
(Published in IEEE Transactions on Knowledge and Data Engineering, Vol.
4, No. 6, December 1992)

Main Memory Oriented Optimization of

OO Queries using Typed Datalog with

Foreign Predicates

Witold Litwin
�

Tore Risch
y

Abstract

Object-oriented DBMSs (OODBs) have created a demand for re-
lationally complete, extensible, and declarative object-oriented (OO)
query languages. Until now, run time performance of such languages
was far behind that of procedural OO interfaces. One reason is the in-
ternal use of a relational engine with magnetic disk resident databases.
We address the processing of the declarative OO language WS-OSQL,
provided by the fully operational prototype OODB called WS-IRIS.
A WS-IRIS database is MM resident. The system architecture, data
structures, and optimization techniques are designed accordingly. WS-
OSQL queries are compiled into an OO extension of Datalog called
ObjectLog, providing for objects, typing, overloading, and foreign
predicates for extensibility. We present cost based optimizations in
WS-IRIS using ObjectLog. Performance tests show that WS-IRIS
is about as fast as current OODBs with procedural interfaces only
and is much faster than known relationally complete systems. These
results would not be possible for a traditional disk based implementa-
tion. However, MM residency of a database appears only a necessary
condition for better performance. An e�cient optimization proves of
crucial importance as well.

Key Words: Main Memory Database, Object-Oriented Database
System, Object-Oriented Query Language, Query Optimization, For-
eign Predicates.

�Dauphine University, Paris, France, litwin@eclipse.stanford.edu.
yDept. of Computer Science, Link�oping University, 581 83 Link�oping, Sweden,

torri@ida.liu.se.

0

1 INTRODUCTION

OO database systems (OODBs) have grown in popularity [13, 14, 27]. Most
existing OODBs have navigational languages for object manipulation. A
new trend has been to provide them with declarative query languages [3,
4, 10, 12, 20, 31], possibly extensible through foreign methods or functions
[7, 30]. Implementation of query languages has led to the problem of query
optimization. Little is yet published about this subject for OODBs, but two
approaches can be identi�ed:

1. The object model is internally processed by a relational engine. Queries
are optimized accordingly [10, 30, 37] using relational algebra.

2. A dedicated object-oriented algebra is de�ned [9, 29, 31]. Queries are
optimized using corresponding transformation rules.

We do not know any implemented system using the second approach. The
current proposals are limited to optimization using algebraic operators, and
cite the development of fully operational optimizers as a future goal [31].
The �rst approach seems at present the leading one for fully implemented
systems [10, 30, 37], since relational optimization techniques are well under-
stood. However, it is easy to see that this approach is limited. While one
rationale for OODBs is much higher e�ciency than RDBs, the �rst approach
is basically limited by relational storage performance, although OO-dedicated
index structures and statistics can help overcome this limitation [12]. An-
other problem is that the semantics of the relational model is more limited
than that required for an OO query language [31].

Furthermore, relational optimization techniques were developed for classical
(magnetic) disk-based very large shared databases, where only a small part of
the database could �t the fast main memory (MM). They are partly obsoleted
by the progress in hardware and by new working environments, especially the
powerful interoperable workstations with individual (personal) databases,
and main memories comparable to those of mainframes a few years ago1. A
PC can now handle MM storage of 32-64 Mb at a cost of $36 per Mbyte,
while servers can have GBytes [18]. As OO databases on workstations are
usually not larger than that, it is now possible to �t all or most of an entire
database in MM2. Also, MM has become reliable enough to support data
for extended periods of time (e.g. weeks or months) without any crashes.

1Large RAM disks have become available as compatible substitutes for magnetic disk,
but we consider such devices as MM.

2Future databases perhaps will be larger, but main memory will be larger as well, at a
much lower price per Mb.

1

Hence, the interaction with the disk for reliability purpose can be much more
infrequent, i.e. individual updates need not be committed to the disk. All
this progress requires a revision of traditional database designs, but opens
the way to performance that no classical implementation could achieve [18].

One can also observe that logical languages such as Datalog [34] are attrac-
tive candidates for the e�cient processing of declarative OO queries. Their
expressive power often exceeds that of the relational languages, primarily
through their recursion capabilities [6, 23, 34], and their optimization princi-
ples are fairly well understood [6, 34]. In particular, the relational algebra of
the �rst approach can be generated from a logical language for non-recursive
queries [34] and subsequently optimized [15, 28]. However, Datalog lacks up-
date semantics, and OO features such as typing and OID management which
makes it impractical to use pure Datalog to process OO queries.

We have built a prototype OODB termed WS-IRIS (Workstation IRIS) that
is based on these considerations. WS-IRIS' query language, called WS-
OSQL, is an extension of the OO declarative query language of IRIS, termed
OSQL. After optimization of type checking, the WS-OSQL queries are trans-
lated to an OO generalization of Datalog, termed ObjectLog. The ObjectLog
queries are optimized through cost-based rule rewriting and through reorder-
ing for safety, which are well known techniques from logic query languages
[6, 34]. For processing, the database is entirely in MM, and largely uses
MM-oriented data structures such as arrays, hash tables, and linked lists.
They prove more e�cient than relational storage for OO operations, e.g.,
for type checking and method selection. WS-IRIS also provides concurrency
control, logging, commit, rollback, and recovery facilities. The granularity
of the concurrency control is at present the entire database, which is often
su�cient for a personal DBMS. For recovery, there is a backup copy on the
disk, and a background process saves the database on the disk using the well
known copy-on-write Unix facility 3.

Unlike other OO systems we know of, WS-IRIS optimizes multi-way for-
eign function calls, i.e. where only the result of the function is known and
the system �nds the corresponding argument(s). This is done using foreign
predicates, generalizing the concept of external predicates in LDL [6]. A
multi-way foreign function can be transparently mapped to a set of foreign
predicates sharing the function name but di�erently implemented in C4. For
example, a function accessing an array can be mapped into two foreign pred-
icates, one for directly accessing an array element when its index is known,
and another resolving a call with unknown index value through scanning the

3In case of a system crash the database can be reloaded from the disk with the log
rolled forward.

4Alt. LISP or IPL[2].

2

array. The resolvent choice is in general based on cost estimate from cost
functions attached to foreign predicates. The overall bene�t for the user is
enhanced polymorphism of foreign function calls.

Foreign predicates further allow for inferencing through constraints [17]. For
instance, the WS-OSQL user can de�ne a function converting Fahrenheit
to Celsius and the system will infer the reverse conversion from Celsius to
Fahrenheit.

In what follows we present the WS-OSQL query processing and optimization.
Section 2 overviews the languages of WS-IRIS. Section 3 shows the steps for
query transformation. Section 4 describes the optimizations within each
step. Section 5 discusses foreign predicates. Section 6 presents performance
measurements.

The measures show that query evaluation according to the proposed princi-
ples can be several orders of magnitude faster than naive evaluation despite
the MM processing speed. For instance, for a database of 10,000 objects,
the improvement can be from 13 minutes to 1.1 msecs. Such a fast evalua-
tion would not be possible for a traditional disk based implementation, being
faster than even a single disk access. On the other hand, the results prove
that without e�ective optimization the system would be too slow for many
applications, despite its MM implementation.

We show further that all together the speed of WS-IRIS is comparable to
that of OODBs currently providing only navigational access [13, 21], even
for large workstation databases5. WS-IRIS allows us therefore, to use a
relationally complete declarative language for typical OO applications where
high e�ciency is the primary concern. This is a major advantage of WS-
IRIS, since to write a declarative query is usually much faster than to write
a navigational program6 [32].

2 THE WS-OSQL LANGUAGE

2.1 The OSQL Language

WS-OSQL is a dialect of OSQL that is the query language for IRIS sys-
tems [10]. OSQL uses the concepts of types, objects, and functions. Objects
are represented through typed atomic object identi�ers (OIDs), and func-
tions associate properties to objects or de�ne relationships between objects.

580,000 objects.
6WS-IRIS also provides a navigational C interface called the fast path interface, some-

times also called call-level application program interface, e.g. in SYBASE.

3

Functions model object attributes and relationships between objects through
three basic function types:

1. Stored functions that are tables.

2. Derived functions that are de�ned through OSQL select statements.

3. Foreign functions that are de�ned using an external programming lan-
guage.

Fig. 1 shows some of the OSQL functions and types used in this paper. Ob-
jects of type Personhave the properties Income, Bonus, Parent, GrossIncome,
and
GrandSParentGrossIncome. These are OSQL functions of a single argument
bound to objects of type Person. Local variables are declared using the \for
each" clause.

The GrandSParentGrossIncome function will be our running example. It
illustrates important OO needs, such as e�cient traversal of object hierar-
chies, static and dynamic type checking, inheritance, and overloading (the
Income function)7.

The function Plus in the derived function GrossIncome is a foreign function,
implemented in C outside WS-OSQL. GrossIncome itself, as any derived
function, is de�ned through the select statement that follow the \as" key-
word. The stored functions Parent, and GrandSparentGrossIncome return
sets of values.

In general, the arguments and results of a function together with their types
are called the signature of the function. We denote signatures by

f(T1 P1,...,Tn Pn) -> <U1 Q1,...,Um Qm>
8

P1,...,Pn are the arguments of f whose values are of types T1,...,Tn. A
function can have as the result a set of tuples of values, Q1,...,Qm, with
types U1,...,Um.

OSQL has a SQL-like select statement both for ad hoc queries to the
database and for de�ning derived functions.

Overloaded functions are OSQL functions sharing a name for di�erent def-
initions. In Fig. 1 there are two variants, or resolvents, of the overloaded
Income function. Both resolvents provide a person's income, the �rst one is
given an OID of an object of type Person, while the other is given a name as
a string. Resolvents can be any of the three basic function types. WS-IRIS

7It also illustrates an increasingly popular need of modern grandparents.
8The brackets around the result are optional for functions returning a single result.

4

create function Name(Person p) -> Charstring nm as stored;

create function Income(Person p) -> Integer i as stored;

create function Bonus(Person p) -> Integer i as stored;

create function Parent(Person c) -> Person p as stored;

create function GrossIncome(Person p) -> Integer gi as

select Plus(Income(p),Bonus(p));

/* Derived where plus is foreign */

create function SParent(Person c) -> Student s as

select s /* Derived */

where Parent(c) = s; /* Parent if parent is student */

create function GrandSParentGrossIncome(Person c) -> Integer gi as

select gi /* Gross income of grandparent

if grandparent is student */

for each Person gp, Person p

where GrossIncome(gp) = gi and

SParent(p) = gp and

Parent(c) = p;

create function Income(Charstring nm) -> Integer i as

select Income(p) /* Derived overloaded */

for each Person p

where Name(p) = nm;

Figure 1: Examples of OSQL functions

5

chooses then the resolvent according to the argument type, at compile or at
run time.

2.2 New features in WS-OSQL Language

The main new features of WS-OSQL [26], are multi-way foreign functions,
a limited form of recursion, late binding of overloaded functions, and 2nd
order functions. WS-OSQL furthermore has aggregation operators, nested
subqueries, disjunctive queries, and quanti�ers, and is relationally complete.
The user can also provide cost hints to the optimizer as OSQL functions. We
discuss these possibilities more in depth in the sections that follows.

2.3 ObjectLog

WS-OSQL compiles into its intermediate language we termed ObjectLog.
ObjectLog is inspired by Datalog and LDL but provides new facilities for
e�ective processing of OO queries. ObjectLog generalizes the polymorphic
type extensions proposed for Prolog [22] by providing a type hierarchy, late
binding, update semantics, and foreign predicates. The most important fea-
tures are:

� Predicate arguments are objects, where each object belongs to one or
more types organized in a type hierarchy that corresponds to the type
hierarchy of Iris [10].

� Object creation and deletion semantics maintains the referential in-
tegrity of the type hierarchy.

� Update semantics of predicates preserve type integrity of arguments.
The optimizer relies on this to avoid dynamic type checking in queries
(Sec. 4.1).

� Predicates can be overloaded on the types of their arguments. We call
corresponding resolvent a Type Resolved (TR) predicate (Sec. 3.3).

� Predicates can be further overloaded on the binding patterns of their
arguments, i.e. on which arguments are bound or free when the predi-
cate is called. We call each corresponding resolvent a Type and Binding
Pattern Resolved (TBR) predicate (Sec. 3.4).

� Predicates can be not only facts and rules, but also multi-way for-
eign predicates implemented in a procedural language9. Foreign pred-

9C, Lisp, or IPL [2].

6

icates implement foreign functions, especially multi-way foreign func-
tions (Sec. 5).

� Predicates themselves as well as types are objects, and there are second
order predicates that produce or apply other predicates. 2nd order
predicates are crucial, e.g., for late binding (Sec. 4.1.1) and recursion
(Sec. 5.4).

3 QUERY PROCESSING STEPS

A WS-OSQL query is de�ned through a select statement. WS-IRIS com-
piles ad hoc queries as if they were unnamed derived functions. Vice versa,
functions can be seen as views de�ned through queries, like in SQL. A query
or a function de�nition is compiled to ObjectLog representation. The com-
piler transforms a function or a query in several steps, shown top-down in
Fig. 2. We now summarize these steps; the next section describes the query
processing algorithms more in detail. Examples refer to the compilation of
functions only.

3.1 Flattener

As Datalog, ObjectLog does not allow function symbols to appear in argu-
ments. Therefore, the compiler �rst transformWS-OSQL select statements
into
attened select statements, without functions in the result list and
without function nesting in the predicate. We
atten select statements
by recursively introducing intermediate variables for each nested function
call. Fig. 3 shows how the function GrossIncome of Fig. 1 is
attened by
introducing intermediate variables gi, v1, and v2.

The
attener also detects and marks recursive functions, discussed in Sec. 5.4.

3.2 Type Checker

Type checking has three phases:

During the type adornment phase, the translator identi�es type-adorned (TA)
resolvents of a
attened function by annotating the name of the function with
the names of its signature types. An overloaded function has a TA resolvent
for each de�nition. For example, Income in Fig. 1 has the TA resolvents:
IncomePerson�>Integer and IncomeCharstring�>Integer.

7

ObjectLog Interpreter

TBR ObjectLog Program

TR ObjectLog Program

ObjectLog optimizer

ObjectLog generator

Type Checker

Type Adorned Resolvent

Flattened F

Function F

Flattener

Figure 2: Translation steps

create function GrossIncome(Person p) -> Integer gi as

select gi

for each Integer _v1, _v2

where _v1 = Income(p) and

_v2 = Bonus(p) and

gi = Plus(_v1,_v2);

Figure 3: Query Flattening

8

create function GrandSParentGrossIncomePerson�>Integer(c)

-> Integer gi as

select gi

for each Student gp, Person p

where GrossIncomePerson�>Integer(gp) = gi and

SParentPerson�>Student(p) = gp and

ParentPerson�>Person(c) = p;

Figure 4: A TA resolvent

Then an overload resolution algorithm (Sec. 4.1) substitutes function calls in
the
attened select statement with their TA resolvents. Fig. 4 shows the
result for the function
GrandSParentGrossIncome. This algorithm cannot be applied to late-bound
function calls, in which case the overload resolution has to be done at run
time (Sec 4.1.1).

Finally, the optimizer adds dynamic type checks to the function de�nition
whenever the type of a variable cannot be guaranteed to be of the desired
type assuming the referential integrity of updates. This is the case of the
function SParent (Fig. 1), where the system must dynamically check that
the variable s is of type Student, since the function Parent returns Person
objects not always being Student objects.

3.3 ObjectLog Generator

The ObjectLog generator transforms TA resolvents into Type Resolved (TR)
ObjectLog programs:

Stored functions become TR facts. For example the TA resolvent Income

Person�>Integer would generate the TR fact incomePerson;Integer(P,I).

Derived functions become TR rules. The signature becomes the head of the
rule and the select statement becomes the rule body. Fig. 5 shows the TR
rule of the derived function GrandSParentGrossIncome.

Finally, the foreign functions become TR foreign predicates. We'll discuss
this transformation in Sec. 5.

9

grandsparentgrossincomePerson;Integer(C,GI) :-

grossincomePerson;Integer(GP,GI) &

sparentPerson;Student(P,GP) &

parentPerson;Person(C,P).

Figure 5: TR Rule

3.4 ObjectLog Optimizer

Each WS-OSQL function is compiled into a TBR predicate where bound
predicate arguments correspond to the arguments of the function, and the
unbound arguments correspond to the results. The function is optimized for
execution in the forward direction where arguments are known and results
computed. The rationale is that functions are normally used as methods
that compute properties of the arguments. Functions can nevertheless also
be used inversely, in which case the optimizer will generate di�erent TBR
predicates.

The TR rules constitute the entry to the ObjectLog optimizer. The outcome
are optimized TBR rules. The optimization algorithm use results in [15, 34]
for rule reordering, and [6] for foreign predicate optimization. However, these
results had to be revisited for ObjectLog, because of the overloading on
binding patterns. The consequence is a larger space of safe reorderings to
choose the optimal one from. The increase is obtained in two ways:

� The explicit de�nition of the set of resolvents, S(P), overloading a
TR predicate, P , provided by the user as part of a foreign function
de�nition (Sec. 5.1).

� The completion algorithm (Sec. 5.3) that can infer from S(P) yet other
resolvents.

The search space is then explored using greedy heuristics to �nd the cheapest
reordering according to the cost model in [15]. Two bene�ts result from the
ObjectLog approach with respect to the algorithm in [6]:

� A more e�cient optimized program can be chosen.

� There can be TBR programs that would have no solution in a smaller
search space. This is, e.g., the case of the constraint inferencing (Sec. 5.1),
and of examples in [16] (Sec. 8.3), and [33] (pp. 3-6).

10

grandsparentgrossincomePerson;Integer(C,GI) :-

incomePerson;Integer(GP, V2) &

bonusPerson;Integer(GP, V1) &

plusInteger;Integer;Integer(V2, V1,GI) &

typesofObject;Type(GP,typeStudent) &

parentPerson;Person(P,GP) &

parentPerson;Person(C,P).

Figure 6: A Substituted TR Rule

grandsparentgrossincome
bf
Person;Integer(C,GI) :-

parent
bf
Person;Person(C,P) &

parentbfPerson;Person(P,GP) &

typesofbbObject;Type(GP,typeStudent) &

incomebfPerson;Integer(GP, V2) &

bonus
bf
Person;Integer(GP, V1) &

plus
bbf
Integer;Integer;Integer(V2, V1,GI).

Figure 7: An optimized TBR rule

11

Fig. 7 shows the optimal TBR program for the function GrandSParentGrossIncome
that will be justi�ed later. Each literal refers to TBR predicate names, where
superscripts `b' stands for bound argument and `f' stands for free argument.

3.5 ObjectLog Interpreter

The ObjectLog interpreter executes the TBR program with b marked argu-
ments bound to produce the corresponding result tuples. For instance,
grandsparentgrossincome

bf
Person;Integer would be invoked if a query about

GrandSParentGrossIncome for a given Person was submitted. The inter-
preter uses a top down interpretation method that corresponds to the nested-
loop method in relational databases [15]10.

4 OPTIMIZATION ALGORITHMS

4.1 Type Checking

It is advantageous for e�ciency to perform overload resolution at compile
time whenever possible. In particular, it is advantageous for choosing the
best TBR program, because late binding makes rule substitution and thus
global optimization impossible. Thus late binding should be used only when
semantically necessary.

For dynamic type checking there is a built-in foreign function, TypesOf, that
returns the set of types to which a given object belongs:

TypesOf(Object o) -> Type t

The simplest processing strategy is to add TypesOf to each variable declared
in a function body (Fig. 8)11. This strategy, however, sometimes introduce
unnecessary checks. The type checker avoids such checks through the follow-
ing rule:

[Type Check Removal:] Consider a TA function f, invoked in a select state-
ment:

fT1;:::;Tm�>Tm+1 ;:::;Tm+n(A1,..,Am) = <Am+1,...,Am+n>

10By contrast, NAIL! [34] uses a bottom-up method for e�cient handling of a class of
recursive queries.

11The variables typeInteger, typeStudent, and typePerson refer to objects represent-
ing the types named 'Integer', 'Student', and 'Person', respectively.

12

create function GrandSParentGrossIncomePerson�>Integer(c)

-> Integer gi as

select gi

for each Person c, Student gp, Person p

where TypesOfObject�>Type(c)=typePerson and

TypesOfObject�>Type(gi)=typeInteger and

TypesOfObject�>Type(gp)=typeStudent and

TypesOfObject�>Type(p)=typePerson and

GrossIncomePerson�>Integer(gp) = gi and

SParentPerson�>Student(p) = gp and

ParentPerson�>Person(c) = p;

Figure 8: Function De�nition with Type Checks .

Variables, Aj are declared of type Dj. If Tj is Dj or a subtype of Dj, then one
may remove the type check for Aj

The type check removal rule is valid since types of the arguments and results
of f are constrained by the referential integrity system for stored functions
and by type checking for derived functions.

It turns out that all TypesOf calls in Fig. 8 prove unnecessary:
The type check TypesOfObject�>Type(c)=typePerson is unnecessary since the
argument of ParentPerson�>Person must be of type Person. Analogously,
TypesOfObject�>Type(gi)=typeInteger is unnecessary since
GrossIncomePerson�>Integer returns integers, etc.

By contrast, in the de�nition of SParent, a type check is needed, checking
that the variable s is of type Student, since ParentPerson�>Person returns a
Person which is a more general type than Student.

4.1.1 Late Binding

It is advantageous for e�ciency to perform overload resolution at compile
timewhenever possible. In particular, it is advantageous for choosing the best
TBR program, as late binding makes some optimizations impossible. Thus
late binding should be used only when semantically necessary. In WS-OSQL
a special keyword, late, indicates to the type checker when late binding is
to be used in an OSQL function call.

The query processor generates a 'generic' TBR predicate on the univer-
sal type Object for every overloaded OSQL function. The generic predi-
cate does dynamic overload resolution to handle late binding. For exam-

13

ple, the OSQL function Income in Fig. 1 will generate a generic predicate,
Income

bf
Object;Integer. The generic TBR predicate is implemented as a call to a

second order foreign system predicate, apply. This predicate �rst does the
type resolution at run time based on the types of the actual argument values,
and calls the selected TBR predicate.

4.2 ObjectLog Optimizer

4.2.1 Rule Substitution

A TR rule can refer to other TR rules. For example, the TR rule
GrandSParentGrossIncomePerson;Integer (Fig. 5) refers to the TR rules
SParentPerson;Student, and GrossIncomePerson;Integer. The rule substitution
phase combines such rules into one larger rule, whenever possible, e.g. there
is no recursion (see [34] vol. II Sec. 13.4). The reason is that the global
optimization of a set of substituted rules often proves more e�cient than to
local optimization of individual rules. Fig. 6 shows the rule substituted TR
program of GrandSParentGrossIncomePerson;Integer.

4.2.2 Cost Model for Rule Reordering

The Basis

Choice of bindings through rule reordering (e.g., join ordering, selection push-
ing) and of access methods (e.g., join method, index creation/use) are among
the most important techniques for optimizing Datalog queries [34]; as well
as for relational queries in general [28].

Traditional optimizers have exponential optimization time over the number
of literals in a rule (joins) [28]. This proves inconvenient for WS-OSQL, and
WS-IRIS default is a heuristic optimization [15] which produces query plans
in quadratic time. The rest of this section presents the principles of the
heuristics. They are MM oriented, as all ObjectLog data structures are in
MM.

Our optimization method is a variant of the nested-loop join method, gen-
eralized for foreign predicates. No disk access costs are considered, since the
entire database is in MM and eventual disk backups are done asynchronously
in the background. By the same token, cluster orderings are not considered
which simpli�es rule reordering. Also, the MM residency costs of common
primitive operations are comparable to data access costs, unlike for disk res-
ident databases. These operations are arithmetic operators, foreign function
calls, etc.

14

Optimization Heuristics

Let P be a TBR rule or fact. We call the input tuple the tuple corresponding
to variable(s) that are bound in P . For a given input tuple there are zero,
one, or several output tuples, corresponding to unbound variable(s) in P . For
each TBR predicate P two cost estimates are calculated:

1. The execution cost of P , CP , de�ned as the number of visited tuples,
given that all variables of the input tuple are bound.

2. The fanout, FP , which is the estimated number of output tuples pro-
duced by P for a given input tuple.

The optimizer minimizes the total cost, C, to join a conjunction of literals,
fPig

n
1 :

C =
nX

i=1

(CPi

i�1Y

j=1

FPj)

As in [15] the optimizer computes a rank, RPi, for each Pi in fPig
n
1 :

RPi =
FPi � 1

CPi

Then next literal to evaluate is the literal minimizing RPi , provided that it
is executable (safe) at the position to be taken in the rule. The calculus is
iterated until there are no literals left. The motivation for this heuristics is
that to repeatedly minimize RPi also minimizes C.

Default Values for Cost Parameters.

In a populated database the system estimates CP and FP from the cardi-
nality of stored predicates, join selectivity, and index kind and availability12.
To get reasonable optimization even before the database is populated, the
system uses the default cost parameters below. After the database has been
populated the user can instruct the system to optimze all OSQL functions
using the statistics of the populated database.

The optimizer distinguishes between joining on unique indexes, non-unique
indexes, and unindexed input tuples. On experimental basis, defaults are
currently as follows:

� FP=1 if the input tuple has a unique index.

� FP=2 if it has a non-unique index.

12OSQL allows the DBA to put indexes on any argument or result of a function, and
the system by default puts an index on the �rst argument of OSQL functions.

15

� FP=4 otherwise.

The rationale for these defaults is that input tuples with unique indexes will
have a maximal possible FP value of 1. A non-unique index is usually e�cient
only for a fanout slightly larger than one. Unindexed input tuples have
usually fanout larger than indexed ones; that is why they remain unindexed.

The default size of a stored predicate is assumed 100 tuples. The correspond-
ing defaults for CP are:

� CP=FP if the input tuple has an index.

� CP=100 if it is unindexed, since the system has to scan the entire table.

Foreign predicates have default FP=1 and CP=1, assuming that they are
cheap to execute and return a single result tuple.

Cost Hints

The DBA can provide cost hints for each TBR predicate, which override
default assumptions about CP and FP . Hints are particularly useful for
evaluating foreign predicates. These hints are provided by the DBA as a
WS-OSQL function that for a given TBR predicate returns the two estimates
CP and FP .

For example, the system TBR predicate typesofbfObject;Type(X,T) computes

the type of a given object X, while typesoffbObject;Type(X,T) computes the
objects belonging to type T. Computing the type of a WS-IRIS object is
very cheap, since a pointer to the types of each object is stored directly in
the OID. However, �nding all the objects of a given type is expensive and
proportional to the number objects of the type. The cost hint functions for
typesofbfObject;Type(X,T) and typesoffbObject;Type(X,T) specify those hints.

4.2.3 Example

The ObjectLog interpreter would interpret the unoptimized program of Fig. 6
using the nested loop algorithm of Fig. 9.

Our test database has a database populated with 10,000 persons of which
2,500 are students, and the stored predicates parent, income, and bonus

have hash-based indexes on their �rst argument. Since we use hash based
MM indexing we can assume a constant cost of, e.g., 2 to access an index,
while a basic operation (e.g. arithmetic) has cost 1.

The execution plan of Fig. 9 is very ine�cient, because it �rst iterates on
line 2 over the entire extension of the stored predicate income (10,000 itera-
tions). Furthermore, on line 6 it also iterates over the extension of parent,

16

1: grandsparentgrossincome(C) -> GI:

2: forall GP,_V2 when income(GP,_V2) do

3: forall _V1 when bonus(GP,_V1) do

4: GI = _V1 + _V2

5: when typesof(GP,typeStudent) do

6: forall P in parent(P,GP) do

7: when parent(C,P) do

8: emit(GI);

Figure 9: Unoptimized interpretation of grandsparentgrossincome

since parent has no index on its second argument. Assuming that all other
extensional predicates have indexes and that type checking is very fast, the
cost of the above execution plan will be O(card(income) � card(parent)), i.e.
O(108).

Fig. 7 shows the �nal de�nition of GrandSParentGrossIncome after applying
our cost heuristics. Appendix A shows the details of the calculus. The plan
has a constant execution cost of 10, since indexes are used on income, bonus,
and parent, and plus and typesof are basic operations.

In Section 6 we show empirical results on grandsparentgrossincome that
veri�es the importance of this optimization.

5 FOREIGN PREDICATES

5.1 The Rationale

Many system functions in WS-IRIS are implemented as foreign functions,
e.g. for late binding (Sec. 4.1.1), quanti�cation, and aggregate functions
[26]. Some of them have to be multi-way, e.g. TypesOf (Sec. 4.1), and for-
eign predicates reveal a very e�cient way for their implementation. Foreign
predicates also open new possibilities for user de�ned foreign functions. For
instance, they allow for constraint inferencing (compilation) [17] as Fig. 12
illustrates.

Foreign functions can have several TBR foreign predicate resolvents for dif-
ferent binding patterns13. Each TBR predicate has associated cost functions
(either default or user de�ned). The whole concept of TBR foreign predi-
cates generalizes that of external predicates in LDL [6], that were neither

13The resolvents are normally implemented in C, Lisp, or IPL.

17

sparentPerson;Student(C,S) :-

typesoffbObject;Type(S,typeStudent) &

parent
bf
Person;Person(C,S).

Figure 10: Unoptimized TBR ObjectLog program for SParent

sparentPerson;Student(C,S) :-

parentbfPerson;Person(C,S) &

typesofbbObject;Type(S,typeStudent).

Figure 11: Optimal TBR ObjectLog program for SParent

polymorphic over binding patterns nor over types.

As an example of the importance of foreign predicate optimization, regard
the function SParent of Fig. 1 whose unoptimized TBR representation is
shown in Fig. 10. The type checker has added a call to the built in foreign
function typesof to test if the parent is a student. The above TA de�ni-
tion is, however, ine�cient, because S is not known when typesoffbObject;Type

is called. Thus typesof
fb

Object;Type iterates through and emits all objects of
type Student14. The execution time will be proportional to the number of
students in the database.

By contrast, the optimal TBR program is shown in Fig. 11. Its execution
time is constant, since parent has a hash-based index on C and the foreign
predicate typesofbbObject;Type is implemented as a simple check of the type tag
of the object S.

The foreign predicates allow to implement elegantly the constraint compi-
lation of [17], as Fig. 12 illustrates. The function ftoc in Fig. 12 converts
Fahrenheit degrees into Celsius. Assuming the Celsius temperature is stored
using ctemp, the constraint compilation allows to use ftoc as a constraint to
inversely infer ftemp given ctemp. Otherwise a di�erent function, let it be
ctof, would be needed, and the user would manually choose between both,
depending on the query. Similarly, the functions Minus, and Div are de�ned
as derived functions in terms of two inverted foreign functions, Plus and
Times. Without the constraint compilation Minus and Div would have to
be implemented as separate foreign functions, where the user would have to

14Foreign predicates, such as typesof
fb
Object;Type are de�ned as generators that call a

system provided C function, emit, for each result of a set valued foreign predicate. The
generator method avoids materializing the result set, which saves MM usage signi�cantly.

18

create function ftoc(Real f) -> Real c as

select Div(Times(Minus(f,32.),5.),9.);

create function ctemp(Person p)-> Real c as stored;

create function ftemp(Person p)-> Real f as

select f

where ftoc(f) = ctemp(p);

create function Minus(Real x, Real y) -> Real r as

select r

where Plus(y,r) = x;

create function Div(Real x, Real y) -> Real r as

select r

where Times(y,r) = x;

Figure 12: Example of Multiway use of Foreign Functions

ftempbfPerson;Real(P,F) :- plusbffReal;Real;Real(32, V3,F) &

times
bbf

Real;Real;Real(V3,5, V2) &

times
bfb
Real;Real;Real(9, V1, V2) &

ctempbbPerson;Real(P, V1).

Figure 13: An unexecutable TBR rule

choose the correct implementation depending on the query, and the system
would not have been able to infer the inverse of ftoc.

5.2 Reordering for Safety

While facts allow any binding patterns, foreign predicates do not. A TBR
rule that refers to unde�ned TBR predicates is not executable at all, i.e. it
is unsafe [6]. For example, Fig. 13 shows the rule substituted TBR program
of ftemp. It cannot be executed without rule reordering, since the foreign
TBR predicate plusbffReal;Real;Real is unde�ned. The body of ftemp has to be
reordered for safety, where every TBR predicate is de�ned or can be inferred
by the completion algorithm to be discussed in Sec. 5.3.

For every TR predicate, P , there will be a corresponding set of de�ned TBR
predicates, S(P), realizing the overloading on P . For the TR predicates plus
and times we have the following implementations15:

15We omit the type adornments for simplicity.

19

ftempbfPerson;Real(P,F) :- ctempbfPerson;Real(P, V1) &

times
bbf
Real;Real;Real(9, V1, V2) &

times
fbb
Real;Real;Real(V3,5, V2) &

plusbbfReal;Real;Real(32, V3,F).

Figure 14: Optimized Constraints

S(plus) = fplusbbf ; plusbfb; plusfbbg
S(times) = ftimesbbf ; timesbfb; timesfbbg

Assume that in the process of reordering a rule for the position j in the
reordered rule, the literal Pj chosen gets a binding pattern X such that
PX
j 62 S(P), (i.e. the TBR predicate PX

j is unde�ned) and PX
j cannot be

inferred from S using the completion algorithm to be de�ned in next section.
Pj is then disregarded for this position and another literal is examined by
the heuristic or the exhaustive optimization algorithm, whichever is used.

In our example, the optimal TBR program for ftempPerson is at Fig. 14. It
results from the following steps:

1. Initially only P is bound, ctempbfPerson;Real(P, V1) is chosen as the im-
plemented TBR predicate in the rule body.

2. Once ctemp is called both P and V1 are bound,
and times

bbf
Real;Real;Real(9, V1, V2) is the only implemented TBR pred-

icate.

3. Then P, V1, and V2 are known which makes timesfbbReal;Real;Real(V3,5, V2)

the (only) implemented TBR predicate.

4. Finally plus
bbf
Real;Real;Real(32, V3,F) is chosen.

Note that this example would have been unsafe with the optimization prin-
ciples of [16], because of smaller search space.

5.3 Completion Algorithm

Not every possible TBR foreign predicate need to be implemented for a
given TR foreign predicate P . Some TBR predicates can be automatically
inferred from S(P) through the completion algorithm. The idea is to avoid
to implement TBR foreign predicates, that are covered by elements of S(P).

20

Some programming e�ort can then be saved. Informally speaking, a covering
element has fewer bindings, e.g. plusbbf covers plusbbb.

Formally, a TBR predicate, Pp1;:::;pn, covers another TBR predicate, Pq1;:::;qn,
when 8i : pi = qi or qi =b. The following example illustrates the problem.

Consider the OSQL query testing whether two numbers add up to a given
sum:

select where Plus(1,2) = 3;

This query leads to the TBR query16 plusbbb(1,2,3)?. It is, however, not
necessary to implement plusbbb, i.e. plusbbb 62 S(plus). The system can
instead use plusbbf(1,2, V1) to compute V1 and then test whether V1=3.
The ObjectLog query would be:
plusbbf(1,2, V1) & EQ(V1,3)?

Any covered TBR predicate can be substituted with its cover. The general
algorithm is as follows:
Consider P y 2 S(P), and P x 62 S(P) covered by P y. The optimizer will
replace each

PX(a1; :::; an) (1)

with the expression:

P Y (b1; :::; bn)&eq(Vi1; ai1)&:::eq(Vim; aim) (2)

where:

(i) bi = ai if both are bound.
(ii) bik = Vik if aik; k = 1; ::;m is bound in PX and bik is free in P Y .
The case when ai is free but bi is bound is impossible, since P Y covers PX .

An interesting problem is that of a minimal S(P). While the substituted
covering form (2) is semantically equivalent to the implementation of P y, it
is less e�cient. The di�erence is often negligible, e.g. for plusbbf and plusbbb,
and we need not implement the covered predicate. However, the inverse may
be true as well, and the covered predicate can be signi�cantly faster than its
cover. It is then advantageous to implement it anyhow.

For example, consider the TR predicate typesofObject;Type. It would be su�-

cient. to implement the TBR predicate typesofffObject;Type
17, which would re-

turn for every object in the system all its types. However, for large databases
the execution cost of typesofffObject;Type is prohibitive, while the cost to exe-

cute typesoffbObject;Type is proportional to the number of objects of the given

16We omit type adornments.
17Since ff covers every other binary binding pattern.

21

create function ancestor(Person p) -> Person a

as select a

for each Person par

where ((a = ancestor(par) or

a = par) and

par = parent(p));

Figure 15: A Left Recursive Function

type, and often used typesofbfObject;Type is implemented in a way it is very fast.
Therefore, only the two latter foreign TBR resolvents were implemented, with
appropriate cost functions attached. On the other hand, typesofbbObject;Type

is covered by typesofbfObject;Type, but no implementation signi�cantly faster
than its cover could be found. Therefore this foreign predicate was not im-
plemented.

5.4 Safety of Recursive Functions

Our safety checking algorithm also supports recursive functions, e,g. in
Fig. 15. We recall that the
attener detects recursive functions and then
adds a call to a system function, Apply(fn,a1,..,an) = <r1,..,rm>, that
applies an arbitrary OSQL function fn on its arguments a1,..,an produc-
ing the results <r1,..,rm>. The function Apply is compiled into a system
TR predicate, apply(p,a1,..,an,r1,..,rm), where p is the recursive TBR
predicate18. apply is executable only if the TBR rule it is used in can be
reordered so that all ai are bound.

Since ObjectLog programs are evaluated top-down, the left recursive calls
would be unsafe. The consequence of the use of the apply predicate is
that such calls are transformed into right-recursive calls. That is why the
recursive function in Fig. 15 is executable in ObjectLog. It is known that
right recursive calls are safe unless there are circularities in the data or the
de�nition. These cases are not detected by WS-IRIS optimizer at present.
For this the semantics of ObjectLog should be extended with memoing [35]
or a bottom-up approach [34].

18ancestor
bf

Person;Person in the example.

22

GrandSParentGrossIncome Optimization levels
Database size F NTC NRR

100 objects 1.1ms 2.5ms 120ms
1,000 objects 1.1ms 2.5ms 7.3s
10,000 objects 1.1ms 2.6ms 13.3min

F = Full optimization, i.e rule reordering and type check removal (Fig. 7).
NTC = Rule reordering, but no type check removal.
NRR = Type check removal, but no rule reordering.

Figure 16: Performance measurement

6 PERFORMANCE MEASUREMENTS

Performance measures concern the e�ciency of WS-IRIS and its comparison
to other OODBs and relational systems. We evaluated some query execu-
tion times with and without optimization. We also benchmarked WS-IRIS
according to the OO1 benchmark [5].

6.1 Query Evaluation

To evaluate the e�ciency of the optimization algorithm, we have measured
the execution time of GrandSParentGrossIncome for a given person. This
query combines some important OO features: navigation through a hierarchy,
type checking, and foreign functions. The database contained 100, 1000,
and 10000 Person objects. The measurements were run on a SUN4/470
(SPARC). We measured the speed up due to the full optimization, or to
partial optimizations. Fig. 16 summarizes our experiences.

The �gure shows that rule reordering is by far the most important optimiza-
tion. As columns F and NRR show, the gain is over 100 times already for
100 objects, and over seven hundred thousand times for 10,000 objects. Note
that the time for the optimal case is in practice constant, one reason being
the direct use of MM hash tables as internal implementation. The contribu-
tion of type check removal is comparatively modest and constant by factor
of about 2, as columns F and NTC show.

Fig. 17 shows the performance of full optimization of the recursive Ancestor
function of Fig. 15 on the same sample data. Six ancestors were returned in
each call. It shows excellent performance of about 4 millisecond per query,
thus close to that of GrandSParentGrossIncome. The time is again constant
because of the use of MM hash tables.

23

It is instructive to compare these �gures to performance of typical disk based
implementations. The database used in the test would be about one Mbyte
large. Assuming a typical page size of 4K, it would span over 250 pages. The
testbed query accessed seven persons (the person, its parents and grandpar-
ents). Without clustering the performance of the �rst query would need at
least seven accesses to the corresponding data pages plus some accesses to
index pages, typically about seven as well. In the best case of perfect match-
ing of the clustering scheme, the query would need two accesses19. The usual
average disk access time is 15-40 msec. The processing of the query by WS-
IRIS is hence about 30-70 times faster than for a disk based system in the
best case, and about 200-500 times faster for the usual case of a query not
matching the clustering criteria. Similar results hold for recursive queries.

These �gures show the critical importance of MM residency for access perfor-
mance, known to be a critical requirement for OO applications. On the other
hand, MM alone is not su�cient for good performance. Without the opti-
mization, our MM implementation could be even slower than a disk based
one.

6.2 The OO1 benchmark

The OO1 benchmark focuses on important characteristics of OO applica-
tions. It simulates a CAD database with 20,000 parts and 60,000 connec-
tions. Fig. 18 shows OO1 benchmark for WS-IRIS and the systems originally
benchmarked20. The test of WS-IRIS was run on a SUN3/280 with 16MBytes
of main memory, that was also used by the original benchmark as server,
and has the same speed as the SUN3/260 used in OO1 as client machine. To
measure the best performance, the benchmarked systems are called through
fast-path interfaces assuming 'warm' database state. Hence the systems are
allowed to cash data in MM as much as they can for best execution time
performance. For WS-IRIS the entire database is always warm. Columns
2-5 indicate the 'warm' values of the original OODBs. These are the latest
best veri�ed performance �gures of OODBs we could �nd. The 6th column
shows the 'warm' �gure for a commercial relational DBMS (SYBASE21) also
using a fast-path interface.

The WS-IRIS �gure for building the database does not include saving a
backup image on disk, unnecessary for an MM database. The time to save
the backup image in the background is 20s.

19One to the index and one to the data page.
20The OO1 benchmark was run on Objectivity/DB, Object Design ObjectStore, Onto-

logic ONTOS, and VERSANTTM .
21SYBASE is among the most e�cient RDBMS, speci�cally designed for OLTP.

24

Ancestor Optimization level
Database size F

100 objects 4.4ms
1,000 objects 4.3ms
10,000 objects 4.3ms

Figure 17: Performance measurement of a Recursive Function

Measure WS-IRIS OODB1 OODB2 OODB3 OODB4 RDBMS

Db. size (Mb) 9.1 5.6 3.4 7.0 3.7 4.5
Db. build time (s) 85 133 50 47 267 370
Lookup (s) 0.07 0.1 0.03 1.1 1.0 19
Traverse (s) 0.3 0.7 0.1 1.2 1.2 84
Insert (s) 0.4 3.7 3.1 1.0 2.9 20
L+T+I (s) 0.8 4.5 3.2 3.3 6 123

Figure 18: OO1 Benchmark

The results show that the time to build the database, as well as the 'lookup'
and 'traversal' time, are for WS-IRIS about those of other OODBs. Small
di�erences are not meaningful as the original numbers are already not strictly
comparable [5]. In contrast, the overall performance (L+T+I) is about four
times in favor of WS-IRIS. The improvement comes from the MM residency,
as updates do not need to be committed to the disk.

The �gures also show that an RDBMS has signi�cantly lower performance
for OO applications than any of the OODBs. For WS-IRIS the overall per-
formance is more than 150 times faster. This �gure con�rms our evaluations
of the importance of MM residency in Sec. 6.1.

7 CONCLUSIONS AND FUTURE WORK

We have described the query processing in WS-IRIS. The WS-IRIS database
is MM resident, and the disk is used only for backup through background
operations. The optimizations and the physical data structures are large MM
oriented. The locality of data is not a primary concern, allowing for data
structures more e�cient for OO needs. All algorithms we have addressed have
been implemented. WS-IRIS is in experimental use at HP and is distributed

25

to universities.

The overall results prove that WS-IRIS o�ers a very e�cient interface for
both navigational and relationally complete declarative use. The declara-
tive interface also includes foreign functions, constraint inferencing, and one
popular kind of recursion. None of the benchmarked OODBs o�ered such
a relationally complete interface, while the existing relational systems prove
too slow for OO needs22. Furthermore, we are not aware of any other OODB
that would provide a declarative interface as powerful as that of WS-IRIS,
including [8] and [24]23.

E�cient processing is a primary concern for OO applications. Declarative
query languages are important for ad hoc queries and for mission critical
application programs. Experiences reported in [32] show, that the di�erence
in programming time between declarative and procedural languages can be a
couple of minutes versus several hours. Hence, the new capabilities WS-IRIS
provides are very important.

MM residency proved necessary for the performance of our system. Extensive
optimization proved nevertheless necessary as well. Only the conjunction of
both capabilities allowed for performance unattainable for a disk database.

For the future, the system can be extended to incorporate more query op-
timization techniques, e.g. to enhance the processing of recursive queries
[34, 35] or perhaps optimization of the choice operator [23]. These tech-
niques have to be re-examined in the light of their feasibility with respect to
OO characteristics of ObjectLog. One should also carefully evaluate the costs
of their functioning versus the expected gains for an MM resident database.

One can also add to WS-IRIS new general features, e.g. versioning, or data
monitoring [25]. Again, we believe that MM residency is necessary for these
extensions.

At present the access performance of a WS-IRIS database as well as its size
is limited by the capabilities of a single workstation. One way to larger
databases is to enhance the compactness of WS-IRIS' internal data struc-
tures. Another possibility is to use distributed data structures, especially
the dynamic ones [19]. Such data structures allow to store objects over sev-
eral machines linked through a fast LAN and allow for parallel low-level
operations. A WS-IRIS database could then attain many gigabytes.

WS-IRIS could also be extended to a front end to an IRIS server or even
a relational server [36]. The bene�t would be more e�cient use of these
databases. Primitives would be required to check in/out objects between the

22Note that SQL is only relationally complete, i.e. currently does not o�er recursion,
constraint inferencing, or foreign functions.

23Neither could we �nd any performance evaluations of these interfaces.

26

server database and a private database. Techniques could be developed to
post WS-OSQL queries spanning both the private and the shared database
[11, 14].

Another direction should be an extension of WS-IRIS with multi-database
capabilities for federated management of collections of WS-IRIS databases.
This is another way to manage in an enterprise much larger data sets than
a single WS-IRIS database could handle.

Finally, WS-IRIS could (and should) be extended with heterogeneous multi-
database capabilities, e.g. along the lines started by Pegasus [1].

ACKNOWLEDGEMENTS:

This work was started while Tore Risch was at HP's Stanford Science Center,
directed by Steven Rosenberg The support by Steven was crucial for the suc-
cess of this project, as well as support by Dan Fishman, Marie-Anne Neimat,
and Ming Shan Discussions with Ravi Krishnamurthy and Gio Wiederhold
were helpful. Peter Lyngbaek, J�urgen Annevelink, and the Database Tech-
nology Department group provided insights into IRIS. Sang Cha contributed
to the benchmarks and the ObjectLog interpreter.

27

References

[1] R.Ahmed, P.DeSmedt, W.Du, W.Kent, M.A.Ketabchi, W.A.Litwin,
A.Ra�i, M-C.Shan: \The Pegasus Heterogeneous Multidatabase Sys-
tem", IEEE Computer, Vol. 24, No. 12, Dec. 1991.

[2] J.Annevelink: \Database Programming Languages: A Functional Ap-
proach", ACM SIGMOD Conf., pp. 318-327, 1991.

[3] S.Abiteboul, A.Bonner: \Objects and views", ACM SIGMOD Conf.,
pp. 238-247, 1991.

[4] M.J.Carey, D.J.DeWitt, and S.L.Vandenberg: \A data model and query
language for EXODUS", ACM SIGMOD Conf., pp. 413-423, 1988.

[5] R.G.G.Cattell, J.Skeen: \Object Operations Benchmark", ACM Trans-
actions on Database Systems, Vol. 17, No. 1, pp. 1-31, March 1992.

[6] D.Chimenti, R.Gamboa, R.Krishnamurthy: \Towards an Open Archi-
tecture for LDL", 15th VLDB Conf., pp. 195-204, 1989.

[7] T.Connors, P.Lyngbaek: \Providing Uniform Access to Heterogeneous
Information Bases", In Advances in Object-Oriented Database Systems,
K.R.Dittrich, Ed., Lecture Notes in Computer Science 334, Springer-
Verlag, Sept. 1988.

[8] O.Deux: \The O2 System", CACM, Vol. 34, No. 10, October 1991.

[9] M.Guo, S.Y.W. Su, H.Lam: \An association algebra for processing
object-oriented databases", 7th Data Engineering Conf., pp. 23-32, 1991.

[10] D.Fishman et al.: \Overview of the IRIS DBMS", in W.Kim,
F.H.Lochovsky (eds.): Object-Oriented Concepts, Databases, and Ap-
plications, ACM Press, Addison-Wesley, 1989.

[11] ITASCA Technical Summary, ITASCA Systems, Inc., 1990.

[12] A.Kemper, G.Moerkotte: \Advanced query processing in object bases
using access support relations", 16th VLDB Conf., pp. 290-301, 1990.

[13] W.Kim, F.H.Lochovsky: Object-Oriented Concepts, Databases, and Ap-
plications, ACM Press, 1989.

[14] W.Kim: Introduction to Object-Oriented Databases, MIT Press, 1990.

[15] R.Krishnamurthy, H.Boral, C.Zaniolo: \Optimization of Nonrecursive
Queries", 12th VLDB Conf. , pp. 128-137, 1986.

28

[16] R.Krishnamurthy, S.Zaniolo: \Optimization in a Logic Based Language
for Knowledge and Data Intensive Applications", Advances in Database
Technology - EDBT '88, pp. 16-33, 1988

[17] W.Leler: Constraint Programming Languages: Their Speci�cation and
Generation, Addison-Wesley, 1988

[18] K.Li, J.F.Naughton: \Multiprocessor Main Memory Transaction Pro-
cessing", ISPDS, IEEE CS, Austin TX, Dec., 1988

[19] W.Litwin, M-A.Neimat: Distributed Linear Hashing, Technical Report
HPL-DTD-92-7, Database Technology Dept., HP-Laboratories, Palo
Alto.

[20] Y.Lou, Z.M.Ozsoyoglu: \LLO: An object-oriented deductive language
with methods and method inheritance". ACM SIGMOD Conf., pp. 198-
207, 1991.

[21] D.Maier, J.Stein: \Development of an Object-Oriented DBMS", OOP-
SLA Conf., pp. 472-482, 1986.

[22] A. Mycroft, R.A. O'Keefe: \A Polymorphic Type System for Prolog",
Arti�cial Intelligence 23, pp. 295-307, 1984.

[23] S.Naqvi, S.Tsur: A Logical Language for Data and Knowledge Bases,
Computer Science Press, 1989.

[24] J.Orenstein, S.Haradhvala, B.Margulies, D.Sakahara: \Query Pro-
cessing in the ObjectStore Database System", ACM SIGMOD Conf.,
pp. 393-402, 1992.

[25] T.Risch: \Monitoring Database Objects", 15th VLDB Conf., pp. 445-
453, 1989.

[26] T.Risch: WS-IRIS, a Main Memory Object-Oriented DBMS, Technical
Report HPL-DTD-92-5, Database Technology Dept., HP-Laboratories,
Palo Alto.

[27] S.B.Zdonik, D.Maier: Readings in Object-Oriented Database Systems,
Morgan-Kaufman, 1990.

[28] P.G.Selinger, M.M.Astrahan, D.D.Chamberlin, R.A.Lorie, T.G.Price:
\Access Path Selection in a Relational Database Management System",
ACM SIGMOD Conf., pp. 23-34, 1979.

[29] G.M.Shaw, S.B.Zdonik: \Object-oriented queries: Equivalence and op-
timization", 1st Conf. on Deductive and OO Databases, pp. 264-278,
1989.

29

[30] M.Stonebraker, L.Rowe: \The design of POSTGRES", ACM SIGMOD
Conf., pp. 340-355, 1986.

[31] D.D.Straube, M.T. �Ozsu: \Queries and query processing in object-
oriented database systems", ACM Transactions on Information Sys-
tems, 8(4), pp. 387-430, October, 1990.

[32] M.Takizawa: \Distributed Database System JDDBS", JARECT Com-
puter Science & Technologies, Vol 7, OHMSHA&North Holland (publ.),
262-283, 1983.

[33] S.Tsur, N.Garrison: LDL User's Guide, MCC Technical Report STP-
LD-295-91, 1991.

[34] J.D.Ullman: Principles of Database and Knowledge-Base Systems, Vol-
ume I & II, Computer Science Press, 1988, 1989.

[35] D.S.Warren: \Memoing for Logic Programs", CACM, Vol. 35, No. 3,
March 1992.

[36] G.Wiederhold: \Views, objects, and databases", IEEE Computer,
19(12), pp. 37-44, 1986.

[37] K.Wilkinson, P.Lyngbaek, W.Hasan: \The IRIS Architecture and Im-
plementation", IEEE Transactions on Knowledge and Data Engineering,
2(1), Mars, 1990.

30

A Example of Cost Based Optimization

As an illustration of how our cost heuristics work, we describe how
grandsparentgrossincome of Fig. 6 is reordered into the optimal program
of Fig. 7. We assume a database of 10,000 person with 2,500 students, and
that every child is expected to have 2 parents.

To reorder the program of Fig. 6 with these assumptions the optimizer will
do the following calculations. Initially the only bound variable is C. The �rst
rankings are calculated as:

P1 = incomeff(GP, V2)

FP1 = 10,000

CP1 = 20,000 (assumes cost 2 per tuple visited)

RP1 = 0.49995

P2 = bonusff(GP, V1)

FP2 = 10,000

CP2 = 20,000

RP2 = 0.49995

P3 = plusfff(V2, V1,GI)

RP3 = undefined (cannot execute here)

P4 = typesofbf(GP,typeStudent)

FP4 = 2,500

CP4 = 5,000 (assuming 2,500 students)

RP4 = 0.3998

P5 = parentff(P,GP)

FP5 = 13,000 (size of parent-child table)

CP5 = 26,000

RP5 = 0.49996

P6 = parentbf(C,P)

FP6 = 2

CP6 = 4 (indexed)

RP6 = 0.25 (best rank!)

The ranking places P6 �rst in the function body. Then both C and P are
bound. The new rankings will be:

P1 = incomeff(GP, V2)

RP1 = 0.49995 (unchanged)

P2 = bonusff(GP, V1)

RP2 = 0.49995 (unchanged)

P3 = plusfff(V2, V1,GI)

RP3 = undefined (unchanged)

P4 = typesofbf(GP,typeStudent)

31

RP4 = 0.3998 (unchanged)

P5 = parentbf(P,GP)

FP5 = 2

CP5 = 4

RP5 = 0.25 (best rank!)

After P5 is chosen C, P, and GP are bound. New rankings:

P1 = incomebf(GP, V2)

FP1 = 1 (index)

CP1 = 2

RP1 = 0 (best rank!)

P2 = bonusbf(CP, V1)

FP2 = 1 (index)

CP2 = 2

RP2 = 0 (best rank!)

P3 = plusfff(V2, V1,GI)

RP3 = undefined (unchanged)

P4 = typesofbb(GP,typeStudent)

FP4 = 1

CP4 = 1

RP4 = 0 (best rank!)

The system now chooses P1 and then P2, making C, P, GP, V1, and V2

bound. New rankings:

P1 = plusbbf(V2, V1,GI)

FP1 = 1

CP1 = 1

RP1 = 0 (best rank!)

P2 = typesofbb(GP,typeStudent)

FP2 = 1

CP2 = 1

RP2 = 0 (best rank!)

After the �nal two choices, we get the optimal program of Fig. 7

32

