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Abstract

In recent years, research about distributing databases
over networks has become increasingly important. Here
we concentrate on the issues of interoperability of hetero-
geneous DBMSes, and enforcing integrity across a multi-
database made in this fashion. This has been done through
a cooperative project between Aberdeen and Linköping uni-
versities, with database modules distributed between the
sites. In the process we have shown the advantage of using
DBMSes based on variants of the Functional Data Model,
which has made it remarkably straightforward to interoper-
ate queries and schema definitions. Further, we have used
the constraint transformation facilitiesof P/FDM to compile
global constraints into Active Rules installed locally on one
or more AMOS servers. We present the theory behind this
and the conditions for it to improve performance.

1 Introduction

Work on distributed and interoperable databases is widely
published [2, 20, 25] but, to our knowledge, there is no work
on making two functional databases interoperable. Since the
functional model is not too common it is worth rehearsing
the histories of the different systems.

The functional data model database system at Aberdeen
(P/FDM) [15] started life as a vehicle for research in trans-

formation and generation of complex queries, because the
functional language is much closer to a mathematical lan-
guage (�-calculus or predicate calculus) than SQL. It also
evolved from Shipman’s [24] functional data model into
more of an object model, in the process becoming more like
that used in O2 or ODMG [3]. This was needed in order
to include in the shared database some geometric compu-
tational methods for objects representing protein structures
and their components, as this was its main application area.
Recent research has concentrated on using FDM to express
quantified multi-variable semantic constraints in a form that
can easily be transformed for efficient execution on different
storage modules [8, 9].

Meanwhile the AMOS system at Linköping evolved out
of experience with the early IRIS data model [13], which
was itself strongly influenced by Shipman’s FDM. How-
ever, AMOS (Active Mediators Object System) [11] was
designed as a main memory database system that could eas-
ily be cloned into multiple communicating AMOS processes
running and sharing data over a distributed network. It also
had a powerful active rule capability [23, 27] which we have
used. AMOS furthermore has capabilities to integrate rela-
tional databases into its multi-database environment [12].

In much of the work, both AMOS and P/FDM had been
making use of a powerful way of computing with func-
tions applied to the stored data and objects, without any
kind of "impedance mismatch". These computations are
also much easier to transform and to store than those ex-
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pressed procedurally in C++, as shown in work by both
groups [17, 15, 9, 14, 27, 12]; this also applies to constraint
transformation (see later). Interestingly, much of the code of
AMOS is in Lisp, while P/FDM is in Prolog, mainly for its
powers of symbolic computations for query transformation.
However, it should be noted that both these languages use
a garbage-collected store (unlike C++) and that they make
it easy to generate data structures which can be treated as
code.

It is important to realise that the functional data model had
its roots in the first major project for interoperability between
inhomogeneous distributed databases MULTIBASE [19].
Thus when it came to generating schemas and queries in
AMOS to give effect to a global schema with inter-database
constraints expressed in FDM, it was all so much easier
because FDM was originally designed as a general model
from which to generate DDL and DML statements in other
languages. This also makes our results relevant to Object-
Relational databases (for example OpenODB which evolved
out of IRIS) [28]. This is because the functional data model
plays the role of a high level object model and it is capable
of being implemented on a variety of storage schemas, and
thus one can use extensible relational data storage to make
a system very similar to an O-R one, but with a very general
schema language that makes it easy to interoperate. This
has been noted in AMOS papers [11, 12].

Let us summarise features of the two systems which
played a crucial role in the integration:

� Multidatabase features in AMOS: Makes it possible
to have several autonomous AMOS servers running
and communicating in an AMOS network.

� Active Mediator Architecture in AMOS: Allows use
of active rules.

� Modules in P/FDM: Allows partitioning of a database
into separate modules of the same or different module
type.

� Integrity Constraints in P/FDM: P/FDM provides a
constraint checking system for both structural and se-
mantic constraints.

Our integration idea was to introduce AMOS as a new
module type into P/FDM and then take as much advantage of
the AMOS system as possible to improve the performance
and to get the multidatabase functionality in the system.

With this integrated system, it is now possible to cre-
ate databases partitioned across the two different database
systems, as well as across several AMOSes on different
machines anywhere on the net. Thus the new system has
taken advantage of the best parts in each original system.
Figure 1 shows an example of the capability of the system,
having a database spread out in one hash module and two

AMOS modules, one of them sited in Linköping. Note
that, in this example, the embedded AMOS, linked to the
P/FDM, is used as client/server interface, communicating
with the other AMOSes through its inter-database interface
(I/D). However, the local AMOS could be used as a storage
module too. Since P/FDM maintains the global schema, we
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swift.csd.abdn.ac.uk
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Memory
Main
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Figure 1. Example of multi-database session

were able to make use of the powerful semantic constraint
language facilities in the language [1] to reference objects
in different modules. This applied across the two modules,
or even between two separate AMOS classes in separate
AMOS modules. However, it was not very efficient, since
where it could not make local checks it had to fall back on
tuple-at-a-time access to the AMOS modules from P/FDM.
The challenge to us, and the main results of this paper, con-
cerns the use of active rules in the AMOS modules which
are generated and planted from a Prolog program run from
P/FDM. This produces a result which is theoretically equiv-
alent, but almost always much faster than running integrity
checks from P/FDM. However there are cases where it is
not worth planting such rules, and this is decided by a sim-
ple heuristic. We believe that this kind of architecture is
both theoretically and practically attractive, and that there
are lessons in this for Object-Relational implementors.

In the next section we describe the main points of the
integration of P/FDM with AMOS. Then we describe the
theory behind our distribution of constraints over multiple
databases, followed by a discussion of our approach to its im-
plementation. Finally we discuss related work, summarise
and discuss further research possibilities.
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2 Integrating P/FDM and AMOS

When making two different systems talk to each other
there are basically two different ways of communication,
loose or tight coupling. Whether to look at the systems as
loosely or tightly coupled depends on the level of control
over the communication between the systems. It also de-
pends on the degree of persistence of the communication
link. A loose coupling is when two systems make a tem-
porary connection, for example via a port or a pipe. Tight
coupling is when the systems are more closely connected,
for example running in the same process and sharing data
structures.

Since Prolog is able to dynamically load foreign C code,
and AMOS is provided as a C library, a tight coupling was
straight-forward. The C interface functions of AMOS are
declared as foreign functions in a Prolog file. When con-
sulting this Prolog file the AMOS process is linked into the
running P/FDM process. Then the tight connection is estab-
lished, which gives full access to the AMOS multidatabase
features used for communication with other AMOSes.

In this project, P/FDM was chosen as the ‘top-level’
system for several reasons.

� P/FDM had been tested with different types of storage
"modules", such as hash files and Sybase storage and
both in combination. Thus AMOS could easily be
integrated as another storage module.

� AMOS had well working external interfaces with built
in client/server and inter-database features.

� While P/FDM could send messages to AMOS servers,
through its external interfaces, AMOS could not send
messages to P/FDM except at P/FDM’s request.

Thus there is a certain asymmetry in the combined system
in that P/FDM has all the metadata and can see the global
schema, whilst AMOS modules see their local schemas.
Distributed constraints in such an object-oriented multi-
database setting sometimes require OIDs to be passed be-
tween the systems. This means that some of these AMOS
classes will include functions apparently returning strings,
which actually represent object identifiers of objects stored
in P/FDM classes. In the other direction P/FDM classes
may contain identifiers for AMOS objects, but this is coped
with because these objects are in a separate storage module
and P/FDM can deal with objects in such a module having
a different representation.

There were some slight differences in the data models,
mainly in the use of external identifiers (keys) for objects
by P/FDM, which had to be represented by creating indexed
collections in AMOS. Also there was a difference in the
way subtype instances were connected to the data for their

supertypes. This is explained later and was easily reconciled
as noted earlier.

Initially the interface was implemented using AMOS’
embedded query interface that dynamically evaluates
queries. However, a substantial performance improvement
was made by instead using AMOS’ fast path interface where
database functions are precompiled, optimised, and stored
in the database. For example, the getentity/2 primitive of
P/FDM is used to retrieve all instances of an entity. It is
defined in AMOS as a derived function for each entity class.
These AMOS functions are precompiled and called from
P/FDM through the fast-path interface.

Another use of this system is the possibility of having
several AMOSes running with their own stored data. A
P/FDM multidatabase layer can be added to connect these
AMOSes, and also to define relationships between the data
in the existing databases. All that is needed for adding this
layer is to import into P/FDM the AMOS database schemas
and to define in the P/FDM schema the extra relationships.

3 A Formal Description of Constraint Distri-
bution

The problem of distributing a constraint check over a
number of databases can be stated generally as the prob-
lem of rewriting a predicate calculus expression of the con-
straint check into a form in which the distribution of data
is respected. The rewritten predicate will be a conjunction,
in which each conjunct represents the constraint check as
seen from each individual database. An ideal distribution
of the constraint will produce a conjunction in which each
conjunct contains no direct references to data stored outside
the database which it represents.

We will illustrate this idea using the following simple
example illustrated by Figure 2. Suppose we have two
databases, one (database A) storing information about peo-
ple and their ages:

declare person ->> entity
declare age(person) -> integer
declare name(person) -> string

and another (database B) which stores information about
cars and the people who drive them:

declare car ->> entity
declare driver(car) -> person
declare min age(car) -> integer

This database also stores details of the minimum allowed
age for drivers of particular cars. We also have a global con-
straint which requires that drivers of cars are aged between
the allowed minimum age for their car, and 70:
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Figure 2. An example of a multidatabase
schema.

constrain each c in car
to have age(driver(c)) >= min age(c) and age(driver(c)) =< 70;

This constraint is expressed in the constraint language ex-
tension to Daplex that has been implemented for P/FDM
[9]. The equivalent first order logic expression is:

((8c; p;ma; a)car(c)^ driver(c; p)

^min age(c;ma) ^ age(p; a)) a � ma ^ a � 70)

Here, entity classes are represented as one-place predicates,
whose argument is an instance identifier for that class, while
attributes are represented by two-place predicates, which
take an instance identifier as their first argument and the
attribute value as their second. For the purposes of this
paper, we refer to such predicates as “data retrieval pred-
icates”. The constraint is given a weak-translation [29],
which means that the constraint is only required to hold
for a given instance when all attributes involved in the con-
straint are populated for it; hence the positioning of all data
retrieval predicates to the left of the implies operator.

How, then, can we rewrite this quantified predicate into
a form which respects the distribution of the data? The
solution we propose is to introduce extra intermediate pred-
icates to pass informationbetween the distributed conjuncts.
Under this approach, our example constraint becomes:

((8c; p;ma) car(c) ^ driver(c; p) ^min age(c;ma)

, car driving person(p;ma))

^

((8p;ma; a) car driving person(p;ma) ^ age(p; a)

) a � ma ^ a � 70)

This form of the constraint is distributed since each con-
junct contains only those data retrieval predicates which are
local to a particular database, and the intermediate predi-
cates. The first conjunct represents the view of the con-
straint from the point of view of the database containing

information about cars. The second represents the view of
the constraint from the point of view of the database con-
taining people’s ages. The intermediate predicate used here,
car driving person, restricts the scope of the second
conjunct so that the actual constraint check (a � ma : : :)
is only applied to people who drive cars, even though the
driving and min age attributes are not directly referred
to. The reason for use of if-and-only-if (,) in the first
conjunct is that one must not allow extra "car-driving" per-
sons not implied by the LHS of the equivalence, since this
overdoes the constraint.

It is easily shown (using the resolution inference rule)
that the truth of this distributed form of the constraint entails
the truth of the original, non-distributed version.

Notice that there are two fully distributed forms for this
constraint, the alternative being:

((8p; a) person(p)^age(p; a) , person has age(p; a))

^

((8p; a; c;ma) person has age(p; a) ^ car(c)

^ driver(c; p) ^min age(c;ma)

) a � ma ^ a � 70)

In this case, the intermediate predicate acts as a record of
which people have populated age attributes, rather than
which people are drivers.

We can generalise from this example to give the dis-
tributed form of a predicate containing an arbitrary number
of data retrieval predicates, stored in an arbitrary number of
databases. Given an original constraint of the form:

(8x1; : : : ; xn) P1(: : :) ^ : : :^ Pj(: : :)

) Pj+1(: : :) ^ : : :^ Pm(: : :)

where each Pi, 1 � i � m, is some predicate over an
arbitrary subset of the variables fx1; : : : ; xng, and (because
of the weak translation) no predicate on the RHS of the
implies operator (i.e. no Pi where j + 1 � i � m) is a data
retrieval predicate, we can derive the distributed form as:

C1 ^C2 ^ : : :^Cd�1 ^ Cd

where d is the number of databases over which the data
is distributed (i.e. one conjunct for each database). Each
conjunct Ci, 1 � i � d� 1, has the form:

(8y1; : : :) Q1(: : :) ^ : : :^Qki(: : :) , Ti(: : :)

where the predicates Ql, 1 � l � ki, are the subset of the
predicates P1 to Pj which are locally evaluable on database
i, and Ti is an uniquely named intermediate predicate. A
predicate P is locally evaluable on a database DB if:
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� it is a data retrieval predicate representing an entity or
attribute stored at DB

� it is a computed predicate whose input variables are
all given values by other locally evaluable predicates
on DB.

Grouping the locally evaluable computed predicates with
the relevant data retrieval predicates in this way is important
in reducing the number of solutions for the intermediate
predicate, and therefore in improving constraint checking
efficiency.

The final conjunct, Cd, of the distributed constraint con-
tains the constraint check proper, and has the form:

(8z1; : : :) Q1(: : :) ^ : : :^Qkd(: : :)

) Pj+1(: : :) ^ : : :^ Pm(: : :)

Each predicate Ql, 1 � l � kd, here is either an interme-
diate predicate Ti or any P1 to Pj not used in any of the
other conjuncts (i.e. left over). The consequent of the final
conjunct Cd is exactly the same as the consequent of the
original constraint predicate.

Under this approach, intermediate predicates appear just
twice in the set of conjuncts, once on the right hand side of
a , expression, and once on the left hand side of the final
conjunct1. Each intermediate predicate has a unique name,
and its arguments are the set of variables whose values can
be generated locally at database DBi that are required for
use in the final constraint check. More formally, if Ps is
the set of all predicates appearing in the original constraint,
Ps(DBi) is the subset of Ps which is locally evaluable on
DBi, and vars(P ) is the set of variable names appearing
in the predicate P in the original constraint, then the set of
argument variables for each intermediate predicate Ti is:

f v � (9p) p 2 Ps(DBi) ^ v 2 vars(p)^

[(9q) q 2 Ps ^ q 62 Ps(DBi) ^ v 2 vars(q)] g

The variables appearing in each conjunct are all universally
quantified. Again, the application of the resolution rule can
be used in a straightforward way to show that the distributed
conjunctionsyntactically entails the original non-distributed
constraint.

The above discussion illustrates the construction of a set
of conjuncts that represents a fully distributed version of
the original constraint. As we saw in our example, several
different distributed forms of the constraint can be generated,
depending on which database is to contribute to the final
conjunct (Cd). In general, this choice should be made so as
to minimise the number of solutions that must be generated

1A more general approach can also be taken, in which no restrictions
are placed on where intermediate predicates can appear (see Section 6.2).

for the intermediate predicates, and thus the amount of data
that must be passed between databases in order to make the
constraint check (see Section 6.2).

The distribution method we have described here is so
far limited to constraints involving universally quantified
variables over a simple conjunction of predicates. While
this includes a useful class of integrity constraints, we hope
to be able to extend this method to include a wider class
of constraints, involving existentially quantified variables,
disjunctions and aggregates.

4 Practical Implementation of Constraint
Distribution

From a practical point of view, the approach to constraint
distributiondescribed in Section 3 presents two main issues:
how is the “best” distributed constraint form to be chosen,
and how is the chosen form to be used to check constraints
in a distributed fashion. In our current implementation, we
have taken only a very basic approach to the first issue,
using a simple cost model and a few simple heuristics which
discourage network traffic required to pass data between
databases. A full cost model would also take into account
the different characteristics of each database, their respective
efficiencies, and the expected update frequency for the data
involved in the constraint. We hope to investigate these
issues in future implementations.

Our current work, however, has concentrated on the sec-
ond issue — the way in which a distributed constraint pred-
icate can be used to check the constraint in a distributed
way. Since each conjunct of the constraint represents the
work required for the constraint check within a particular
database, we can confine our attention to translating individ-
ual conjuncts into the language required by the correspond-
ing database, and need no longer consider the constraint as
a whole. As we have said, there are two forms of conjunct:

the intermediate conjuncts which define intermediate
predicates, and

the checking conjunct which expresses the actual con-
straint check

Each form requires a slightly different treatment. We take
an incremental approach to constraint checking, assuming
that the constraint is satisfied by the initial database state.
We shall use our earlier example, about the allowed ages of
car-drivers, to illustrate the method.

The conjunct that is created for a particular database
describes the responsibilities of that database in maintaining
the integrity of the constraint. An intermediate conjunct, e.g.
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((8c; p;ma) car(c) ^ driver(c; p) ^min age(c;ma)

, car driving person(p;ma))

implies that its database is responsible for notifyingall other
databases whose conjuncts depend on its intermediate pred-
icate of changes to its truth-value. In our example, database
A is responsible for notifying database B whenever changes
to the car, driver or min age predicates result in a change to
the car driving person predicate. Exactly how this is done
depends upon the mechanisms provided by the underlying
database system. In AMOS, for example, a condition ac-
tion rule can be generated from the conjunct to express the
required behaviour for notification of new car drivers, e.g.

create rule test as
when for each car c, person p, integer ma

where driver(c) = p and min age(c) = ma
do new notify(’B’, car driving person, p, ma);

In P/FDM, on the other hand, which uses a more ad hoc
triggering mechanism, a fragment of Prolog code must be
attached to any update which may cause the constraint to be
violated. In general, there will be several such updates for
each constraint, and so several different constraint fragments
must be generated, each specialised with respect to one such
update. For example, the following fragment:

test(Car, MinimumAge) :-
getfnval(driver, [Car], Driver),
new notify(’B’, car driving person(Driver, MinimumAge).

is specialised with respect to the update which populates the
min age attribute of a car. The arguments to this fragment
are instantiated with the arguments to the update request
itself, and the fragment checks that a driver exists for the
given car before notifying database B of the new minimum
age.

So much for the intermediate conjuncts; how are the
checking conjuncts handled? The responsibility implied by
a checking conjunct, e.g.

((8p;ma; a) car driving person(p;ma) ^ age(p; a)

) a � ma ^ a � 70)

is that of checking the given condition, and causing a global
rollback if it is found to be violated. An error message
should also be generated to warn the initiator of the update
that it would have violated the constraint. Again, the exact
translation of the conjunct depends upon the target database.

In order to evaluate the constraint check, however, it is
necessary to query any intermediate predicates on its left
hand side. For example, in the above checking conjunct,
when the age of a person p is updated, it is necessary to

check whether car driving person is true for p, and what
value of minimum allowed age corresponds to them. There
are three main ways in which the extension of the interme-
diate predicate may be made available, none of which is
necessarily better than the others in all cases:

By method definition: by calling a method (or function or
named query) in the responsible database which com-
putes the argument values for which the predicate is
true on demand.

For example, database A includes a method called
car driving person which takes a person in-
stance as argument, and which succeeds, returning the
relevant minimum age if that person is a car driver.

This is better than using ad hoc queries since the query
contained in the body of the method can be optimised
once and for all when the method is defined.

By local materialisation: the responsible database explic-
itly maintains the set of values for which it is true.
For example, database A maintains an entity class
car driving person with attributes person
andmin age. Database B queries this class remotely
when the age of a person is updated.

By remote materialisation: the responsible database ex-
plicitly materialises the set of values for which it is
true in the database which depends on the truth of the
intermediate predicate. This database can then ac-
cess this data directly, without requiring any network
traffic, to determine the validity of the constraint.

For example, database A maintains an entity class
car driving person remotely in database B,
by sending update requests to this class whenever
changes to its own data require it. Database B then
accesses car driving person directly whenever
the value of the age attribute is updated.

Each of these approaches has its advantages and disadvan-
tages. The materialised approaches, particularly remote
materialisation, result in more efficient constraint check-
ing and reduced network traffic, but at the cost of the extra
disk space required to store the materialisation (the classic
tradeoff between store and recompute remotely). Remote
materialisation is particularly interesting as it means that no
network traffic is required to check the constraint. Clearly,
an accurate cost model is vital for choosing between these
options, and must include details like the estimated size of
the materialised set, and the frequency of updates to it. The
form of the distributedconstraint also has a bearing on which
method is most appropriate.

In our current implementation, we have experimented
with two of these options: method definition and remote
materialisation.
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For the first, the constraint compiler generates AMOS
functions from the distributed form of the constraint, which
are called from P/FDM whenever a relevant update oc-
curs. The AMOS functions are defined in terms of database
queries that are optimised at method definition time.

For the second approach, we use the ability of AMOS
to activate parameterized condition-action rules for a spe-
cific set of instances (not all active databases allow this)[23].
In this case, the compiler generates a condition-action rule
containing the bare constraint check (with references to in-
termediate predicates removed) and the rule is activated only
for those values where the intermediate predicates are true.
For example, the rule generated from our running example
is:

create rule test(person p, integer ma) as
when age(p) < ma or age(p) > 70
do generate error(“Rule violation ....”);

This rule is then activated for only those person instances
representing car drivers, and the process of remote mate-
rialisation becomes the process of maintaining the correct
activation of the rule. Rule activation and deactivation for
different parameters is controlled by the constraint manager
in P/FDM.

On the AMOS side, for parameterized condition-action
rules the rule management system maintains an internal table
of the instances for which a parameterized rule is activated
as in [22]. This internal table corresponds to the remote
materialisation of the intermediate predicate.

Parameterized rules are compiled and optimised once
when they are defined. Rule activation and deactivation will
therefore be very fast since the system then does not need to
perform any more rule optimisation. Incremental evaluation
techniques have been developed for efficiently testing rule
conditions of complex parameterized rules[27].

5 Related Work

Research on active databases and constraints in databases
has received substantial attention in recent years [30]. How-
ever, most of the research does not consider rules and con-
straints in distributedor heterogeneous databases. The prob-
lem of correctly executing parallel active rules in distributed
databases was discussed in [4]. The work in [5] proposes
inter-database triggers as a means for maintaining equality
constraints between heterogeneous databases. In [16] it is
shown how a class of distributed constraints can be broken
down into local update checks. [6] proposes some interface
protocols for implementing constraints over heterogeneous
information systems.

Our work differs from the above by using the theory of
weak translation of distributed constraints [29] to provide
an implementation of distributed constraints where a cost

model directs on which database servers fractions of the
constraints should be checked. Furthermore, our implemen-
tation is also unusual in that a separate constraint manager (in
P/FDM) manages global constraints over a set of database
servers in another data model (AMOS) in a multi-database
environment. The constraints are heterogeneous in that they
are allowed to constrain data in both P/FDM databases and
AMOS databases.

6 Conclusions and Future Work

6.1 Active Rule Generation

Active rules are an efficient and obvious way to imple-
ment constraints but they suffer from the disadvantage that
it is hard to get them right, especially where the collection
has evolved, and where several rules work together. This
is made worse by the absence of tools for administration
of triggers in commercial systems [26]. Thus it is highly
desirable to generate rules automatically from a declarative
description of the quantified constraint, with the correctness
of the translation guaranteed by theory (as in section 3). In
this paper we have described an implementation of gener-
ated rules, based on the functional data model which has
also been used to integrate two inhomogeneous systems.

This work is in the spirit of [1] which showed how to rep-
resent quantified semantic constraints in the CoLan language
and used Prolog to transform them into triggered rules at-
tached to class descriptors in a single ADAM object-oriented
database. We have also seen the utility of Prolog for con-
straint transformation, but here we have generated Active
Rules in the rule language of AMOS, an Active database
using a similar object data model, and have distributed them
across several AMOS databases.

Although this work has been tested on databases using
the functional data model, there are lessons for those using
Object-Relational databases with active rules. The OQL
language specified by ODMG, or some variant, looks like
becoming a standard for Object-Oriented databases. Cur-
rently OQL lacks facilities to specify constraints over the
database, but it does allow one to formulate queries which
are very similar to constraints in P/FDM, and where it is the
user’s intention to maintain the invariance of the query.

In P/FDM we have already implemented modules using
a relational database for data storage [18] and thus it should
not be difficult to code-generate active rules for an Object-
Relational system from OQL instead of P/FDM. If OQL is
generalised to handle multi-databases the techniques pre-
sented in this paper could be used to implement distributed
constraints over OQL databases.

This work would suggest using Prolog or Lisp for this
translation task, even when it is not used directly for data
storage.
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We have also used the constraint language of P/FDM
instead of CoLan (from which it is descended) since it is
more efficiently compiled for the bulk data storage used in
standard P/FDM modules [8]. In the ADAM-based system
we were able to selectively retract CoLan constraints, which
caused the corresponding generated rules to be automatically
removed from classes, (despite the complicated many-to-
many relationship between constraints and classes). This
is straightforward to implement in our new architecture [7,
10], and it will be important when we move more to a
multidatabase system where local rules may be installed
alongside rules generated by a remote host.

6.2 Constraint Distribution Model

The purpose of distributing constraints is to improve the
performance of the constraint checks. We have shown how
to distribute constraints in a theoretically sound equivalent
fashion, using the notion of an intermediate predicate. We
have discussed various ways of representing this predicate,
based on where the objects and/or values, that should be
constrained, are stored. The most promising way is by gen-
erating active rules enabled on subsets of instances, using
special facilities of AMOS. However, this is not always best,
so the chosen way of installing a constraint is then based on
an approximate cost model (or heuristic) that calculates the
cost for a distribution of the check, and compares that with
the cost for a non-distributed constraint check. The cost
model needs information about what kinds of checks the
system will make and whether the module is held in an em-
bedded, local or remote AMOS server. Currently it assumes
that communication costs dominate. After comparing the
costs for the alternatives, the most efficient solution is cho-
sen.

The current cost model is rather crude but works well
for our present cases. However, in general the optimisation
of distributed constraints will require a more precise cost
model. For example, the communication cost depends on
both the number of messages sent and the amount of data,
and the constraint compiler could use a more complete cost
model to estimate the total cost of executing the constraint
checks. This is similar to what is done in optimisation
of distributed queries[21]. However, in contrast to cost
models for distributed databases, a cost model for distributed
constraints also has to take into account other factors such
as update frequencies and update volumes.

One further way in which the efficiency of the distributed
constraint check could be improved is to relax the restric-
tion that intermediate predicates may only be used in the
final constraint checking conjunct. In some circumstances,
this restriction can result in a poor distribution of constraint
checking effort. We are currently investigating a more gen-
eral approach to constraint distribution which allows inter-

mediate predicates to appear anywhere in the distributed
constraint (for example, in the definition of another inter-
mediate predicate). However, this approach increases the
number of distributed forms that can be generated from a
single constraint, and is thus even more dependent upon the
availability of an accurate cost model for selecting between
them.

6.3 Interoperation of AMOS and P/FDM

Since the AMOS-P/FDM system consists of two differ-
ent database systems, developed with different software, it is
a heterogeneous system. The problem is that the data mod-
els of the two systems differed. This meant that the data
model of each system had to be extended or limited, to get
a compromise to use in the integrated system. Fortunately
this was straightforward as they were both originally based
on the Functional Data Model. A summary of the different
facilities in the AMOS and the P/FDM database systems,
and how they affected the integration is given below:

AMOS:

Multidatabase architecture: Makes the distributed system
independent of where the AMOSes are located on
the Internet. The external interfaces and the inter-
database facilities in AMOS make it easy to build
a very flexible fast interface between AMOS and
P/FDM.

Derived functions: The efficiently precompiled derived
functions in AMOS were used to speed up the AMOS
part of the interface in the integrated system.

P/FDM:

Module system: P/FDM is prepared to use different types
of storage modules. This is the way of splitting up the
database schema into parts, stored in either AMOS or
any other P/FDM module type.

The key concept: P/FDM has different kinds of keys than
AMOS, compound and foreign keys. Problems occur
when these keys are declared in P/FDM as containing
embedded foreign keys, since this is not currently rep-
resentable in AMOS. Either equivalents of these types
of keys should be implemented in AMOS, or else they
should not be allowed in P/FDM when declaring an
AMOS module.

6.4 Multidatabase Issues

The main concept of having P/FDM as a top layer of the
integrated database system allows two alternative scenarios
to be realised. In the first scenario, we have a distributed
database with AMOS providing storage modules but with
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everything controlled and maintained from P/FDM. This has
been used successfully to distribute constraints as described
above.

A more complicated scenario is possible with a multi-
database session with a network of autonomous AMOSes
connected to a top layer, which controls all the distribution.
However, in the multidatabase, factors such as autonomy
and transparency have to be considered. In AMOS-P/FDM,
the local autonomy of every AMOS is high as each of the
AMOS servers are their own DBMSes with direct access to
the other AMOSes and their data. From the top layer, it
is also possible to extend the local database schemas with
object relations from one module to another, independent
of the type and the location of the module. Since there is
only one way of communication, from P/FDM to AMOS,
it is only the top layer, P/FDM, that has access to the com-
plete distributed database schema. The module system in
P/FDM makes the multidatabase transparent from P/FDM.
However, from the local AMOS view there may be extra
attributes with strange values representing foreign objects
stored in P/FDM, and there may also be extra active rules
placed which interfere with local autonomy. When viola-
tions of global constraints by local updates occur the system
should explain in some way that the local update caused a
global constraint violation. This requires further research.

In the multidatabase scenario, all users of local AMOSes
are allowed to make updates in their local databases. Since
no communication from AMOS to P/FDM exists, the
P/FDM top layer has no way of knowing when an local
AMOS user is updating its part of the multidatabase. P/FDM
has therefore no chance to check if the update has caused
any inconsistency in the multidatabase. The only way of
maintaining the database consistency is then to force the
distributing mechanism always to distribute the constraints
by remote materialisation, in order to enforce local checking
via the intermediate predicates (which effectively represent
the interactions with other databases).

As a result of this, we get an AMOS-P/FDM system
where all the AMOS servers in the multidatabase have their
own constraints, even when the constraints are installed from
the top layer in the multidatabase system. A problem in this
multidatabase, and in other multidatabases, is concurrency
between users in the system. Updates have to be atomic to
not allow one user’s update affecting another user’s update.
Also, when an update is violating a constraint, so that the
update has to be undone, the system must have the chance
to complete the undoing of the update before another update
starts changing the data in the database.

One known solution to this concurrency problem is to
use two-phase commit where an update will first lock all
databases involved in the update, then execute the update
and finally unlock the databases. To increase the concur-
rency a better method could be to let the distributed rules

trigger distributed repair actions for the violated distributed
constraints. There are also special problems with interfer-
ence among distributed active rules [4].

The constraint language of P/FDM is very general [9] in-
cluding existential quantifiers, disjunctions and aggregates.
This paper only considers distribution of conjunctive con-
straints and so more theoretical work is needed, extending
the work of [5, 16].
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