
Performance-Polymorphic Execution of Real-Time Queries

Thomas Padron-McCarthy Tore Risch
Department of Computer and Information Science

Linköping University
S-581 83 Linköping, Sweden

E-mail: {tompa,torri}@ida.liu.se

Presented at the First Workshop on Real-Time Databases: Issues and Applications
 March 7-8, 1996, Newport Beach, California, USA

Abstract

We are developing an object-oriented real-time
database system that includes a relationally complete query
language. Unlike conventional query optimizers, our
optimizer estimates the actual time to execute a query, rather
than a rough average cost estimate. For predictability the
optimizer must make reliable estimates of the time to
execute a query. This requires index structures that are
predictable. Furthermore, our data model is object-oriented,
which is used for overloading queries with respect to trade-
offs between execution time and quality. Such performance-
polymorphic queries have particular optimization problems.

1 Introduction

Our work deals with the particular problems that are
special for query processing in a real-time database system
being developed for telecom and control applications.

A real-time database with a declarative query language
needs some of the following properties:

• Transactions, queries, and other operations have dead-
lines.

• The time to execute a query or an operation is predicta-
ble, i.e. it does not vary significantly from time to time
[28].

• The system estimates the real time to execute queries
and operations, analogously to what is done in real-time
programming languages [11].

• Contingency plans can be defined that are queries and
operations executed when the system predicts that the
deadline cannot be met [3]. In contingency plans there
may be timeliness trade-offs regarding data consistency,
precision, and completeness.

• Queries can be defined in terms of the time to execute
other queries or functions.

• Classical query optimization [25] is a combinatorical
problem. It is therefore important to perform as much as
possible of the optimization at compile time.

Our research platform, AMOS [4], is extensible with
user-defined data structures and operations, similarly to
[15]. It is now being extended with query constructs and
index structures to support real-time application.

In active databases [30] it is possible to specify rules
that monitor changes to the state of the data base. Active
rules commonly consist of events that are detected, a
condition that is to be monitored, and an action to be
performed when the condition becomes true. Active rules
have been incorporated in AMOS [26] [27]. Such facilities
are important for real-time applications, e.g., to monitor
combinations of sensor data and to perform actions when
’interesting’ situations occur. For real-time behaviour, the
rule language will need to be complemented with timeliness
constraints, e.g., for rule conditions and actions. Advanced
applications may require the combination of active and real-
time database facilities [1] and temporal facilities.

Since time is essential in a real-time database, it
normally also needs temporal facilities [18] such as data
items having associated time stamps where versions of data
can be accessed based on these time stamps, and where it is
possible to make historical queries over the evolution of data
over time.

In this paper we concentrate on query processing with
real-time constraints where a quality measure and a real-
time cost can be defined for queries.

2 Reliable Real-time Response Estimates

The problem of database query processing consists of
compiling and optimizing queries in a non-procedural query
language into efficient query execution plans. For a given
query there may be several execution plans with radically
different performance profiles. State-of-the-art query
processors therefore are based on having a cost model for the
execution speeds of each execution plan [25]. In principle
the task of the optimizer is to generate the cheapest
execution plan from a search space of all plausible execution
plans. The cost models in traditional relational databases are
based on average-case data access behavior and are often
very crude, since the cost is used only for comparing
execution plans, not for trying to exactly estimate the cost to
execute a query.

The purpose of a real-time query optimizer is not only
to generate for each query the execution plan with the
estimated shortest time to execute, but also to give a reliable
estimate of the real execution time. This requires
modifications of the classical query processing cost models
to deal with worst-case real-time behavior rather than
average behavior [21]. The cost models also have to be less
crude than traditional query cost models, since the estimates
are not only used for comparing plans to get the cheapest
one, but also for approximating the worst-case time to
execute the query. These cost models must therefore reflect
the actual execution times on the hardware and environment
where it will be run, preferably in a portable way [17].

The cost model of a real-time query optimizer needs to
be verified against its actual real-time behavior to show that
it mirrors the measured real-time behavior, analogously to
what can be done for real-time programming languages [11].

Another reason for unreliable cost estimates with
traditional query processing is that the optimizer estimates
the cost at query compile time based on the data available at
that time. Some data, such as run-time supplied comparison
values, are not available then and the cost estimates become
unreliable. Query optimization at run time is often not a
viable method either, since the cost of query optimization
can be very high. Methods should be developed to deal with
this problem, such as optimizing simple queries
dynamically, developing methods to switch between
different query plans at run time, limiting the possible data
values of unbound variables in the queries, or partitioning
the query into smaller fragments which can be used to
calculate approximate answers [19][20].

3 Data Structures for Stable Response Time

An important property of real-time systems is that the
response time should bepredictable, and that the worst-case
behaviour must not vary significantly. Traditional disk-
based databases are not very suitable for real-time
applications, since the access time can vary heavily (a factor
of 1000 to 10000 for processing a page of data [29])
dependent on if accessed data is on disk or in the main-
memory buffers of the DBMS. That problem can be
overcome by designing main-memory resident databases
[7], which is the approach used in our project. Still, even
with main-memory databases the access time can vary
heavily dependent on how well storage structures are
organized. For example, if hashing is used the access time is
very much dependent on how random the hash function is. It
is very difficult to estimate the worst-case access time of an
unpopulated hash table, as the access time of a hash table
depends on the hash function, on the overflow management
policies used, and on reorganization policies. We are
investigating how the use of linear hashing [12] [13]and
parallel execution [9] can alleviate some of these problems.

4 Performance Polymorphism

In time-critical situations it is sometimes possible to
define simplified algorithms that are to be executed when
the deadline approaches. These simplified algorithms have
timeliness trade-offs regarding data consistency, precision,
and completeness. For example, rather than computing the
latest value of some value derived from the database, an
extrapolation over time of old values could be used [14].
There are also techniques for finding approximate answers
to queries for a significantly lower cost than completely
executing the query [8][19][20].

A cost-based query processor that estimates the actual
execution time can be modified to generate several
execution plans of varying quality for a given real-time
query, along with the expected worst-case time to execute
each plan [20]. Sometimes such plans can be generated by
applying predefined methods for approximating certain
query operations, e. g. using methods from [8] and [14].

Furthermore, the user can provide alternative versions
of a query, with different real-time performance and quality.
At run-time, based on the available real time to execute the
query, the system can choose the highest-quality execution
plan. This is calledperformance polymorphism [10][11].
Performance polymorphism is based on the performance of
the execution, in contrast to classical polymorphism which
is based on types of arguments. Notice that performance
polymorphism in our understanding of the term is a more

general concept than contingency plans in ECA rules [3]
since performance polymorphic choices can automatically
be made by the query optimizer anywhere in an execution
plan.

Performance polymorphism, in a wide sense of the
term, has been investigated in relational real-time systems,
such as the contingency plans discussed in HiPAC [3] and
the query partitioning in CASE-DB [20]. However, in order
to naturally capture this and other forms of polymorphism,
an object-oriented data model is advantageous. Several real-
time object-oriented data models have been defined, e. g.
RTSORAC [2][22]. Some real-time systems combine
performance polymorphism and object orientation, such as
the Flex programming language [10][11] and the ROMPP
data model [31].

As far as we have been able to determine, all previous
work concerning such object-oriented performance
polymorphism where it is possible for the user to define
multiple versions of a function or method with different
performance, has concentrated on providing a
programming-language interface. No declarative query
language and therefore no query optimization is provided.

Our approach is to introduce performance
polymorphism into AMOS, which is an object-oriented
database system with a relationally complete query
language. Our schemas are built up by types (i.e. classes)
and functions (i.e. methods), similar to IRIS [5]. The
functions in AMOS are defined using an object-oriented
query language and are optimized using both traditional and
specialized query optimization techniques [15]. AMOS
functions can be defined in terms of other AMOS functions.

Analogously to regular polymorphic functions, the
system needs a method to resolve whichresolvent function
to invoke in a performance polymorphic function call. For
example, a simple strategy is to always invoke the resolvent
function with the highest quality (and slowest execution).
When this causes the overall execution time constraints of
the compiled function (i.e. query) to be exhausted the system
needs a strategy to decrease the quality of the resolvent
function calls.

Another trade-off is whether to choose the resolvent at
query compile time (early binding) or at run time (late
binding). The first is the preferred choice, since it makes it
easier to statically estimate the performance of a function.
However, in some cases the latter is necessary, and then
strategies are needed to estimate the performance of late
bound performance-polymorphic function calls. The query
optimizer should automatically choose early binding when

possible. When late binding cannot be avoided the system
can optimize each resolvent separately and then estimate the
time to execute the performance polymorphic call in terms
of the real-time to execute its resolvents, similar to [6].

An interesting problem is how to optimize execution
plans with several performance polymorphic function calls.
In that case the optimizer can make many different trade-
offs between quality and execution time at different function
calls.

5 Summary and ongoing work
Our aim is to provide performance polymorphism in an
object-oriented database system with a relationally com-
plete declarative query language. In this paper we have out-
lined the requirements and problems to be solved. We are
currently modifying a dynamic-programming-based query
optimizer to use a real-time cost model with quality trade-
offs, rather than a traditional cost model. We are also devel-
oping and investigating main-memory data structures with
predictable and stable response times. We will incorporate
some of these data structures into our object-oriented data-
base, and develop a cost model for them. We will also pro-
vide primitives for the user to specify time and quality
requirements in the object-oriented query language. We
plan to verify our approach by applying it to a realistic real-
time measurement example.

Acknowledgements

This project is funded by NUTEK, the Swedish National Board
for Industrial and Technical Development, as part of ISIS, the
Competence Center for Integrated Systems for Control and Infor-
mation.

6 References
[1] Berndtsson M., Hansson J. (Eds.):Proceedings of the First

International Workshop on Active and Real-Time Database
Systems (ARTDB-95), Springer-Verlag, 1995

[2] Cingiser DiPippo L., Wolfe V. F.; Object-based Semantic
Real-Time Concurrency Control,14th IEEE Real-Time Sys-
tems Symposium, Raleigh-Durham, NC, December 1993, pp
87-86

[3] Dayal U., Blaustein B., Buchmann A., Chakravarthy U.,
Hsu M., Ledin R., McCarthy D., Rosenthal A., Sarin S.: The
HiPAC Project: Combining Active Databases and Timing
Constraints,SIGMOD RECORD, Vol. 17, No. 1, March
1988, pp 51-70

[4] Fahl G., Risch T., Sköld M.: AMOS - An Architecture for
Active Mediators,International. Workshop on Next Genera-
tion Information Technologies and Systems (NGITS ’93)
Haifa, Israel, June 1993, pp 47-53

[5] Fishman D. H. et al: Overview of the Iris DBMS,Object-
Oriented Concepts, Databases, and Applications, ACM

press, Addison-Wesley Publ. Comp., 1989

[6] Flodin S., Risch T.: Processing Object-Oriented Queries
with Invertible Late Bound Functions, InProceedings of the
21st International Conference on Very Large Databases,
Zurich, Switzerland, September 11-15, 1995

[7] Garcia-Molina H: Main Memory Database Systems: An
Overview,IEEE Transactions on Knowledge and Data Eng-
ineering, Vol. 4, No. 6, December 1992, pp 509-516

[8] Hou W., Ozsoyoglu G., Taneja B.K.: Processing Aggregate
Relational Queries with Hard Time Constraints,Proceed-
ings of the ACM SIGMOD Conference, 1989

[9] Karlsson J., Litwin W., Risch T.: LH*lh : A Scalable High
Performance Data Structure for Switched Multicomputers.
The 5th International Conference on Extending Database
Technology (EDBT’96), Avignon, France, March 1996.

[10] Kenny K. B., Lin K.-J.: Structuring large real-time systems
with performance polymorphism,Proc. Real-Time Systems
Symposium,Orlando, FL, 1990, pp 238-246

[11] Kenny K. B., Lin K.-J.: Building Flexible Real-Time Sys-
tems Using the Flex Language,IEEE Computer, May 1991,
pp 70-78

[12] Larsson P.-Å.; Dynamic Hash Tables,Communications of
the ACM, Vol. 31, No. 4, April 1988

[13] Litwin W: Linear hashing: A new tool for file and table
addressing, InProceedings of the 6th Conference on Very
Large Databases, New York, 1980, pp 212-223

[14] Liu, J. W. S., Lin K.-J., Shih, W.-K., Yu A. C.: Algorithms
for Scheduling Imprecise Computations,IEEE Computer,
May 1991, pp 58-68

[15] Litwin W., Risch T.: Main Memory Oriented Optimization
of OO Queries Using Typed Datalog with Foreign Predi-
cates,IEEE Transactions on Knowledge and Data Enginee-
ring, Vol. 4, No. 6, December 1992

[16] Loborg P., Risch T., Sköld M., Törne A., Active Object Ori-
ented Databases in Control Applications,19th Euromicro
Conference of Microprocessing and Microprogramming,
vol. 38, 1-5, pp 255-264, Barcelona, Spain 1993

[17] Nilsen K., Rygg B.: Worst-Case Execution Time Analysis
on Modern Processors,ACM PLDI Workshop on Lan-
guages, Compilers, and Tools for Real-Time Systems, La
Jolla, CA, June 1995

[18] Ozsoyoglu G., Snodgrass R. T.: Temporal and Real-Time
Databases: A Survey,IEEE Transactions on Knowledge and
Data Engineering, Vol. 7, No. 4, August 1995

[19] Ozsoyoglu G., Du K., Guruswamy S., and Hou W.: Process-
ing Real-Time, Non-Aggregate Queries with Time-Con-
straints in CASE-DB,Proc. IEEE Data Engineering Conf 8,
Tempe, AZ, Feb. 1992

[20] Ozsoyoglu G., Guruswamy S., Du K. and Hou W.: Time-
Constrained Query Processing in CASE-DB,IEEE Trans-
actions on Knowledge and Data Engineering,Vol. 7, No. 6.,
December 1995

[21] Pang H. H., Carey M. J., Livny M., Managing Memory for
Real-Time Queries,Proceedings of the ACM SIGMOD
Conference, 1994

[22] Prichard J. J., Cingiser DiPippo L., Peckham J., Wolfe V. F.:
RTSORAC: A Real-Time Object-Oriented Database Model,
Proc. 5th Int. Conf. on Database and Expert System Appli-
cations (DEXA 94),Athens, Greece, December 1994, pp
601-610

[23] Ramamritham K.: Real-Time Databases,Distributed and
Parallel Databases 1 (1993), pp 199-226

[24] Risch T., Sköld M.: Active Rules based on Object Oriented
Queries,IEEE Data Engineering bulletin, Vol. 15, No. 1-4,
Dec. 1992, pp 27-30

[25] Selinger P. G., Astrahan M. M., Chamberlin D. D., Lorie R.
A., Price T.G.: Access Path Selection in a Relational Data-
base Management System, InProceedings of the ACM-SIG-
MOD Conference, Boston, MA, June 1979, pp 23-34

[26] Sköld M., Risch T.: Using Partial Differencing for Efficient
Monitoring of Deferred Complex Rule Condition,The 12th
International Conference on Data Engineering (ICDE’96),
New Orleans, Louisiana, February 1996

[27] Sköld M., Falkenroth E., Risch T.: Rule Contexts in Active
Databases - A Mechanism for Dynamic Rule Grouping. In
Rules in Database Systems (RIDS 95), Athens, Greece, Sep-
tember 25-27, 1995, Springer Lecture Notes in Computer
Science, ISBN 3-540-60365-4, pp 119-130, 1995

[28] Stankovic J. A.: Misconceptions About Real-Time Comput-
ing, IEEE Computer, Vol. 21, No. 10, October 1988

[29] Stone H. S.:High-Performance Computer Architecture, 3d
Ed, Addison-Wesley 1993

[30] Widom J., Ceri S. (Eds.):Active Database Systems - Trig-
gers and Rules For Advanced Database Processing, Mor-
gan Kaufmann, 1996

[31] Zhou L., Rundensteiner E. A., Shin K. G.:Schema Evolu-
tion for Real-Time Object-Oriented Databases, Technical
Report CSE-TR-199-94, University of Michigan, March
1994

