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Abstract

Time sequences appear in various application
domains. Many applications require time
sequences to be seen aentinuous where
implicit values can be derived from explicit
values by arbitrary user-defined interpolation
functions. This paper describes the implemen-
tation of an extended SELECT operator;,

pattern in some error distance [1][2][3][12][22]. Vari-
ous approaches have been suggested, such as using the
Discrete Fourier Transform, interpolation approxima-
tion, or defining some shape querying languages. The
reason why nearly all research on time sequences has
been dedicated to examine shapes is as [22] pointed out,
“individual values are usually not important but the
relationships between them are”. However, we argue
that in many applications individual values are at least

that retrieves implicit values from a discrete
time sequence under various user-defined inter-
polation assumptions. The* operator is effi-
ciently supported by an indexing technique
termed the IP-index. Possible optimizations of
the o* operator are investigated and verified by
experiments on SHORE. The* operator is
applicable to any 1-D sequence data.

as important as shapes of time sequences. Two exam-
ples are given below:

Example 1

[22] gives the example of finding the pattern of “goal-
post fever” (Fig. 1.1) in a patient’s temperature reading
(a time sequence). “Goalpost fever” is one of the symp-
toms of Hodgkin’s disease, behaving as two consecutive
fevers during 24 hours. This query was formulated as a
shape query in [22] as “finding those sub-sequences
N . with exactly two peaks”. However, since a “fever”
Modern Database applications |_nvoIve large amounts Oaans the body temperature is higher thafC38his
time sequences. Examples of time sequences appear g ery can also be formulated as “finding the two time
various application domains: 1) Scientific experimentsinarya|s when thealuesinside the intervals are greater

such as temperature reading generated by Sensors; {han 38 and the distance between them is less than 24
business applications such as stock price indexes ¢,qrs”.

bank account histories; 3) medical data such a:
patients’ temperature readings or cardiology data; 4
event sequences in automatic control and process supe
vision. In concept, a time sequence (TS) can be mod 3g
elled as a sequence of states &ach state has a time
stamp and a value, i.e.,.=%t;, v;).

To meet the requirements of these applications, con
siderable research effort has been dedicated to queryir -
time sequences. Most of the work deals with similarity Fig. 1.1: The “goalpost fever” pattern t
search, i.e., finding sub-sequences that match a give

Example 2

Permission to copy without fee all or part of this material is granted Fig 1.2 shows a periodic time sequence representing

provided that the copies are not made or distributed for direct com-th f lind insid . The dat
mercial advantage, the VLDB copyright notice and the title of the € pressure or a cylinder inside an engine. € data

publication and its date appear, and notice is given that copying is bywas collected by a sensor in a rea"“fe_ application [9]-_
permission of the Very Large Data Base Endowment. To copy otherThe pressure of the cylinder changes with its angle peri-

wise, or to republish, requires a fee and/or special permission from Odica“y (360) and reaches a peak once in every period.

1 Introduction

the Endowment.
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On monitoring the behaviour of the engine, an interest-
ing query would be “when did the pressure reach its



peak in every period?” [9]. It can be seen from Fig. 1.2n Section 4. Section 5 shows experimental results made
that all peaks have the property that v > 1.5. So thisn SHORE. Conclusions and future work are given in

qguery could be reformulated as “when was ttedue
greater than 1.5?".

2.5
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Fig. 1.2: The real-life pressure sequence

Thus, we argue that queries concernugguesof time

Section 6.

2 Related Work

The importance of associating interpolation methods
with temporal data was pointed out by Clifford [8] as
the “Comprehension Principle”, i.e. “under any reason-
able interpretation a historical database defined over a
sequence of states £5,,..., §,> should be considered
as modelling an enterprise completely over the entire
closed interval [§ S,]”. It was also mentioned that the
mapping from a finite set of moments ¢ %,,..., §,>
into the densed interval [SS,], termed the “Continu-
ous Assumption”, could be a accomplished by various
interpolation methods.

Segev [16][17] proposed a temporal data model
based on time sequences. Foypesof time sequences

sequences are as important as queries concernifgj€ defined according to what interpolation assumption
shapesof time sequences. We term queries concerninds applied, a) Step-wise constant (all values in §31)
values awalue queriesn contrast to shape queries. To are assumed to be equal\p, b) Continuous (a curve-
support value queries on a time sequence is not trividitting function is applied over S §)), c) Discrete
because most applications require time sequences to b@issing values cannot be interpolated) d) User-defined
seen agontinuouswhere implicit values can be derived (2 user-defined interpolation function is applied).

from explicit (stored) values.

Although it was pointed out in the early 80’s that it

In this paper we present an extended SELECT opefS important to support interpolation assumptions on

ator,ol] and its implementation. Th&loperatoretrieves

time sequences, very fewnplementationissues have

implicit values from time sequences under various userbeen addressed. For example: how to support queries
defined interpolation assumptions. A new indexingPased on arbitrary user-defined interpolation assump-
technique, the IP-index [13], has been developed t&0ns, and how to process these quee#giently espe-
support theo[] operator. The preliminary work on the cially when the time sequences are very long. These are
IP-index, [13], concerns only main-memory implemen-the motivations for this paper.

tation and investigated only some aspects of the inser-

In [8] an extended SELECT operatar*] was men-

tion and search time of the index. In this paper wdioned that denotes selecting implicit states from,<S
analyze the behaviour of the IP-index with respect to>2:---» $ > based on the “step-wise constant” assump-
the properties of time sequences and typical query paflon. But no _|mplementat|on was dlscuss_ed. A recent
terns, and the analysis is based on an implementation ¢¥&Per [5] points out that by the “step-wise constant”
the disk-resident database system SHORE [6]. The eff@ssumption, a database DB can be seen as a larger data-
ciency of theol operator is demonstrated by experi_basgDB that contains both explicit and implicit infor-
ments on SHORE using both synthetic and real-lifemation. It suggests that a user query Q can be

time sequences. Possible optimizations ofdhepera-

transformed into a “system query” Q’. Q' contains the

tor are investigated and verified. We also investigateStep-wise constant” assumption so that applying Q' to
space usage of the IP-index with regard to the cardinaPB will yield the same result as applying QB®. In

ity of the time sequences to show that it is practical tdhis paper we take a different approach. We associates
build IP-indexes for large time sequences. An interestthe interpolation assumption with the SELECT operator
ing comparison of the IP-index with conventional sec-O instead. Inthis way there is no need to transform the

ondary indexes is also given.

database DB t®B or the user query Q to Q'. Also we

The o Operator and its Corresponding optimizationsupport rT_10re SOph_iSticated in_terp0|ati0n functions such
rules can be plugged into extensible database systerd§ linear interpolation or moving average.

such as lllustra [11] or PREDATOR [21] where extensi-

In [22], in order to find the “goalpost fever” pattern,

ble cost-based or rule-based optimizations are supghe temperature sequence has to be transformed into
ported. For example, Illustra’s “time series” data typesome “feature preserved” representation. By contrast, in

[25] could benefit from theOoperator.

our solution, we view the problem as a value query so

This paper is organized as fo”owing: Section 2 dis_that there is no need to transform the Original time

cusses related work. Section 3 shows howalhiepera-

sequence. This example also shows that it is not true

tor works for different selection conditions and that the amplitude of a time sequence can always be
discusses possible optimizations. A comparison of thégnored, named “amplitude independence” in [22]. In
IP-index with conventional secondary indexes is giverfact, the amplitude of a sequence in an x-y axis is

always sensitive to the unit of the y-axis, just as the fre-



quency of the sequence is sensitive to the unit of the Xn step 2 above, the definition sfirrounding_statg$)
axis. In this sense value queries are as important as determined by the interpolation functiafn. For
shape queries. example: a) Ififn is “linear interpolation”, then

Time sequences can be seen as a special case of 1sDrrounding_statd§) = {S, S+1}; b) If ifn is moving-
sequence data [20] where the ordering domain [20] isverage over three states, ttenrounding_statg§) =
“time”. Other ordering domains are integers, spacdS.q, §, S+1} (or perhaps §, S+1. S+2})- In the sim-
positions, etc. TheOoperatorand its optimization tech- plest case of the “step-wise constant” assumption, we
niques are applicable to any 1-D sequence datdjavesurrounding_statd§) = {S}.

although this paper only concerns time sequences. [19

motivated the importance of sequence query processiﬂé’—ow

and addressed efficiency issues. It pointed out that thehe key to support the interpolation assumption on TS
ordered semantics of sequences should be utilized ins in step 1 -- tdocatethe position in TS where to apply
query optimization for sequence data. Based on [19]ifn. We define step 1 as tHE operator It returns the

[20] presents a sequence database system named SEhte_idwhereifn can be applied. Therefore[]-(TS)

In Section 3.3 we will show that the IP-index can be uti-is implemented by the execution of the IP operator and
lized to improve the efficiency of selection push downifn, as illustrated in Fig. 3.1:

in SEQ [20]. We found that the sequence database sys-

tem SEQ is currently the most relevant related work to i

the c0operator and our IP-index. | _ |

o ok =t |

3 Theo* Operator and the IP-index | P |
t=t

Lo - _

To make our discussion independent of any data model
and physical implementation, a time sequence is
denoted as a sequence of states TS 7%,...§>
where $= (t, v;) (i = 1, 2...n). By associating a user-
defined interpolation functionfn with it, TS will be
transformed intoTS (following the same notation as
[5]). TSis acontinuoustime sequence defined over the
time interval [, t,] by applyingifn on the discrete TS.
A SELECT operatorg on TS returnssub-sequences
(time intervals) where the values or time stamps insid
those intervals satisfy some conditions, ic€TS) = (t’,
t")*. In the extreme case, thes operator returns
“points”, i.e., implicit or explicit states S'=(t’, Vv’).
SinceTS is continuous, it is impossible to generate all
S’s and store them in the database. Instead, we associa
the interpolation assumptioiin with the o operator,
resulting in theo* operator. Applying o* to a TS will
generate the same result as applyimgo the corre-
spondingTs, i.e.,o*(TS, ifn) = o(TS). Let us take a
look at how theoll operator works for different selec- 3 5 00, (TS)
tion conditions. =V

Fig. 3.1: The relationship between the
oUoperator and the IP operator

A naive way to implement |{B:(TS) is to linearly scan
TS to find the state ;Svhere &time < t'< S;,q.time.
More efficient implementations of the IP operator can
take advantage of the physical organization of TS and
available indexes. For example, If TS is implemented
%y an array [15], then a binary search will do.

Many applications assume the “step-wise constant”
interpolation assumption on time sequences. In this
case there is no need to apffly. We have in step 2 v'=
,.value where Sis returned by step 1 -- {R(TS).
€The advantage of the (R(TS) operator is that it is
independenbf the interpolation assumptiafm. Intui-
tively, it returns thenearestneighbour states for the
time point t'.

The operatool].-,(TS) returns a sequence of states (t',
3.1 ol4=¢(TS) v')*in TS whose values are equal to v'. The time points

The operatorogit-(TS)l returns the state S'=(t, v') in t's can be calculated similarly as in Section 3.1:
the continuoudS whose time stamp is t'. The value v’ 1. Locate the states B TS where

is calculated by: S wvalue < v< S .value - (step 1)
1. Find the state;3h TS where 2. Applyifn™t2 on the neighbor states of S
Sitime < t< S j time —  (step 1) t = ifn 1, surrounding states  (S;))
2. Apply the interpolation functioiin to the neighbour - (step 2)
states of 5 The above step 1 is defined as thg_|RTS) operator. It
v = ifn (t, surrounding states Si) returns the positions in the time sequence where to
—  (step 2) apply ifn"l. For example, in Fig. 3.2, |R/(TS) will
return <3, S, S;>. This state sequence is ternsatthor-
1. A precise notation should le_(TS, ifn) whereifn is the user- state sequencand is stored in the IP-indg23]. In the

defined interpolation function. We omit the argumiémtassuming
that a system-defined (default) interpolation function (e.g., linear
interpolation) is used. 2.ifn"Lis the inverse function éfn.




next section we briefly recall the idea of the IP-index. esting than older ones.
By contrast, linearly scanning TS will take very long

v time to get the first answer when the first answer
appears late in the TS. This will be shown in experi-
, ments in Section 5.4.
\Y

3.2.3 New Functions Proposed

As Silberschatz et. al. [24] point out, the new genera-
tion of object-relational database systems will allow

complex types, nested relations, and object-oriented
features. SQL-3 is under way to standardize queries on
complex types. Stonebraker [25] points out that TSs
should be modelled as a new abstract data type in
3.2.1 IP-index object-relational databases (instead of as tables in rela-

The IP-index stores the anchor-state sequence of V' b}i,ona! databases). Operations on TSs can be defined as
recording all segments that intersect with the line v = v’. Fofunctions (methods) such as “moving_avg(TsS, 5, ‘1995-

example, inFig. 3.2,the segments that intersect with the 97-15)" [25] (five-day moving average on July 15th,
line v = v’ are Sg, Sg, Sgo Thus the anchor-state 1995). To query continuous TSs, we propose the func-
sequence of V' is <S S, S;p>. The anchor-state sequence tONS:

of V' is denoted asA(v'). The cardinality of A(v’) is ¢ get_time_stamps(TS, =, V)

denoted ascard(A(v’)) and is also stored in the IP- // assume default interpolation assumption

index. * get_time_stamps(TS, ‘=, V, ifn)

The structure of the IP-index is the following: The . . . ..
keys in the index are the ordered, distinct values of the /' assume user-defined interpolation assumption

vis in TS, and each key ls associated with a pointer to t0 return the time points when the values are equal to v’
A(v') for those v’ where k< V' < kj,;. Thus, the for a continuous TS. These time points t's can be
anchor-state sequence of any value v’ can be retrieveRiktracted from the pairs (', v')* that are returned by the
easily by performing a range search (i.esk’ < ki,;)  OL=v(TS)operator.

on the IP-index and retrieve Afk Therefore, the .

IP,-(TS) is efficiently supported by the IP-index. 3.3 Range Queries

Notice that a naive way to execute l(TS) (without Range queries are essential for time sequences. It

the IP'indeX) is to Iinearly scan the whole time Sequence t@hou'd be possib'e to extract sub_sequences by
find those & where Svalue< v'< S, ;.value. We will dem- 1. Atime interval (t, ©2):

onstrate the performance improvementlie experiments
in Section 5.3. 2. Avalue range (v1, v2).

We shall point out that a limitation of the IP-index is Since we view time sequences as continuous, the result
that if the interpolation functionifn introduces new Of a range query is a sequence of time intervals. For
extremepoints (thus introduce new segments) to theexample, in Fig. 3.2, 00s(TS) will return the
original time sequence, then the IP-index needs to bgequence of time intervals: g(t'y), (t'p, t'3)>.
modified to include the extra segments as well, as men- Range queries based on time conditions, G/&.(TS)

Fig. 3.2: lllustration of a value query on a TS

tioned in [13]. (or o4<(TS)) are relatively easy to support because
_ binary search on the time sequence array can find the
3.2.2 First Few Answers position of t1 and t2 even when t1 and t2 are implicit

Since A(V") is an ordered sequence of states, J@S) time stamps. Range queries on value conditions, i.e.,
can be implemented assreamwhere thenextelement  OL>v(TS) (oroli«(TS)) are difficult to support when
of IP,-(TS) is the next state in A(v). Therefore, V1 and v2 are implicit. Without a suitable index the

o0-,(TS) can be implemented as a stream as well: th&/hole sequence has to be scanned.

next state ofol-(TS) is generated by applyingn By using the IP-index, thel{.(TS) operator can
over the neighbor states of thextstate returned from P€ supported surprisingly easy. For example, in
IP,_(TS) (“step 2" above). Fig. 3.2,00,5,(TS) returns ( t'1) and (t5, t'3). The time

By implementingoC,—,(TS) as astream thdirst few points t3, t'; and t3 can be extracted from the results of
answers[4] can be generated quickly. This is especially9tb=v(TS). In this way there is no need to visit those states
important when card(A(v")) is large. To generate thelNSide the range v>v' (or inside the time intervals (1)
first few answers, the interpolation functiglm™ is ~ @nd (tz, U'3)). This indicates that theost of the range
applied to only the first few states in A(v’). Notice that 9U€ry 0L>(TS) is nearly the same as the cost of
the stream 060-,(TS)and IR,(TS)can be generated OH=v(TS . . .
in the reverseorder as well, i.e., the states with newer _ Furthermore, we will show in next section that the
time stamps come out first. This is useful in manyc_rE{DV-(TS) operator is also useful in processing discrete

applications since newer states are usually more inteflM€ sequences.



3.3.1 Discrete Range Queries new functions defined in Section 3.2.3, this query can

The operatoroly.,(TS) improves the efficiency of be expressed as the following:

query processing even when the time sequenahsis SELECTt

crete [20] gives an example query that asks for the FROMremperature seq TS

monetary value of Stockl traded in each hour when the \wyere IN get_time_stamps(TS, ‘=’ 2 3g)
low price fell below 50. ANDt>t

SELECT ((A.high+A.low)/2)*A.volume
FRONBtockl A
WHERR.low < 50

The answer of this query is marked by the two crosses
in Fig. 3.4. This query can be processed in two steps: 1)
00=35 (TS); 2) os¢ (TS). Theaol=3g(TS) generates
[20] claimed that selection push-down (A.low<50) all (explicit or implicit) states S’ where S’.value = 38.
should be applied here to optimize the query so that thevery state S’ fronolj-35 can be checked to see if it is
calculation of {(A.high+A.low)/2)*A.volume” only in the time interval (t’, now) to get the resulting states.
needs to be done for those states whose low values are

below 50. But, without an index, the whole time v t>t—p
sequence has to berannedto find these states. One rﬁ

may argue that a conventional secondary index on the - -
“low” value will help. Unfortunately it does not. We 3 — — — -~ XX -
will explain the reasons in Section 4. ) ;o\ AR

By applying the oj5(TS) operator, we can L —— N_ )/ N _ -~
retrieve the time points t’ and t” (see Fig. 3.3) directly | >
and then apply the calculation to only thoss ® the t t
range (t’, t”).

Fig. 3.4: A time window query

price, -
Optimization of Time Window Queries
50— —« — — — — — - — — - When there are many states returned fromj-3g and
| &= - — . ‘ the resulting states are very few (the time window is
\

| small), it might be a waste to calculate all S’s and check
the condition later. Recall the operatol-3g (TS) is

tl t"‘ T accomplished by 235 (TS) andifn (illustrated as (a)
_ _ in Fig. 3.5), the selectiomwl}.y (TS) can be “pushed
Fig. 3.3: A stock price sequence down” to the IR-3g(TS) operator, resulting in the oper-

) ) i ator IR=3g anD t>t(see (b) in Fig. 3.5). The operator
Selec_tlons on th_e value dimension appear very often IfP,_35 AND > Can be accomplished by binary searching
real-life applications, but we have not seen any othep(38) to find the first state; Svhere $time > t'. In this
indexes similar to the IP-index that is deS|gned parthUWay on|y a part of the anchor-state sequence A(38) (the

larly for the value dimension of time sequences. part that is inside the time window) is involved in query
3.3.2 New Functions Proposed processing.
To support range queries on continuous time sequences,” — T — T — .

we propose the functions:
* get_time_intervals(TS, >', V')

/I assume default interpolation assumption
e get _time_intervals(TS, >, v, ifn))

|
| O'q>t’ ifn
|
> _ . |
/I assume user-defined interpolation assumgption |, 00,53
\
|
|
|

1 optimized to
T =7ifn> ——— T
~ \

\

\

\

\

) . IPy=38 AND t>t" |
to return those time intervals when the values are |
\

\

greater than v'. This function is translated to the N IPy=35/
ols(TS) operator and is efficiently supported by the Bttt
IP-index. (@) (b)
Lo - _

3.4 Time Window Queries Fig. 3.5: Optimization of time window queries

Some value queries only concernpart of the time . L .
sequence, i.e., a time window. An example of a timeAnother possible optimization strategy is to generate

window query could be: When did the patient have &V=38 as & reverse stream (as described in Section
feverin the last few daygdenoted as t > t')? Using the

2. In reality we should use “>" instead of “=" since a fever means body
1. In[20] ‘PROJECT’ was used instead of the SQL keyword SELECT. temperature > 3&. All the discussions will hold.




3.2.2) and terminate when t > t' does not hold. This using the IP-index we will getts t”>.
strategy, compared to the one in Fig. 3.5, has the limitas 0 gid the patient have the temperatuf€39

tion that the output stream is not in the same (time _ . _

order as the input stream so that it cannot be used in A conventional index will only return,f(suppose y
methods such as sort-merge joins of time sequences. = 39), while the correct answer (if we want to support

Also notice that generaltime window query t' <t <t" the interpolation assumption) should include an implicit
requires binary search on A(Vv’) to efficiently find the  point aswell that is between Sand § (marketed in
positions of t" and t”. Fig. 4.1).

Performance comparison of these different strate- ) . . . .
gies for time window queries are given in Section 5.53- During what time period did the patient have the tem-

by experiments on SHORE. perature higher than 38 (i.e., have a fever)?
Time window queries for the condition t < t' can be By using the IP-index, this query will return the time
optimized similarly by pushing the condition t <t interval ¢, t”) (Section 3.3). There is no way to return

down to the IP operator as in Fig. 3.5. However, no this interval by using conventional indexes since t' and
binary search is needed here since the starting position t” are implicit.

is thefirst state in A(v’). The stream output of the IP
operator is terminated when the conditiontiie < v’
does not hold any more.

Now let us drop the “continuous” assumption and
assume that the time sequence is discrete. Then the
answer of this query would bejs[ttg], where no
4 Comparison of the IP-index with implicit time poin'tsare involved any more. It seems

; . that the conventional secondary index would work
Conventional Secondary indexes now. Well, itreturns a set of discrete states, (S, Ss,

This section explains why the IP-index is needed even Se) (since these states have values greater than 38). To

when there are conventional secondary indexes availa- group these states into the time intervg] fg] is not a

ble. The reason why the IP-index is compared with con- trivial task, especially when the answer geveral

ventional secondary indexes is that the IP-index is intervals (Fig. 3.2) for large time sequences.

essentially a secondary index as well. A secondar)i. lude. the IP-index has the followi dvant

index is a “nonclustering index”, as defined in [24]. TSs . ¢onciude, el In e(;( as de ofiowing advantages

are normally clustered by time stamps hot by values over convgntlona secondary in exes'.'

vis. Therefore, all indexes on the value domain of a T4. The IP-index supports not only explicit values but also

are considered to be Secondary indexes. |mpI|C|t values. This is achieved by the concept of the
Suppose that Fig. 4.1 represents a patient’s tempera- anchor-state sequences, A(V').

ture reading sequence TS # @here S=(tj, v;), and lin- 2. The IP-index keeps tlwwdering semantics of the origi-

ear interpolation is assumed to transform the naltime sequenc&he Ssinthe A(v’) are ordered by

temperature sequence TS into a continuous fundtin time as they are in the original time sequence. A conven-
A conventional secondary index on the valye will tional secondary index destroys the ordering of the orig-
use the distinct values ofsvas keys jkand record all inal TS.

the (f, vi) pairs where vequals to the key;kBy con- 3 o range queries (v > v') on a TS, the IP-index is

trast, the IP-index associates the keys With their needed for efficienciegardless of whether interpola-

anchor-state sequences (Section 3.2.1). Let us compare {5 is required or nat
the IP-index with the conventional secondary index in

dealing with the following value queries: 5 Experiments

Animplicitanswer o i estigate the behaviour of the IP-index with

respect to the properties of the time sequence, and
measure the performance of tb& operator, we imple-
mented the IP-index in the object-oriented database sys-
tem SHORE [6]. The reason why we did not use a
relational database system is that, as pointed out by
Stonebraker [25], it is not a good choice to implement a
time sequence as a relational table due to space and effi-
ciency reason.

v=39

v=38

Fig. 4.1: Comparing the IP-index with
a conventional secondary index

5.1 Implementations Notes

_ . The reason why we chose SHORE is that a recent paper
1. When did the patient have the temperatuf€38 by Seshadri [20] demonstrates that a SHORE array of
A conventional secondary indexll return nil since records is a good choice of physical implementation of

there are nexplicit values equal to 38. By contrast, by Seduential data. Therefore, we chose to implement the
time sequence TS as an array of records \) in



SHORE. For simplicity (without affecting the perform- etc.).
ance) we use integerg4-bytes) to store the time stamp .
t; (instead of using the SQL time stamp value such ag-2-2 Experimental Results

“1997/20/01"). The \s are stored as 4-bytes floating The sizes of the IP-index trees with respect to the cardi-
point numbers. _ nality of TS and the precision of values are plotted in
The IP-index is implemented as a B+-tree inFig. 5.1. The lengths of A(v')s with respect to the cardi-

SHORE. The keys in the B+-tree are the floating numnality of TS and the precision of values are plotted in
bers ys and each key is associated with a pointer to it§jg. 5.2,

anchor-state sequence. The anchor-state sequences arerjg. 5.1 show that: 1) the lower the precision is, the

implemented as arrays of integers (not arrays of recordsmaller the index tree will be; 2) for a specific value
(ti, vj)). For example, if A(V') = <§ &, Sip>, then <1, precision, the size of the IP-index tree (the number of
6, 10> (an array of integers) is stored. There are twendex entries) does not grow much with the cardinality
reasons for this: 1) We only storg, {t) in the original  of the TS. (For the precision 0.1 and 0.01 the index tree
time sequence array. It will be redundant to stoteyft  size stays constantly small regardless of the growth of
in every A(v'). 2) The anchor-states only indicate thethe time sequence.) The reason for the slow growing of
positions in the TS where to appfy. To applyifn, all  the index tree is that there are repeated values in a non-
neighbour states (semirrounding_statgs) in Section  monotonic time sequence. For a specific precision and
3.1) need to be retrieved from TS (so it does not help i{alue range of ;s, there are a limited number of possi-
(t, v) is stored duplicated in A(v’)). ble keys in the index tree (Section 3.2.1). This investi-
Since anchor-state sequences are expected to be @dtion shows thait is practical to build IP-indexes for
dynamic length, these arrays are implemented afrge time sequences with regard to space ushgan-
SHORE large objects which can grow arbitrary largewhile, since the index tree will generally be small,

For further details of implementations, please refer taearching the IP-index to find A(v’) will be very fast.
the report [15]. All measurements were done on a

SPARC 20 machine with 64M main memory. The ———
SHORE buffer pool size was set to 40 8K pages. T Precsion 001

Both synthetic and real-life time sequences were 10001

used in the measurements. The reason for using syn- T
thetic time sequences is that we need to control several s} - ---
parameters of the time sequences in order to understand
the behaviour of the IP-index with respect to their prop-
erties. The reason for using real-life time sequences
was to evaluate how the IP-index behaves in reality. We wol. !
used the real data in most measurements. Synthetic !
sequences were only used when it was necessary to con-

1200

eoof !

size of the index tree

trol the parameters of the TS. oer
5.2 The Size of the Index tree Versus the Cardinal- T e T S T
|ty of TS size of TS x10°

Fig. 5.1: How the size of the index tree

The first experiment was to answer the critical question: . L
P d grows with the cardinality of TS

Since most time sequences are very large,psaittical

to build IP-indexes for large time sequences with regard.. , . .
to space usage and efficiency issue? Recall the IP-ind )ggf_.t5.2 fSh(%VSVS hFOW card(A(v)) grows V;’r']th the cardi-
contains an index tree and many anchor-stat&'? IdyA 0, : (I)rtt e(\j/ery t;r)]reusmr; ‘*”ag”ﬁ“m
sequences. We investigated how the size of the IP-indes2d(A() W%SAp(,) eh as the v;ors ,CE‘S% zg a\r?our.
tree (the number of index entries) and the lengths of th aximum card(A(v')) happens when v’ = -0.25 where

) : , -The values are very noisy, as can be seen from Fig. 1.2.
f‘h”ec2g:dsitrla§ﬁtysgﬁt“h‘aen$§s’ I.e., card(A(v))s, grow With ' ™ o (d(A(-0.25)) is 4945 for the 100K pressure

sequence, resulting in the ratio of 4945/100K = 5%

5.2.1 The Time Sequence Used in the Experiments (worst case). This only happens when the values are
ery noisy around Vv'. In most applications the time

equence will generally have much shorter A(Vv)s,

specially in the case of monotonic trend time

sequences such as stock prices.

Fig. 5.2 shows that: 1) the lower the precision is, the

The time sequence used in this experiment was the reai
life pressure sequence in Fig. 1.2 with cardinality 100K,
and the value range (-0.5, 2.5).

The first 1K, 10K and 100K of the pressure

sequence v]:/as Iused to vary the c(;ja;dinality of TS. Themaller the maximum card(A(v)) will be; 2) the maxi-
precision of values (g) was varied from 0.1, 0.01 10 ) card(A(v')) grows linearly with the cardinality of

0.001. An IP-index was built for every combination of y,o nressure sequence. This is again because of the peri-

the above variations (e.g., the first 1K sequence With 4i- nroperty of the pressure sequence. The longer the
precision 0.1, the first 10K sequence with precision 0.1, property P a ' g
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Fig. 5.2: How the maximum cardinality of
A(Vv')s grows with the cardinality of TS

TS is, the more number of segments will probably cros

the line v = v’ (Section 3.2.1). This indicates that A(v’)

will normally grow with the size of TS for any value v'.
For the case of long growing TS and A(v’)s, the

older part of TS (i.e., the part of TS that has time
stamps t<t’) can be archived (or vacuumed [26]) to tapé’

storage. The corresponding IP-index can be archive
easily by copying the B+-tree and archiving the parts o
the A(v’)s that are inside the time window t<t’.

The Case of Stock Price Sequences

v(i) = m(i) * sin(k*i) (i = 1, 2...10K), which is periodic time
sequence witlgrowing amplitude, se&ig. 5.3. The func-
tion m() is used to control thej& so that 1) all  are
inside a limited value range (it was [-10, 10] in the
measurement) and 2) value ranges behave in the “step-
wise constant” pattern as shown in Fig. 5.3. The reason
for a limited value range is to make the B-tree size lim-
ited since we showed in the last section that most real
time sequences result in limited size of the IP-index
tree. The reason for the “step-wise constant” pattern of
value ranges is that it makes it easy to construct differ-
ent cardinalities of A(v’)s by specifying the value of v'.
For example, in Fig. 5.3 we have A(1.25) = 2*11 since
there are 11 periods of sine data intersect with the line v
= 1.25. The smaller the value v’ is (v’ > 0), the longer
the A(v’) will be. The maximum card(A(v’)) happens
when v’ = 0. The card(A(0)) was tuned to 2000 in the
experiments by the parametér (by tuning the fre-
guency of the TS). Compared to the cardinality of the
whole sequence, 10K, it results in the ratio of 2K/10K =
20%, which is sufficient to model the worst case behav-
iour since we showed in last section that the worst case
of card(A(v’)) for the pressure sequence was only 5%
f the cardinality of TS, although values are very noisy
8r0und v’ =-0.25.

f

15

1.25.

1

For monotonic trend time sequences such as stock
prices, the size of the IP-index tree will be relatively

large compared to a periodic time sequence due to the
less number of repeated values. By contrast, all anchor-
state sequences will then be much shorter than those o
periodic time sequences. The overall effect, i.e., the
total space usage (the index tree plus the anchor-state
sequences) will be generally smaller than that of peri- |
odic time sequences.

I
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5.3 o=y (TS) -- Using the IP-index or Scanning TS
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50 100 150 200 250 300 350 400 450

As pointed out in Section 3.2.1, the only way to process
o=y (TS) without the IP-index is to linearly scan the

TS. To demonstrate the importance of the IP-index, w% . .
compared the time difference between using the IP2-3-2 Experimental Results -- The Linear Case
index and linear scanning. Recall the operadgj-,,
(TS) is accomplished by B, (TS) andifn (Section

Fig. 5.3: The synthetic sine sequence

We expect that the execution time afj-,, (TS) using
the IP-index will be linear to card(A(v’)) since the
3.2). To exclude the time spentiim, we assume t' = card(A(v")) is the number of states needed to be visited
Sj.time (step 2 in Section 3.2) whereg iS returned by to get the results. By contrast, the execution time of
the IP operator in step 1. this case the execution time of o[, (TS) using linearly scanning TS will be linear to
o=y (TS) will exclude the time spent in interpolation, the cardinality of the whole TS since every state in the
both for using the IP-index and for linear scanning. A detaifS needs to be visited.

is that S.time is not stored in A(V’); it has to be read
from the time sequence array by using the statej,id
which is stored in A(v’) (see Section 5.1).

The selected v's and their corresponding cardinalities used
in the measurements are listed in Table 1. The execution
times ofol,=, (TS) with regard to card(A(v"))s are shown
in Fig. 5.4. It \erifies our “linear” speculation (above). It

. . shows that the execution time of]-,, (TS) by linearly
In order to control the properties of the time sequence “Seé?:anning TS is the same for any value V', no matter how

in the experiments, we generated a synthetic time sequenfg the A(v') is. By contrast, the execution timeati,_,

5.3.1 Constructing the Synthetic Time Sequence



Table 1: Selected v's and the cardinalities of A(v’)s

v 9.4 9.2 9 8.4 7.3 4.9 3.0 0
cardinality 14 60 106 246 504 1064 1508 200(

Table 2: Selected v's and the positions where they first appear in the TS

V's 1.0 2.9 5.1 7.3 8.5
first appears in position 122 2342 4917 7482 8882

by using the IP-index iinear to card(A(v’)). Thusthe in A(V’) tend to reside in the same page, as the sine
smaller the card(A(v’)) is, the more we gain by usingsequence does. Fig. 5.5 illustrates this. Suppose that the
the IP-index compared to linearly scanning T™tice  portion of the sine sequence in Fig. 5.5 (defined over
that in most real life applications the submittgderies the time interval [0, 460]) occupies 4 pages, then all the
o= (TS) are normally foshort A(v’)s. For example, states in A(1.25) will reside in the same page (the last
in Fig. 1.2 we are interested in those peaks where v page). And all states of A(1.20) will reside in two
1.5. Sinceol»1 §(TS) is processed bylj-1 §TS) (Sec- pages. In this case the number of pages visited is linear
tion 3.3), the execution time is determined by the cardito the cardinality of A(v’). In reality most time
nality of A(1.5), which is then only 80 for the 100K sequences do not have this nice property. States in
time sequence, resulting in the factor of 80/100K =A(Vv’) are “scattered” in different pages instead of clus-
0.08%. In this case the time difference between usingered together. For example, states in A(1.5) in the pres-
the IP-index or not is dramatic. sure sequence (Fig.1.2) are scattered instead of
clustered. In this case the execution timesQf-,, (TS)
! ‘ ‘ ‘ ‘ ‘ ‘ — - using the IP-index will not be linear to the cardinality
ool , of A(V’), instead it will be linear to the number of disk
pages visited. We tested tlw&|-,, (TS) onthe pressure
sequence ifrig. 1.2 with cardinality 100K and precision
0.01.The results are shown Fig. 5.6.What is surprising
is that the execution time oflj,-,, (TS) for shorter A(v’)s
can be bigger than the execution timecti.-,, (TS) for
longer A(v’)s.This indicates that to estimate the cost of
o=, (TS) using the IP-index, we need to have knowl-
edge of the distribution of thosgsdn A(v’) in addition
to the cardinality of A(v’). In the worst case we have to
assume every ;Sin A(v') resides in a different disk

page.
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Fig. 5.4: The execution times af(, (TS) |
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|

Another interesting observation is that for the card(A(v")) = ‘I
2000 (i.e., v’ = 0), the query processing timegj-, (TS) os |
by using the IP-index is approximately the same as linearly :
scanning TS -- we do not gain anything any more. The rea- | |
son is that toretrieve those S whose state_ids are in |
A(0), all disk pages storing the TS have to be visited s : }
since those S are evenly distributed in the disk pages |
|

|

|

that store the TS (page divisions for the TS are illus- -
trated in Fig. 5.5). The cardinality of the anchor-state
sequence is then 20% (2000/10K) of the cardinality of -*sf \
the original TS. The threshold of 20% is dependent on © s ! % 20 T2 00

the page size, of course. The bigger the page size is, the Fig. 5.5:Lrhe page division of a portion
smaller the threshold will be. of the sine sequence
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5.3.3 Experimental Results -- The Non-Linear Case

More investigations show that the nice “linear” property®-4 Getting the First Answer
of the IP-index in Fig. 5.4 is only valid when the stateswe also measured the time to get the first answer of
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o=y (TS) by using the IP-index, compared to linearly 551 Constructing the Experimental Data
scanning TS. Asnentioned in Section 3.2, it is impor- ) )
tant to get the first answeyuickly in real-time query The time sequences used in the measurements were the

processing. sine sequence (Fig.5.3) and the pressure sequence
(Fig. 1.2).

The time window was defined as t>t". The window size
By using the synthetic sine sequence it is easy to simwas varied from 100, 500, 1K, 5K to 10K for the sine
late the situation when the first answer appears in difsequence and 1K, 5K, 10K, 50K to 100K for the pres-
ferent positions in the time sequence. The selected vsure sequence. Every window size results in a different
and the positions where they first appear in the TS (i.enumber of anchor-states visited (Section 3.4). These
the state_id of the first state in A(v’)) are listed in Tablenumbers are plotted as x-axis in Fig. 5.8 and Fig. 5.9.
2.

5.4.1 Constructing the Experimental Data

5.5.2 Experimental Results

5.4.2 Experimental Results The measurements show that: 1) reverse scanning of

The execution times of getting the first answeo@f-,,  A(V’) is the most efficient strategy since no extra over-
(TS) with regard to the position of the first answerhead is needed; 2) binary searching A(v’) (to get close
appears in the TS are shown in Fig. 5.7. It shows that bto the position of t>t") performs almost as efficient as
using the IP-index the time to get the first answer igeverse scanning; 3) when the time window is small, the
constant regardless of the position of the first anchordifference between not searching A(v’) and binary
state (because the first state_id in A(v’) indicates whersearch A(v’) is dramatic.

to retrieve the state; 1 TS). By contrast, the time for The conclusion is that it is very important to opti-
linear scanning to get the first answer can be very slownize time window queries by pushing the condition t>t’

when the first anchor-state appears late in the TS. into the IP operator (Section 3.4) when the window is
The conclusion is that it is essential to have the IPsmall.
index in real-time query processing. Notice that binay search can also be performed on

To conclude, in this section we have measured théhe original TS to process time window queries by find-
performance ob[,, (TS)with respect to the properties ing the position of t’ to start scanning TS. But this will
of time sequenceMeasurements on range quer@s.., always be slower than the strategy 2 above, i.e., binary
(TS) are not included since, as we pointed out in Secsearching A(v’) (or strategy 3 above, i.e., reverse scan-
tion 3.3, the cost o6, (TS) is the nearly the same as ning A(v’)) since A(v’) is normally much shorter than
the cost oo, (TS). In nextsection we will look at time  the whole TS.

window queries. In summary, we have analysed the behaviour of the IP-

index and the performance of th&] operator with
respect to the properties of time sequences and typical
We also measured three different strategies for timguery patterns.

window queries that were discussed in Section 3.4. The

three strategies are: 1) Scanning A(v’) to calculate al6 Conclusions and Future Work

t's and check the condition later; 2) binary searching

A(V’); 3) reversely scanning A(V"). Time sequences appear in various domains in modern
database applications. Research work on time

5.5 Time Window Queries
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— time. The actual number of time instances (termed
A by gg;;ggg,@ﬁvz\wz | “states” in this paper) needed to be stored are deter-

G - -0  backward scan A|

I mined by the range and precision of the values in the
| sequence. Also the sampling frequency can change dur-
ing different periods, higher frequency can be used for
interesting value ranges and lower frequency can be
used for uninteresting ranges. Different interpolation
functions can also be applied to different sub-
sequences.

We have found several research papers wherefhe
operator is needed for sequence data: 1) in [10], for
case-based reasoning on event sequences where a “loca-
tion method” based on some value condition is needed;
2) in [14], for finding the grids in a map whose terrain

o
o

execution time (s)

o
=

0.2

0

L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

vindow ize elevation are inside some value range; 3) in [20], for
Fig. 5.8: The time window query for the sine retrieving sub-sequences in a stock price sequence
sequence (10K) where the prices are in some range. Also the example
query on the pressure sequence [9] used in this paper
- shows the importance of tleloperator.
——+ notsearch AW) In future work we would like to develop a good data
5F #——  binary search A(v)| - . . .
s & — 0 backward scan A(Y) structure for dynamic time sequences [23]. As pointed

out by Shoshani [23], a time sequence that is both
dynamicandirregular is the most difficult to be sup-
ported physically. The data structure has to be variable
length and support fast random access in the time
domain (fast random access on the value domain is sup-
ported by the IP-index). Our current plan is to partition
the large TS into arrays (each array fitting in one page)
and use a B+-tree to index these arrays. It is also inter-
esting to investigate a good data structure for the
anchor-state sequences since they are dynamic and vary

e much in length. The design goal is not to waste space
TR eweize 0000 a0 e for small A(v)s and to support fast random access for
large A(v)s, which is needed in time window queries.

We will then develop the cost model for thEoper-

ator based on the new data structure, so that query opti-

sequences has mainly dealt with similarity searchMization concerning theloperator can be carried out
which concerns shapes of time sequences. This pap8Y the database system. Since many extensible database
presents the extendesi] operator to retrieve implicit Systems (such as lllustra [11] and PREDATOR [21])
values from time sequences under various user-definetHPport “plug in” of new abstract data types together
interpolation assumptions. We have developed the IPYith their storage, manipulation methods and their
index [13] to efficiently support thed operator. The indexes, the IP-index, thell operator and its cost
efficiency of theaO operator for getting all or the first model can be plugged into those systems to support
few answers was demonstrated by experiments made Giy€ri€s on time sequences or any 1-D sequence data
SHORE. The relationship between the behaviour of thé20]. New functions for time sequences or other 1-D
IP-index and the performance of to& operator with S€quence data such as “get_time_stamps(seq_name,
regard to the properties of time sequences were investi=» V)" and “get_time_intervals(seq_name, >', V')
gated and verified. Possible optimizations of tig ¢an be defined and supported efficiently by the IP-
operator were discussed and verified by experimentdndex. _ _ _
Space usage of the IP-index with regard to the size of We would also like to investigate how to extend the
the time sequence was analysed to show that it is practiP-index to two-dimensional time sequences. An exam-
cal to build IP-indexes for large time sequences. ple of a two-dimensional application can be found in
In a survey by Chomicki on temporal query lan- [14] \_/vhere an IP-index is needed for a two-dimensional
guages [7], it is argued that the densed temporal domaffrain map.
is very useful in many applications but is difficult to
implement efficiently since the set of time instances isAcknowledgements

very large. The IP-index provides the ability derive . . .. L
the densed instances from the original diSCreteThe authors wish to thank Martin Skold for inspiring

; -discussions and valuable comments. Special thanks to
sequence, saving both storage and query proces&r%chard Snodgrass in University of Arizona who sug-

execution time (s)

Fig. 5.9: The time window query for the
pressure sequence (100K)
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gested to implement the IP-index in disk-based datal3.

base systems and investigate the behaviour of anchor-
state sequences. The authors are grateful to Zebo Peng
in ESLAB of our department for providing the SPARC
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