS,p4ate event detection and incremental change monitoring.
executed a conflict resolution method is applied. The calculus is based on the usual set operatoos (L),

By looking at the definition otnd_monitor_items _intersection(N), difference(-), andcomplement~). Three
we can define a dependency network (fig. 1) that specifiefe,y gperators are introducettlta-plus(d,), delta-minus
what c_:han_ges can affec? the differential (A), anddelta-union(L1 y). A, returns all tuples added to a
Acnd_monitor_items . Each edge in the dependency net- get gyer a specified period of time, ahdll tuples removed
work defines the influence from one function to another.fom the set. Adelta-set(A-set) is defined as a disjoint pair
With each edge we also associate the partial differential&ms A S> for some set S arld , is defined as the union
that calculate the actual influence from a particular nodeof tw,o A-sets. The calculus is general and in section 4.6

For instance, Aquantty ~ is an influent —of  narigl differencing of the relational algebra operators is

Acnd_monitor_items with a partial differential  ghown.

Acnd_monitor_items  /Aquantity  (the edge marked * in Separatgartial differentialsare generated for monitor-
ing insertions and deletions for each influent of a derived

1. A procedure that does not explicitly return anything relation. The intuition is to calculate positive partial differ-

implicitly returns a boolean.



entials (monitoring insertions) in the new state of the data-The operator works correctly when there is no net effect

base. The negative partial differentials (monitoring of updates to a functiorpdates to stored functions are

deletions) are calculated in the old state since this was whemade by first removing the old value tuples and then adding

the deleted tuples were present in the database. the new onesk-or example, let us update the minimum
The old state of a relation is calculated from the newstock of some item twice assuming tlat_stock was

state by performing &ogical rollback that inverts all the  originally 100:

updatesGiven the value of §,, we can calculate g set min_stock(:item1) = 150;

by inverting all operations done to S, i.e. by usigg S set min_stock(:item1) = 100;

= (Shew L] A-S) -A,S. The calculus is based on accumu- This produces the physical update events:

lating all the relevant updates to base relations during amin_stock,:item1,100)

transaction. These accumulated changes are then use@min_stock,:item1,150) ,

to calculate the partial differentials of derived relations. -(min_stock,:item1,150) ,

Changes are propagated in a breadth-first, bottom-up-(min_stock,:item1,100).

manner through a propagation network whereffets g A get formin_stock changes accordingly with:
can be seen as temporary ‘wave-front’ materializations.in stock = <{},{(¥tem1,100)}>
Calculating the old state,,q, requires all the propagated Amin:stock: <{(:item1,150)},{(:item1,100)}>
changes that influence S, i.e. the comple@ andA_S. Amin_stock = <{},{(item1,100)}>

Our algorithm guarantees that all changes to influents ohmin_stock = <{},{}>
an affected relation are propagated before the changes to .
the affected relation are I[[))ro|[|?)a%ated further. Thereforge, b;'/'e' there is no net effect of the updates.
propagating breadth-first, bottom-up we can calculate the4
old states (§y) of relations by doing a logical rollback.
Next we define how to accumulate these changes and hows for base relations, the-set of a relational view, i.e.
to generate partial differentials. a derived function, is defined as a pair:

AP = <AP,AP>

4.1 Differencing of Base Relations We need to define how to calculate theset of an

All changes to base relations, i.e. stored functions, areaffected view in terms of thA-sets of its influents. To
logged in a logical undo/redo log. During databasemotivate our calculus we next exemplify change moni-
transactions, before these physical update events are writtadring of views for positive changes (adding) and nega-
to the log, a check is made if a stored base relation wasive changes (removing), respectively. We then show
updated that might change the truth value of some activateflow to combine partial differentials into the final calcu-
rule condition. If so, thehysical eventare accumulated in  |us.
a A-setthat reflects allogical eventsso far of the updated
relation. Only those functions that are influents of some rule4.3 Positive Partial Differentials
condition need\-sets. Thé\-sets can be discarded when the For a view P defined as a Horn Clause with a
changes of the affected relations have been calculateqyyniynctive body, let ) be the set of all its influents. The

which saves space. Since rules are only triggered by logicg)itive partial differential&P/A, X, X; Ol (for insertions

events the physical events have to be added witddfi@ ) are constructed by substitutingiX P with its positive
union operator,[],, that cancels corresponding insertions differential A, X
.

and deletions in thA-set. TheA-set for a base relation B is

.2 Partial Differencing of Views

For example, if

defined as: pX,2) -
AB = <A,B, AB>, g%, Y) O
whereA,B is the set of added tuples to B ah® is the r(Y, 2)
set of removed tuples, they are defined as: then
A.B =B - Bygand Ap(X, 2)f Aq -
AB =By - B, and thus f&q%’ v) O
Bog=(BLIAB)-A,B and '
We defineDA formally as: Ap(X, Z) A~
AB; LI, AB, = <(A,B;-AB,) L (A,B,- ABy), qX.Y) O
(0B, -ABy) L (AB,-A,By) > Ar(Y, Z)

If DBy 4 consist of the stored relations (factg), 1) ,
r(d,2) ,r(2,3) ,then we can derive(l, 2)

1. The current database always reflects the new state



A transaction performs the updates
assert q(1, 2), assert r(1, 4)

DBpeywnNOw becomes(1,1) ,q(1,2) ,r1,2) ,r(1,
4),r(2,3) ,andwe canderivg1,2) ,p(1,3) ,p(L,
4)

The updates give thie-sets,

Aq = <{(1.2)}L.{}>

Ar = <{(1,4)},{>

ThenAp(X, Z2)/ A,q =<{1,3}{}>
andAp(X, 2)/ A =<{1,4}{}>
and joining WithDA finally gives
Ap = <{(1,3),(1L.4)L{>

Acnd_monitor_items(cmi)

Acmi/
A
Acmi/
ﬁc(r:rgll Acmi/
+ A, dt
Aquantity(q) Adelivery_time(dt) Asupplies(s
Aconsume_‘freq(cf) Amin_stock(ms)

Figure 2: Propagation network of the rule condition

(fig. 2). This is basically the dependency network (fig. 1)
augmented with partial differentials. One difference to fig. 1

The AMOSQL compiler expands as many derived is tha_t the propagation network tmq_monitor_items _is
relations as possible to have more degrees of freedom fdfat since the AMOS query compiler expands functions as
optimizations. The condition function of our running much as possible. In the caselatie binding this is not

example will be expanded to:

cnd_monitor_items e () <
quantity item,integer (1,_G1) 0
consume_freq item, integer (1,_G2) O
delive_ry_time item,supplier,integer (1,_G3,_G4)
supplies  jem supplier ~ (1,_G3) g
_G5=_G2*_G4 0
min_stock item, integer (1,_G6) a
_G7=_G5+_G6 O
_Gl< _G7

O

possible and the result is a more bushy network
In section 7.1 we show how sub-expressions can be reused
to produce a more bushy network.

Note that the examples above only deal with
conjunctions in the bodies of the Horn Clauses. In
ObjectLog disjunctions are introduced in the body only and
not as separate Horn Clauses as in traditional Dgtalog
Disjunctions, i.e. unions, are treated in section 4.5

4.4 Negative Partial Differentials

The positive partial differentials based on the influents Often the rule condition depends only on positive

quantity andconsume_freq are defined as:
Acnd_monitor_items e (I)/  Ajquantity -

A, quantity item,integer (1,_G1) O
consume_freq item, integer (1,_G2) O

de“Ver_time item,supplier,integer (1,_G3,_G4)
supplies  jem supplier  (1L._G3) O
_G5=_G2*_G4 O

min_stock item, integer (1,_G6) a
~G7=_G5+ _G6 O
_Gl<_G7

Acnd_monitor_items e (1))  Aiconsume_freq

quantity item,integer (1,_G1) 0
A,consume_freq jem integer (1L._G2) U

delive‘ry_time item,supplier,integer (1,_G3,_G4)
supplies item,supplier (1,_G3) 0
_G5=_G2*_G4 O

min_stock item, integer (1,_G6) a
_G7=_G5+_G6 O
_Gl< G7

The other differentials Acnd_monitor_items/
A, delivery_time , Acnd_monitor_items/
A,supplies , and Acnd_monitor_items/ A,min_stock

0

O

changes, as for thmonitor_items  rule. However, for
negation and aggregation operators, negative changes
must be propagated as well. For strict rule semantics,
propagation of negative changes is also necessary for
rules whose actions negatively affect other rules’ con-
ditions.

In our example in section 4.3 the two partial differen-
tials of the relation P with regard to the negative changes of
Q and R are defined as:

Ap(X, Z)  Aq

AqgX,Y) O
Mo (Y, 2)
and
Ap(X, Z2)  Ar <
Jolg (X, Y) O
A (Y, 2)

1. Late binding means that some type information can not be
determined at compile-time (early binding) and mustinstead
be determined at run-time.

2. In ObjectLog separate Horn Clauses are generated for dif-
ferent AMOSQL functions that are overloaded on the type

are deﬁned ”keWise. USing these partial differentials we can signatures of a Sing|e function name. Since 0n|y one func-

build a propagation networkfor cnd_monitor_items

tion is chosen at run-time, this is not a disjunction.



where Ry = (R 0 AR)-A,R and where Qqis  accumulated (usinfl,) into AP.

defined likewise. Let I, be the set of all relations that P depends on. The
These can be calculated by a logical rollback (fig. 3) orA-set of PAP, is then defined by:
by materialization. AP = DAA_P =, AP AP 5 x|
Let DB, 4 consist of the stored relations (facf€), 1) aX i+x AX P
r1, 2) ,r2, 3) , fromp defined above we can now
derivep(1,2) . Atransaction performs the updates: For example, if P depends on the relations Q and R then:
assert q(1, 2), assert r(1, 4), Ap =8P ], AP _ AP AP . [] AP AP
retract r(1, 2), retract r(2, 3) AQ —AAR T AQAQ AALRAR
DBpewis nowq(1,1) ,q(1,2) ,r(1,4) ,andwecan To detect changes of derived relations we define intersec-
derivep(1, 4) . The updates give thesets, tion (conjunction), union (disjunction), and complement
Ag = <{(1,2)},{> (negation) in terms of their differentials as:
Ar= <{(14)}{(1,2),(2,3)> : AQN R =<.QNR) U @nN AR), >
ThenAp(X, 2)/  A,q=<{.{> . [] A
Ap(X, Z) By =<{(1LA4> , <{},(A.Q N Ry L (Qgg N AR>
Ap(X, Z) Ar = D<{},{(1,2)}> ,
and joining withLl , gives AQ ] R) = <(A,Q - Ryg) ] R - Q). >
Id Id)s
Ap = <{LAOH(L2)P> . ' N

. : . <{} (AQ-R) ﬁ (A-R-Q)>
Note that if we did not use the old stateqofqq ) in

Ap(X,2)/  A.r we would get o A(~Q) = .0, A,Q>

Ap = <{(1,4)}1{(1.2).(1.3)}> , which is clearly . ' .

wrong. From the expressions above we can easily generate the sim-
pler expressions in the case of, e.g. insertions only. For

4.5 The Calculus of Partial Differentials example, when only considering insertions, changes to

. . intersections is defined as:
Let A.P be the set of additions (positive changes) to a
+ (p ges) oA @N R)=<,Q N R) 0 @nN AR, >

view P andA_P the set of deletions (hegative changes) from
P. As before, thé-set of PAP, is a pair of the positive and
the negative changes of P:

AP = APA P>

As for base relations, we formally define ttielta-union
[, over differentials as:
AP, LI, AP, = <(A,P; -APy) L (AP, - APY),
(aP, -AP) L (AP, -AP) >

4.6 Partial Differencing of the Relational Opera-
tors

The calculus of partial differencing can easily be
applied to the relational algebra to incrementally evaluate its
operators. This is illustrated by the table in fig. 4. This was
generated by separating the expressions above for insertions
and deletions and by using the definitions of the relational

. . . . operators in terms of set operations. See [23] for more
Next we define thepartial differential AP/AX, that dFe)taiIs P [23]

incrementally monitors changes to P from changes of each
influent X. Partial differencingof a relation is defined as

generating partial differentials for all the influents of the
relation. The net changes of the partial differentials are

AP AP AP AP
I A.Q AR AQ AR
evaluate insertions in the new state OcondR [9cond+Q Ocondd.Q
propagation propagation M Q  [MardQ Tty A.Q
=asser=t Q.R) retracI:t (A_R) AIJ,R A_:R A=+R AI_R . QOR IAQ-Ryg IAR-Qq BQ-R AR-Q
AR AR AR ARAR AR h Q-R* N,Q-R Qn AR |AQ-Ryq Qoid N AR

\ QxR QxR [QxAR [AQxRyy [Qug*AR
<Rold logical rollback R (Rnew) Q D< ”AQ DX R [QM AR [A.Q X Roid |Qold D] AR

evaluate deletions in the old state QnR P,.QNnR [|QnAR [AQNnRyy |Qugn AR
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5 The Propagation Algorithm and with encouraging results[23]. We present results from
the two most significant of them here. The first one

considers few changes per transaction to one partial
. : differential. This is considered the normal case and is shown
calculus. In the implementatiofi-sets are represented as

T . -~ to be very efficient to monitor using partial differencing. The
temporary materializations done in the propagation

) . ) econd one considers many changes to several partial
algorithm and are discarded as the propagation proceedS y g P

. . Gifferentials. This is considered a worst case situation,
upwards. Changes, i.A-sets, which are not referenced by L - : . R
. . ; . which is more efficient to monitor naively, but which is still
any partial differentials further up in the network are

. . . monitored with an acceptable efficiency usin artial
discarded. This assumes that there are no loops in th P Y gp

network, which is not so withecursive relations. The 8|fferencmg.
algorithm propagates changes breadth-first by first
executing all affected partial differentials of an edge and )
then by accumulating the changes in the nodes above (fig. " fransactions where few updates were performed to
5). Here is an outline of thguite simplealgorithm (see [23] monitored conditions, the cost of evaluating conditions

A breadth-first, bottom-up propagation algorithm has
been implemented to support the partial differencing

6.1 Few Changes to One Partial Differential

for more details): using incremental change monitoring was shown to be
independent of the size of the database in most cases (fig. 6).

for each level (starting with the lowest level) In the case of naive change monitoring the cost is linear to
for each changed node (a non-empty A-set) the size of the database. In the meqsurements 100
for each edge to an above node transactlo_ns were run where each transaction only changed

execute the partial differential(s) the quantity of one item. The test runs were done by using
and accumulate the result in the databases populated with between 1 and 10000 items. This

A-set of the node above using DA causes change to only one partial differential in each

transaction in the incremental change monitoring. The
The A-sets of each node are cleared after the node hag.s0n for this can be seen in fig. 2 where changes to

been processed, i.e. after the partial differentials tha‘quantities fquantity ) will be propagated by executing

reference thé-sets have been executed. only the partial differential Acnd_monitor_items/
A,quantity . By contrast, the naive method goes through

6 Performance Measurements all the quantities of all the items in the database.

A performance measurement was performed using two

implementations of rule condition evaluation, one based orf.2 Massive Changes to Several Partial Differen-

naive evaluation and another based on partial differencingtials

The benchmarks were based on monitoring the

monitor_items rule defined previously and with full

expansion of rule conditions. Several benchmarks wefe run

In this benchmark each transaction changed the
quantity, the delivery time, and the consume frequency of all

2. All measurements were made on a HP9000/710 with 64

1. The algorithm can be extended to handle linear recursion Mbyte of main memory and running HP/UX.

by revisiting nodes below and using fixed point tech-
niques. Work on recursion can be found in [12].
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Changes to stored relations Figure 6: 100 transactions with 1 change to 1
Figure 5: Breadth-first, bottom-up propagation partial differential




terms of four partial differentials and become an

intermediate node in the network. This would be

Pl beneficial if the threshold function is referenced in other

AR ' rule conditions as well since this would enable node
sharing.

{ 7.2 Strict and Set-oriented Semantics

w l Partial differentials that contain selections might

| produceA-sets that are too large. This is acceptable for
positive changes and nervous semantics. For strict semantics
these tuples have to be removed by checking the old state of
the selection. Negative partial differentials might also

L : — . : _| produce a\-set that is too large, i.e. deletions of tuples that
' ' are still present in the new state of the database. Unlike for
Figure 7: 1 transaction with n changes to 3 par- positive changes, this is more serious as it might cause rules
tial differentials not to trigger on positive changes since these have been

items. This caused changes to three out of the five partiatancelled by incorrectly propagated negative changes. To
differentials in each transaction in the incremental change&yyoid this, for negative changes we have to check if the tuple
monitoring. As shown in fig. 2 the partial differentials s still present in the new state of the database. If this is not
Acnd_monitor_items/  A.quantity done, the rules might under-react, which is unacceptable.
Acnd_monitor_items/  A,delivery_time and Note that we assunmet-oriented semanticince this is
Acnd_monitor_items/  A,consume_freq willallneedto  the most natural semantics for rule conditions. Partial dif-
be executed, which results in overlapping execution. In th&erencing can be defined fdrag-oriented semanticas
naive version these overlaps in the execution do not appeayell, but this is outside the scope of this paper. Partial dif-
As shown in fig. 6 massive changes to several partiakerencing of the relational operators for bag-oriented
differentials perform worse than naive change monitoringsemantics is not as straight forward as for set-oriented

but only with a constant factor of about 1.6. semantics. Some work on differencing where bag-oriented
. semantics is assumed can be found in [13].
7 Refinements With set-oriented semantics, when there are changes to
There are many refinements that can be done to thé&ore than one influent the definitions in fig. 4 might give a
implementation. set of changes that are too large, i.e. containing duplicates.
These will, however, be removed hy,. Sincel], is not
7.1 Optimizations and Node Sharing commutative for set-oriented semanti¢d, has to be

Optimizations such as reusing sub-expressions ar@erformeq in the same order as the changes O”gi”a”y
possible by restricting the way AMOSQL functions are occurre_d in the transacthn. For strlgt semantics of unions a
expanded when being compiled into ObjectLog. There is aCheCk IS ”?ade that posmve/negatl_ve chan_ges are propa-
trade-off between expansion for better query optimizationgated only if the other part of the union wasl/is not present.
and node sharing for more efficient change propagation .
This is an area for further research. 8 Conclusions

To get a propagation network analogous to that in fig. 1 The paper presented difference calculus for

we could choose to definend_monitor_items in incremental evaluation of queries, based on database

terms of two differentials instead: updates. The calculus definpartial differentialsof rule

Acnd_monitor_items  jiem (1)) Apquantity - conditions as separate queries that each considers changes to
Ajquantity jieminteger (I _G1) O a single relation that influences a monitored rule condition.
threshold  jtem integer (I, _G2) O The benefits of using partial differencing include
_Gl< G2 optimization for both time and space, and explainability.

The advantage of incremental evaluation in general is the
quantity emineger (1 _G1) 0 efficienc_y that comes from the assumption that _most
Asthreshold jemineger (1 _G2) O transactions onl_y perform smal_l _changes to rule conditions.
Gl< G2 Partial differencing has the additional advantages that only a
- B few (or just one) partial differentials are normally executed
Theathreshold  function would then be defined in in each transaction. The partial differentials are much

Acnd_monitor_items e (1)) Asthreshold -



simpler and more efficient than the combined full
differentials, in particular when combining partial [8]
differentials for both positive (insertions) and negative
(deletions) changes. The calculus also defines how to
calculate the old database state without materializing. This is
important for saving space when differencing negativel9]
changes since the intermediate results can sometimes be
very large.

Partial differentials can also be used to discriminatel[10]
between different reasons why a rule was triggered, i.e. the
influents of a rule condition can be traced and different
actions can be taken in the rules depending on why they werll
triggered. In systems based on ECA-rules this is accom-
plished by defining separate rules for each situation with dif{12l
ferent event parts, but with the same conditions. This causes
code duplication. By giving access to the results of partial dif-
ferentials in the action part of a CA-rule it is possible perform 1
different actions depending on what has happened.

As was shown in the performance measurements, th
partial differencing is not always optimal. For transactions
with many updates affecting monitored relations naive
evaluation can be more efficient, but only with a constan
factor. Further research is needed on detecting situation
where naive evaluation should be chosen and how to mix
naive and incremental evaluation into the same execution
mechanism in dybrid evaluation method. Another inter- [16]
esting research area is the possibility of incremental evalua-
tion of foreign functions through user defined differentials.
Other future work includes extending the calculus to handlg17)
aggregates and recursion.

fua
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