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Abstract

Integration of data from autonomous and hetero-
geneous data sources often requires means to me-
diate and reconcile overlaps and conicts between
the integrated data. It is also desirable that the
mediator system stores local data associated with
the data from the sources. Queries over such a
combination of local and mediated data must be
guaranteed to be consistent and complete in pres-
ence of updates to any of the data sources. Due
to these complex requirements, achieving accept-
able query response time for a mediator system
has been a known research problem. This work
presents a mediator query processing framework
based on a novel representation of the data me-
diation and reconciliation by a number of aux-
iliary system-de�ned object-oriented (OO) views
and overloaded functions (queries). The frame-
work is supported by de�ning an overloading and
late binding mechanism for the OO views through
declarative queries. A query over the mediated
OO views will have late bound subquery invoca-
tions which are transformed into disjunctive query
expressions. Consistency and completeness of the
queries are guaranteed by expanding the queries
with validation subqueries. Performance improve-
ments are achieved by optimization of the query
expressions using type aware query rewrites and
selective OID generation in the mediators. Exper-
iments show that the proposed query optimiza-
tion dramatically improves the query execution
time compared to a naive instance-oriented query
strategy or partial strategies.
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1 Introduction

Modern organizations often need to combine hetero-
geneous data from di�erent data sources. Tools and
infra-structures for data integration are required. Data
integration using the wrapper-mediator architecture
[19] with an Object-Oriented (OO) data model is
a popular approach to integration of heterogeneous
databases [2, 4, 5, 9, 10, 12, 18]. With this approach,
the data sources are encapsulated in wrappers which
interface the data sources using a common query lan-
guage and a common data model (CDM). The role
of the mediators is to provide a semantically coherent
CDM view of the combined data from the wrapped
data sources.

The data and the meta-data (schema) in the sources
can have conicting and overlapping portions. For
example, two universities can each have employee
databases organized in di�erent ways with correspond-
ing entities bearing di�erent names. Also, there might
exist employees employed by both universities. A com-
prehensive classi�cation of these conicts can be found
in [3]. In this work we will concentrate on a frame-
work for mediating a coherent view of databases in
presence of structural conicts, where attributes mod-
eling the same real world property does not match in
name and/or value, and entity overlap conicts where
there is an overlap of the sets of real-world entities
represented by the data in the sources.

In particular, this paper deals with managing OO
mediator views de�ned as unions of real-world entities
from other mediators and data sources. Our mediating
union views are modeled by a mechanism called inte-
grated union types (IUTs) based on OO queries and
views. The IUTs model unions of real-world concepts
similar to [4, 5], and opposed to unions of type ex-
tents from di�erent databases as in [18, 10]. IUTs have
reconciliation facilities which allow the user to specify
how overlaps and conicts between data from di�erent
sources are resolved.

Users and applications using a mediator often need
to associate some locally relevant data to the data in-
tegrated from the data sources. We call such media-
tors, permitting local methods and attributes in the
OO views, capacity augmenting mediators. Capacity
augmentation for the IUTs is achieved by making the
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instances of the IUTs �rst class objects with their own
OIDs that can be used in locally stored attributes and
methods as ordinary OIDs.

The data sources are autonomous and can be up-
dated outside the control of the mediators. The system
must therefore guarantee the consistency and com-
pleteness of queries to the capacity augmented me-
diators in presence of updates to the data sources.
Our framework for IUTs guarantees that queries to
the mediators are consistent and complete when the
data sources are updated without any need for a no-
ti�cation mechanism. The queries over the integrated
views always return all answers that qualify the query
condition, and only those answers that qualify, based
on the current state of the data in the data source,
regardless of any database state materialized in the
mediator.

It is challenging to achieve acceptable performance
of OO queries over IUTs, in particular when the inte-
grated extents have overlaps [4, 5]. Such overlaps re-
quire outerjoin-based query processing techniques hav-
ing increased complexity compared to inner joins. Fur-
thermore, queries involving both local and remote data
should take advantage of the fast access to local data
to improve performance.

This work presents a combination of query pro-
cessing strategies that signi�cantly improve the per-
formance of queries over IUTs in capacity augmented
mediators. The main principles of these strategies are:

1. The IUTs are internally represented as a set of
auxiliary views, over which the reconciliation is
speci�ed by a set of overloaded auxiliary methods
(queries).

2. The queries over the IUTs containing outerjoins
and reconciliation are translated into late bound
queries over the auxiliary views and methods.

3. In order to permit further query rewrites, the
late bound queries are translated into disjunctive
query expressions. These model the original query
by joins and anti-semi-joins which are easier to
rewrite and optimize.

4. Novel, type-aware query rewrite techniques re-
move inconsistent disjuncts and simplify the
transformed disjunctive queries.

5. To e�ciently support consistent and complete
query answers the system uses a novel technique
for selective OID generation and validation of the
OO view instances, based on declarative queries.

6. Finally, local main-memory indexes created on-
the-y in mediators eliminate repeated accesses
to data sources.

Experimental results show that the combination of
the above methods has drastically better performance
than a naive CORBA-like integration that resolves late
binding on an object instance level at run time. The
performance is drastically reduced even if only some
of the combined optimization methods are relaxed.

2 Background

As a platform for our research we use the AMOSII
mediator database system [11] developed from WS-
Iris [15]. The core of AMOSII is an open light-weight
and extensible DBMS. AMOSII is a distributed me-
diator system where both the mediators and wrap-
pers are fully functional AMOSII servers. For good
performance, and since most the data reside in the
data sources, AMOSII is designed as a main-memory
DBMS.

AMOSII's CDM is an OO extension of the
DAPLEX [17] functional data model. It has three ba-
sic constructs: objects, types and functions. Objects
model entities in the domain of interest. An object
can be classi�ed into one or more types making the
object an instance of those types. The set of all in-
stances of a type is called the extent of the type. The
types are organized in a multiple inheritance, super-
type/subtype hierarchy. If an object is an instance of
a type, then it is also an instance of all the supertypes
of that type; conversely, the extent of a type is a subset
of the extent of a supertype of that type (extent-subset
semantics). Object attributes, queries, methods, and
relationships are modeled by functions.

The non-literal types are divided into stored, de-
rived, translated, and proxy types:

� The instances of stored types are explicitly stored
in the mediator and created by the user.

� The extent of a derived type (DT) is a subset of
the extents of one or more constituent supertypes
speci�ed through a declarative query over the su-
pertypes. Its extent is a subset of the intersection
of the extents of the constituent types. Each DT
has an associated extent function de�ning its ex-
tent; an OID generation function for creating its
OIDs; and a validation function which for a given
DT object checks if the object is still valid, based
on the state of the objects of its constituent types
and the declarative condition given in the DT def-
inition. The DTs are described in greater detail
in [13].

� The proxy types represent objects stored in other
AMOSII servers or in some of the supported types
of data sources. In this work we will only use
ODBC data sources.

The functions in AMOSII are divided by their im-
plementations into four groups. The extent of a stored
function is physically stored in the mediator (c.f. ob-
ject attributes). Derived functions are implemented
by queries in the query language AMOSQL (c.f. views
and methods). Foreign functions are implemented in
some other programming language, e.g. C++ or Java
(c.f. methods). To help the query processor, a foreign
function can have associated cost and selectivity func-
tion. The proxy functions are implemented in other
AMOSII servers.
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The AMOSQL query language is similar to OQL
and based on OSQL [16] with extensions of multi-way
foreign functions, active rules, late binding, overload-
ing, etc. For example, assuming three stored function
parent, name and hobby, the query on the left retrieves
the names of the parents of the persons who have 'sail-
ing' as a hobby:

select p, name(parent(p))
from person p
where hobby(p) = 'sailing';

create derived type sailors
subtype of person
where hobby(person)='sailing'
properties (yachtType string);

The DT de�nition on the right de�nes a type repre-
senting persons having 'sailing' as a hobby, and de�nes
a stored function 'yachtType' over this type.

The query processing in AMOSII �rst translates the
AMOSQL queries into a type annotated object calculus
representation. For example, the result of the calculus
generation phase for the query from the example above
is given by the following calculus expression:
f p; nm j
p = Personnil!person() ^
d = parentperson!person(p) ^
nm = nameperson!charstring(d) ^
0sailing0 = hobbyperson!charstring(p)g
The �rst predicate in the expression is inserted by

the system to assert the type of variable p. It de�nes
the variable p to be member of the result of the ex-
tent function for type the Person. In case of a DT,
the extent function contains a query de�ning the ex-
tent in terms of predicates over the supertypes. The
extent function can be used to generate the extent of
a type, as well as to test if a given instance belongs
to a type. Therefore, a predicate containing a refer-
ence to an extent function is called a typecheck pred-
icate. An extent function accesses the deep extent of
the type, i.e. it includes the extents of all the super-
types. By contrast, the shallow extent function con-
siders only the immediate instances of the type. By
convention, the shallow extent functions are named by
pre�xing the type name by the pre�x Shallow, e.g.
ShallowPersonnil!Person().

In the second processing phase, the calculus opti-
mizer applies type-aware rewrite rules to reduce the
number of predicates. For the example query, this pro-
duces the expression below by removing the type check
predicate:
f p; nm j
d = parentperson!person(p) ^
nm = nameperson!string(d) ^
0sailing0 = hobbyperson!string(p)g

This transformation is correct because p is used in a
stored function (e. g. name) with an argument or
result of type person. The referential integrity system
of the stored functions constrains the stored instances
to the correct type [15].

After the rewrites, queries operating over data out-
side the mediator are decomposed into distributed sub-
queries expressed in an object algebra, to be executed
in di�erent AMOSII servers and data sources. The
decomposition uses a combination of heuristic and dy-
namic programming strategies. At each site, a single-
site cost-based optimizer generates optimized execution
plans for the subqueries. These system features are
not the focus of this paper and will be a topic of a
forthcoming paper.

An interested reader is referred to [11] for more de-
tailed description of AMOSII and to [15], [6] [13] and
[8] for more comprehensive descriptions of the query
processing used in AMOSII.

3 Integration Union Types

The integration union types (IUTs) provide a mecha-
nism for de�ning OO views capable of resolving seman-
tic heterogeneity among meta-data and data from mul-
tiple data sources. Informally, while the DTs represent
restrictions (selections) and intersections of extents of
other types, the IUTs represent reconciled unions of
data in one or more mediators or data sources.

The description of the IUTs in this section is from
a perspective of a database administrator who models
and de�nes a mediating view used later by the users.
From the users' perspective, there is no di�erence be-
tween querying IUTs and ordinary types. The view
de�nition process will be illustrated by an example of
a computer science department (CSD) formed from the
faculty members of two universities named A and B.
The CSD administration needs to set up a database of
the faculty members of the new department in terms
of the databases of the two universities. The faculty
members of CSD can be employed by either one of the
universities. There are also faculty members employed
by the both universities. The full-time members of a
department are assigned an o�ce in the department.

locat ion

CSD_emp

Faculty

A_emp

CSD_Aemp
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Uni A
  DB

Personnel

B_emp

CSD_Bemp

Tb

Uni B
  DB

socsec
age

salar y
name

pay
dept

ssn
name

Full_Time

cour ses
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Figure 1: An Object-Oriented View for the Computer
Science Department Example
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One possible system architecture for the data inte-
gration problem described above is presented in Fig-
ure 1. In this �gure, the mediators and translators
are represented by rectangles; the ovals in the rect-
angles represent types; and the solid lines represent
inheritance relationships between the types. The two
AMOSII servers that provide a CDM representation of
the data in the sources are labeled TA and TB. To dis-
tinguish between the wrapper subsytem in AMOSII,
and an AMOSII server having a role of wrapping a
data source, the second is named translator. The term
wrapper will be used to represent the wrapper subsys-
tem.

In TA, there is a type Faculty and in TB a type
Personnel. A mediator is setup in the CSD to provide
the integrated view. Here, the types CSD A emp and
CSD B emp are de�ned as subtypes of the types in the
translators:

create derived type CSD_A_emp
subtype of Faculty@Ta

where dept(A_emp) = ``CSD'';

create derived type CSD_B_emp
subtype of Personnel@Tb

where location(B_emp) = ``G house'';

The system imports the external types, looks up the
functions de�ned over them in the originating media-
tors, and de�nes local proxy types and functions with
the same signature, but no implementation. In this
example, the extents of the DTs are speci�ed as sub-
sets of the extents of their supertypes by using simple
selections, but in general the subtyping condition can
also be joins. During the query decomposition process,
predicates containing proxy functions are scheduled for
execution in the mediator or wrapper they originate
from.

The IUT CSD emp represents all the employees
of the CSD. It is de�ned over the constituent types
CSD A emp and CSD B emp. CSD emp contains one
instance for each employee, regardless of whether it ap-
pears in one of the constituent types or in both. There
are two kinds of functions de�ned over CSD emp. The
functions on the left of the type oval in Figure 1 are
derived from the functions de�ned in the constituent
types. These reconciled functions have more than one
overloaded implementation, one for each possible com-
bination of constituent types instances, matching an
IUT instance. The functions on the right are locally
stored functions.

The data de�nition facilities of AMOSQL include
constructs for de�ning IUTs as described above. The
type CSD emp is de�ned as follows:

CREATE INTEGRATION TYPE csd_emp
KEYS ssn INTEGER;
SUPERTYPE OF

csd_A_emp ae: ssn = ssn(ae);
csd_B_emp be: ssn = id_to_ssn(id(be));

FUNCTIONS
CASE ae

name = name(ae);
salary = pay(ae);

CASE be
name = name(be);
salary = salary(be);

CASE ae, be
salary = pay(ae) + salary(be);

PROPERTIES
courses BAG OF STRING;
bonus integer;

END;

The IUT csd emp de�nition reveals some details not
apparent from the graphical representation of the in-
tegration scenario. The �rst clause de�nes a set of
keys and their types. In the example, the key is sin-
gle valued of type integer. For each of the constituent
subtypes, a key expression is given to calculate the
value of the key from the instances of this subtype.
The instances of di�erent constituent types having the
same key values will map into a single IUT instance.
The key expressions can contain both local and remote
functions.

The FUNCTIONS clause de�nes the reconciled func-
tions of CSD emp, derived from the values of the func-
tions over the constituent types. For di�erent sub-
sets of the constituent types, a reconciled function of
an IUT can have di�erent implementations speci�ed
in the CASE clauses. For example, the de�nition of
CSD emp speci�es that the salary function is calcu-
lated as the salary of the faculty member at the uni-
versity to which it belongs. In the case when she is
employed by both universities, the salary is the sum
of the two salaries. When the same function is de-
�ned for more than one case, the most speci�c case ap-
plies. If no single most speci�c case exists (e.g. name),
the system assumes \any" semantics and chooses one
based on a heuristic to improve the performance of the
queries over these functions.

Finally, the PROPERTIES clause de�nes the two
stored functions over the IUT CSD emp. At any time
after the de�nition of an IUT, the user can add stored
or derived functions. The derived functions can be
based on any functions already de�ned in the media-
tor, regardless whether they are implemented locally
or in some other AMOSII server.

The IUTs can be subtyped by DTs as any other
types. In the example in Figure 1, the type Full Time
representing the full time employees is de�ned as a sub-
type of the type CSD emp. The locally stored function
o�ce stores the information about the o�ces of the full
time CSD employees.

4 Modeling and Querying the Integra-
tion Union Types

Every instance of an IUT corresponds to either an in-
stance in one of the two constituent types, or to one
instance in both of them. Therefore, the extent of
an IUT can be divided into three subsets (Figure 2a).
Two sets contain the IUT instances corresponding to
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Figure 2: IUT implementation by ATs
an instance in a single constituent type. The third set
contains the IUT instances corresponding to instances
in both constituent types. Since the extent subsets can
be de�ned by declarative queries, we can de�ne each
of them as a DT, named an auxiliary type (AT). The
three ATs generated for each IUT form an inheritance
hierarchy as shown in Figure 2b.

A function f de�ned over an IUT can have a dif-
ferent implementation for each of these three subsets
(i.e. for each CASE clause). It can be thus de�ned for
the whole extent of the IUT by being overloaded on
the ATs. A call to f for an IUT will then result in a
late bound function call, to be discussed below.

The ATs are generated by the system and are not
visible to the user. Each AT corresponds to a CASE

clause in the IUT de�nition. By using the speci�ca-
tions from the KEYS clause of the IUT de�nition, two
functions are generated for each constituent type. The
overloaded function keyCT!key types calculates the key
of an instance of a constituent type CT . The function
AllkeysCT() returns all the keys for the type CT . With
these functions de�ned, the AT de�nitions for the ex-
ample are:

create derived type Only_A
subtype of CSD_Aemp ae

where key(ae) not in
AllkeysCSD_Bemp();

create derived type Only_B
subtype of CSD_Bemp be

where key(be) not in
AllKeysCSD_Aemp();

create derived type A_and_B
subtype of CSD_Aemp ae, CSD_Bemp be

where key(ae) = key(be);

The �rst two subtypes represent keys based on anti-
semi-joins of the integrated types. The third is a join
of the integrated types.

Next, the system creates the IUT and makes the
ATs its subtypes. The overloaded function resolvents

are then de�ned over the IUT and each of the ATs.
The AT resolvents are generated from the FUNC-
TIONS clause in the IUT de�nition. The resolvent
for the IUT itself is de�ned as false since all the in-
stances of the IUT belong to one of the ATs, giving
the optimizer a hint to reduce the execution plans.

The extents of the ATs represent mutually exclu-
sive sets of real world entities. The union of these
extents forms the extent of the IUT which therefore
contains one instance for each entity. From the user's
point of view, the only di�erence between the IUTs
and the ordinary types is that no objects can be ex-
plicitly created in the IUTs. The extent of the IUTs
are completely derived from the extents of the ATs.

4.1 Late Binding Over Derived Types

To process queries over the system-generated OO
views having overloaded functions, we developed a
novel late binding mechanism for e�cient handling of
declarative view de�nitions in a multiple mediators en-
vironment. A late bound function call f(a) is �rst
translated into a calculus late binding operator (LBO)
whose �rst argument is a tuple of the possible resol-
vents of f sorted with the least speci�c type �rst, and
the second argument is a. For functions used when
an IUT is modeled by ATs, the late binding calculus
expression is:

LBO(< fiut; fat1; :::; fatn >; a)

where the ATs at1 : : : atn are subtypes of iut. Based on
the types of the argument a, LBO chooses the most-
speci�c resolvent, executes it over the argument, and
returns the result(s).

In our previous work, we have developed a corre-
sponding algebraic late binding operator for the or-
dinary types, the Dynamic Type Resolver (DTR) [8].
DTR, as most late binding mechanisms described in
the literature (e.g. [7]), processes one tuple at a time
and selects the query plan of a resolvent based on the
type of a. This mode of processing is not suitable for
the IUT queries for the following reasons. First, be-
cause the resolvents are functions de�ned over data in
multiple sources, processing a tuple at a time results in
calling remote functions in an RPC manner. Second, it
requires the instances to have assigned OIDs, leading
to OID generation for all the instances processed in a
query, and not only for the ones requested by the user.
Furthermore, such a late binding mechanism assumes
that the type information of the argument object is
explicitly stored with its OID. By contrast, the types
in the IUT are de�ned implicitly by queries, and IUT
instances can obtain and drop a type dynamically and
outside the control of the mediator, based on the state
of the data in the sources. Therefore, the use of late
binding as above leads into partitioning the query into
three separate subqueries: the resolvent function bod-
ies (i.e. the expressions in the CASE clauses), the AT
subtyping conditions, and the predicate in the query.
This separation will prohibit query rewrite techniques
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to eliminate common subexpressions and other query
reduction methods as described in [13] and [6].

In order to overcome these limitations, the LBO is
translated into an equivalent disjunctive object calcu-
lus predicate, which is then combined and optimized
with the rest of the query. AMOSII supports mul-
timethods and overloading on all function arguments
and the translation algorithm can handle this too. Due
to space limitations, here we only present a simpli�ed
version of the algorithm that handles overloading on a
single argument. The full version of the algorithm will
be presented in a forthcoming technical report.

In the translated disjunctive calculus expression ev-
ery branch (disjunct) is a conjunction of a typecheck
for an AT and a call to the overloaded function f cor-
responding to the AT. The translation algorithm is:
generate lb calculus( resolvents ) � > disjunctive predicate
result = fres jg; /*empty disjunction predicate */
while resolvents != � do
head = �rst(resolvents);
/* the argument type for the head function */
th = arg type(head);
if 6 9f 2 resolvents j subtype of(argtype(f); th) then
result = append(result,

_farg = th() ^ res = fth(arg)g);
else
wset = ftp j subtype of(tp; th)^

6 9f 2 resolvents j
subtype of(tp; argtype(f))g

for each tp in wset
result = append(result,

_farg = Shallow tp(),
res = fth(arg)g));

end if
resolvents = resolvents - head;
end while
return result;
end;

First, append, and � perform the usual set opera-
tions, and arg type returns the argument type of a
function. The algorithm traverses the sorted list of re-
solvents. If the type hierarchy rooted in the argument
type of a resolvent does not intersect with the hier-
archies of the argument types of some resolvents in
the rest of the list, then a conjunction of an ordinary
(deep) typecheck and the resolvent call is added as a
new disjunct to the result. Otherwise the new disjunct
will instead contain a shallow typecheck. Notice that
for IUTs there will be no shallow typechecks, because
there are never any subtypes of the system-generated
ATs. Since the type checks are mutually exclusive,
only one resolvent will be evaluated.

To illustrate the translation process we examine the
translation of the LBO for the function salary over the
IUT CSD emp:

LBO(< salarycsd emp!int; salaryOnly A!int;
salaryOnly B!int; salaryA and B!int >; arg)

is translated into:
f s j
(arg = only Anil!only a() ^ s = salaryonly A(arg)) _

(arg = only Bnil!only b() ^ s = salaryonly B(arg)) _
(arg = A and Bnil!a and b() ^ s = salarya and b(arg))g

The expression is a disjunction of only three dis-
juncts. No disjunct is generated for the �rst resolvent
salarycsd emp!int since it is de�ned as false.

After the query normalization, the extent functions
of the ATs are expanded by substituting them with
their bodies containing the expressions from the CASE
clauses of the IUT de�nition. These expressions in
turn reference the extent functions of the constituent
types, which are DTs and the expansion continues un-
til no DT extent functions are present. This process
makes visible to the query decomposer i) the query
selections de�ned by the user, ii) the conditions in
the IUT, and iii) the DT de�nitions. The query de-
composer combines the predicates, divides them into
groups of predicates executable at a single mediator,
translator or data source, and then schedules their exe-
cution. As opposed to dealing with parametric queries
over multiple databases, as would have been the case
with a tuple-at-the-time implementation of the late
binding, the strategy ships and processes data among
the mediators and the data sources in bulks contain-
ing many tuples. The size of a bulk is determined
by the query optimizer to maximize the network and
resource utilization. The results in the next section
demonstrate how the bulk-processing allows for query
processing strategies with substantially better perfor-
mance than the instance-at-the-time strategies. Fur-
thermore, this strategy allows the optimizer to detect
and remove unnecessary OID generations for the in-
stances not in the query result.

4.2 Normalization of Queries Over the Inte-
gration Types

If there are disjunctive predicates, we need to normal-
ize the query to disjunctive normal form in order to
separate the subqueries for the individual data sources.
One drawback of the query normalization is that it du-
plicates predicates in several di�erent disjuncts of the
normalized disjunctive predicate. To avoid some of
the unnecessary duplication, we use a query normal-
ization which is aware of the multidatabase environ-
ment. The normalization algorithm is based on the
principle that as many as possible of the normaliza-
tion decisions should be delegated to the sites where
the predicates are executed. Therefore the query de-
composer analyzes the elements of a disjunctive predi-
cate and groups together the disjuncts executed in the
same mediator or data source capable of processing
disjunctions.

Another source of disjunctions in queries over IUTs
are the late bound functions from above, which are
translated to disjunctions. A full disjunctive normal-
ization would then produce a cross product of the dis-
juncts in all the late bound IUT functions. For exam-
ple the query:

select salary(e), ssn(e) from csd_emp e;
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produces the calculus expression:
f sal; ssn j
(arg = only Anil!only a() ^ sal = salaryonly A(arg)) _
(arg = only Bnil!only b() ^ sal = salaryonly B(arg)) _
(arg = A and Bnil!a and b() ^
sal = salarya and b(arg)) ^

(arg = only Anil!only a() ^ ssn = ssnonly A(arg)) _
(arg = only Bnil!only b() ^ ssn = ssnonly B(arg)) _
(arg = A and Bnil!a and b() ^
ssn = salarya and b(arg))g

The expression is then normalized into 9 disjuncts,
one for each combination of the disjuncts in the two
disjunctive predicates above. This expression shows
the �rst two disjuncts:
f sal; ssn j
(arg = only Anil!only a() ^ sal = salaryonly A(arg) ^
arg = only Anil!only a() ^ ssn = ssnonly A(arg)) _

(arg = only Bnil!only b() ^ sal = salaryonly B(arg) ^
arg = only Anil!only a() ^ ssn = ssnonly a(arg)) _
: : :g

We can see that each disjunct contains two type-
check predicates for the variable arg. This will also
be the case in the remaining six disjuncts not shown
above. Based on the presence of more than one type-
check over the same variable in a conjunctive predicate
and on the properties of the type hierarchy, the dis-
juncts generated by the query normalization can be
rewritten into a simpler form or eliminated.

Since an object can have only one most speci�c
type, two typecheck predicates for a single variable
of two unrelated types are always rewritten to false,
and the disjunct is removed. When the types are re-
lated, depending on whether the typechecks are deep
or shallow, the result of the rewrite is either false or
the more speci�c typecheck predicate.

These rewrite rules eliminate in the example above
all six disjuncts in which the typecheck is not per-
formed over the same type (they remove the second
of the two disjuncts shown above). In the remaining
three it leaves just a single typecheck predicate trans-
forming the query into the following predicate which
will be shown to be signi�cantly faster than the origi-
nal query:
f sal; ssn j
(arg = only anil!only a() ^
sal = salaryonly a(arg) ^ ssn = ssnonly a(arg)) _
(arg = only bnil!only b() ^
sal = salaryonly b(arg) ^ ssn = ssnonly b(arg)) _
(arg = a and bnil!a and b() ^
sal = salarya and b(arg) ^ ssn = ssna and b(arg))g

4.3 Managing OIDs for the IUTs

The IUT instances are assigned OIDs when used in
locally stored functions. For example, a query giving
a bonus of $1000 to all employees in the department
with salary lower than $1000 can be speci�ed as:

set bonus(csde) = 1000 from CSD_emp csde
where salary(csde) < 1000;

In order to manipulate the IUT OIDs we have gen-
eralized the framework developed for handling OIDs of
DT instances [13] to the IUTs. As noted in the intro-
duction, the DT functionality is modeled with three
functions: OID generation function, extent function,
and validation function. Next we describe how the
system generates each of these functions for the IUTs.

Since an IUT is a supertype of the corresponding
ATs, every AT instance is also an instance of the IUT.
Each distinct real world entity is always represented
by an instance in exactly one of the ATs. Therefore,
the extent of an IUT is a non-overlapping union of the
extents of the ATs and the extent function of an IUT
is a disjunction of the extent functions of its ATs.

The OID generation function assigns an OID to a
DT instance. In the case of DTs, the OID generation
function is called by the extent function. Since the
extent function of an IUT only references the extent
functions of its ATs, there is no need for OID gener-
ation functions for IUTs. The IUT instances are thus
assigned OIDs by the OID generation functions of the
ATs.

If the ATs were treated as ordinary DTs, the as-
signment of OIDs to the AT instances would be made
independently of the other ATs of an IUT. On the
other hand, due to the nature of the conditions used
in the ATs de�nition, instances 'drift' from one AT to
another. For example, let's assume that John Doe is
an employee of University A, and also a member of
the CSD in the example above. When his bonus is
assigned, the system will generate an OID for the in-
stance representing John Doe in the AT Only A and
use this OID in the stored function bonus to relate
John with his bonus. If John now gets an appoint-
ment at University B, he still belongs to the CSD emp
IUT, but an instance representing him appears in the
type A and B, while the instance in the type Only A
is removed. If the newly created instance in A and B
has a di�erent OID from the old instance in Only A,
then John cannot be matched with his bonus stored in
the database using the old OID.

The example shows that the OID assignment for
instances of the ATs must be coordinated, so the in-
stances representing the same real-world entity can
move from one AT to another, while preserving their
identity. An instance is related to a real world entity
through its key, so to solve the problem, the OID as-
signments of the ATs are controlled by a function stor-
ing the generated OIDs along with the keys. When a
new AT OID is to be generated, the OID generation
function �rst checks if there is a stored OID with a
matching key. If so, it adjusts the type of the stored
OID and returns it as result. Otherwise, it generates a
new OID. We notice here that, because the selections
are pushed to the data sources and due to the OID
generation removal mechanism described in [13], only
a subset of the whole IUT extent is assigned OIDs in
queries containing selections. Very often, queries re-
quire function values and not the OIDs of the queried
types. In these cases no OIDs will be generated at all.
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In Section 2 an example was presented on how the
typecheck predicate of a variable can be removed from
a query when the variable is used in a predicate with a
locally stored function of that type. This mechanism,
described in greater detail in [15], is extended to apply
over the IUTs. An advantage of removing the type-
check is that the costly generation of the IUT extent
is not needed, but instead only the already generated
OIDs stored in the local function are used. However,
when dealing with stored DT or IUT instances, we
need to make sure that they are still valid, i.e. that the
data sources still contain the corresponding instances.

A straightforward solution to the problem of vali-
dating an IUT instance is to test which of the three
IUT ATs it belongs to. It is, however, su�cient to
validate an IUT instance by testing the existence of a
corresponding instance having the same key in one of
the two integrated sources; the intersection AT need
not be tested. This condition can be expressed by a
two-branch disjunctive predicate instead of a three-
branch one in the straightforward solution. The gain
is due to the fact that we are not interested in exactly
which AT an IUT instance belongs to, but if it be-
longs to any of the ATs. As an example we present
the calculus representation of the validation function
body for the CSD emp type from the example above:
validatecsd emp(e) 
(ssn = skeycsd emp!integer(e) ^
ssn = ssncsd a emp!integer(csda)) _
(ssn = skeycsd emp!integer(e) ^
id = idcsd b emp!string(csdb) ^
ssn = id to ssnstring!integer(id))

The variables csdb and csda are local variables.
The validation method described above su�ces

when a query contains only locally stored functions
over an IUT, while not containing late bound func-
tions over the same IUT. When a query contains both
locally stored and late bound functions, the system
needs to determine which AT an IUT instance belongs
to, in order to execute the right resolvent. Since an
instance can drift between the ATs, the system must
determine the AT membership for the IUT instances
at query time. In order to do this, a disjunctive predi-
cate similar to the one described earlier in this section
is used. The only di�erence is that here the typecheck
predicates are replaced with the corresponding valida-
tion predicates.

5 Performance Measurements

The AMOSII system with the mediation features de-
scribed in this paper is implemented on Windows NT.
We will present an overview of some experimental re-
sults obtained from running the system over 10Mb
Ethernet and ISDN networks. The results demon-
strate how the techniques presented above drastically
reduce the response times.

The experiments are performed for a scenario sim-
ilar to the running example above. We used two
Compaq Professional Workstation 5000 with 200MHz

Pentium processors and 64 MB memory, connected
through a 10Mb Ethernet network. We also performed
the same tests using a 64kb ISDN connection over the
public telephone network in Sweden.

One of the workstations hosted an ODBC data
source and an associated AMOSII system as a transla-
tor. For the experiments we used Microsoft Access as
a relational data source because of its availability, but
the results apply to any other ODBC data source. On
the second workstation, another AMOSII server rep-
resented another data source. To be able to quantify
the di�erence in the times between the processing in
AMOSII and in the ODBC data source, the data was
here stored directly in the AMOSII's main-memory
database. The second workstation also hosted the me-
diator system where the queries were issued. The three
AMOSII servers just described will be referred to in
the rest of this section as Ta (the ODBC translator),
Tb (the AMOSII storing data locally) and the mediator
for the AMOSII server where the queries are issued.

In the experiments, we scaled simultaneously the
tables Faculty in the ODBC data source and the ex-
tent of the type Personnel stored in Tb from 1000 to
30000 tuples. From these tuples, 10% are selected to
be members of each of the types A emp and B emp (i.e.
members of the CSD), which are the constituent types
for the integration type CSD emp. Between these two
types, we assume that half of the instances are overlap-
ping (represent the same persons), meaning that the
size of the extent of the type CSD emp is 15% of the
cardinality of the table. For example, when the size
of both the Faculty table in the ODBC source and the
extent of the type Personnel in Tb is 30000, there are
3000 instances of each selected as working in the CSD
department by the conditions in the de�nition of the
derived types A emp and B emp. From each of these
two sets of 3000 instances, 1500 appear only in one of
these types and 1500 appear in the both constituent
types. The extent of integrated type CSD emp there-
fore has 4500 instances.

The experiments are based on queries over the IUT
CSD emp. The queries are simple in order to ana-
lyze certain features of the system. Also, we have
chosen queries that are the building blocks of most
user-speci�ed queries over the IUTs. More speci�cally
the test cases can be divided into i) queries over rec-
onciled IUT functions, and ii) queries calling locally
stored functions over the IUT. In the former group
we �rst investigate queries with no selection, exact
match, and range selections. Then we present re-
sults when more than one function is used in the same
query, to investigate the performance impact of the
type-aware rewrites. Queries with locally stored func-
tions are investigated in one example. We conclude
the tests by comparing the times for some queries over
the 10Mb network with the times obtained when the
same queries were executed over an ISDN network.
Notice that the y-axis in all the graphs represents re-
sponse time in seconds and the x-axis represents the
number of tuples in the test databases. All the mea-

8



surements are performed with preoptimized queries.
Figure 3 shows the execution time of a query retriev-
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Figure 3: Query: select salary(e) from csd emp e;
ing the salaries of the CSD employees. We examine 4
di�erent strategies. The graph on the left shows that
the \DTR" strategy using pure late binding on an in-
stance level is by orders of magnitude worse that the
remaining three strategies. This strategy, �rst gener-
ates OIDs for all instances in the extent of the type
CSD emp. Then, DTR is executed over each of the
OIDs, choosing the resolvent. Finally, the chosen re-
solvent is executed. The resolvent body also contains
predicates to con�rm the right AT of the argument,
which causes the typecheck to be executed once again
before the function value is calculated.

Time distribution
Mediator Ta Tb Net.

DTR 23% 69% 1% 7%
Single instance 5% 80% 3% 12%
No subq. mat. 3% 91% 3% 3%
Subq. mat. 27% 22% 32% 19%

Table 1: Query execution time distribution for the 4
evaluation strategies

Table 1 shows the percentage of the time spend in
the three cooperating AMOSII servers, and the net-
work time for each of the examined strategies. For the
DTR strategy, the biggest portion of the query execu-
tion time is spent in Ta for accessing the relational data
source. Table 2 presents the number of ODBC calls is-
sued by the data source Ta for the di�erent strategies.
The DTR strategy issues by far the most such of calls.
The number of calls is a linear function of the data
sizes in the sources, but as the data volume grows,
each of these calls demands more time, explaining the

ODBC requests / DB size
1000 5000 10000 30000

DTR 251 1251 3001 9017
Single inst. 102 502 1002 3002
No subq. mat. 102 502 1002 3002
Subq. mat. 3 3 3 6

Table 2: Number of data source accesses for the 4
evaluation strategies

hyper-linear growth in the query execution time. We
can also note that the DTR strategy spends 23% of the
time in the mediator. This is due to OID generation,
function resolution, and execution of the protocol for
shipping instances among di�erent AMOSII servers.
The OID generation for IUT instances requires that
OIDs are generated for the constituent types, which
in turn triggers proxy objects generation for the in-
stances imported from the translators. Since the DTR
operator is executed over each instance individually,
there is a large amount of computation involved.

The lower part of the graph in Figure 3a is enlarged
in Figure 3b. Here, we can see the remaining 3 query
processing strategies. The uppermost curve represents
a strategy in which the late bound function call is sub-
stituted by a disjunctive predicate, but the data ship-
ment is still one instance at the time. This type of
nested loop join over a network is named bind-join in
[10]. Query rewrites eliminate OID generation, du-
plicate condition evaluations, and run-time function
resolution. Also, the number of ODBC calls in Ta is
reduced by two thirds. All of this reduces the query
execution time by nearly 10 times. Nevertheless, the
ODBC calls are still the main factor in the query exe-
cution cost. We can also note that the relative network
cost has risen to 12%.

The �rst step into designing a better strategy is to
pass the instances in bulks instead of an instance-at-
a-time protocol. While this strategy, due to the fast
networks used, does not radically improve the result
(the next curve in the graph in Figure 3b), it does
lower the relative network cost to 3% and makes the
�nal query strategy possible.

The �nal strategy, which again reduces the response
time by a couple of orders of magnitude, is based on
the observations that most of the ODBC queries are
issued to compute the extents of the ATs which in-
volve anti-semi-joins translated into nested subqueries
inside a not exists operator. In order to avoid the cost
of repeated data access using parametric queries, we
execute a single non-parametric query and material-
ize an index over all the parameter values in Ta. In
this example the index contains the ssn for the 10%
employees of University A who are also in CSD. In
this way, we reduce the ODBC requests to one per
bulk sent from the mediator to the translator. Be-
ing a main-memory based database, AMOSII facili-
tates a very fast index build-up for data sizes which
can �t into memory of the translator. For this type
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of query where the materialized index is used repeat-
edly, this strategy is clearly advantageous. We can
also see that the distribution of the query execution
time in the last strategy is balanced evenly among the
participating AMOSII servers and the network. Note
that there is one access to the data source per disjunc-
tion branch of the query. Therefore, the skew in the
data distribution will not a�ect the query execution
times. The cost of executing a non-parametric query
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Figure 4: Query: select salary(e) from csd emp e
where ssn(e) = 1000;

and building an index on-the-y has to be compared
with the cost of completing the query without the in-
dex. In the next experiment, we executed a query
containing an exact match selection using the same 4
strategies. The DTR strategy is again by far the worst,
as shown in Figure 4a. On the other hand, the di�er-
ences among the other strategies is not as large as in
the previous experiment (Figure 4b). Also, here the
strategy without index materialization for the nested
subquery performs the best. This is due to the fact
that the non-parameterized query used to compute the
index has a larger cost than the parameterized query
retrieving only the data matching a particular input
tuple. In general the index materialization is favor-
able when: size(input) � cost(parameterized query) >

cost(non parameterized query) + cost(index generation).

In the next experiment we examine queries with
non-equality selections, e.g. range selections. While
the DTR strategy is able to apply the selections en-
capsulated in the DT condition, it is not e�cient when
the query contains non-equality conditions, since such
conditions are then not pushed into the resolvents. In
Figure 5a the execution times of a query containing a
range selection is compared with the execution times
of a query without any selection. It can be seen that

the cost is about equal. In Figure 5b, on the other
hand, there is clear di�erence between the execution
times of the same queries using disjunctive predicates
to model the late binding. This is due to the fact that
the selection is pushed all the way down to the data
sources.
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Figure 5: Selecting salary for the CSD employees with
and without range selection (salary(e) > 2000)

Next, we measure the execution time for queries
containing locally stored functions over an IUT. In this
experiment, we created a locally stored function o�ce
over the type CSD emp storing only 15 rows, and then
executed a query to retrieve the o�ces stored in this
function. Figure 6a compares the execution times of
a naive strategy where the system generates the OIDs
for the type extent and then applies the locally stored
function with the strategy where the IUT instances
of interest are retrieved from the locally stored func-
tion and then validated as described previously. Since
the cardinality of a locally stored function is always
smaller than the cardinality of the whole type extent,
and the validation of an already generated OID is
cheaper than a new OID generation, the validation
strategy always outperform the naive strategy.

The graph in Figure 6b demonstrates the speedup
obtained by typecheck removal using type-aware
rewrites described in the previous section. The query
is normalized to a disjunction with 9 branches, 6 of
which are removed by the optimizer. The execu-
tion times on the other hand show greater than lin-
ear speedup and scalability as could be expected from
the analysis of the number of the disjunctive branches.
This is due to the fact that the 3 remaining branches
after the query transformation are single type queries
with a selection condition. The rest of the 6 queries
are e�ectively join queries over di�erent ATs. In these
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Figure 6: a) Queries with locally materialized func-
tions over IUTs. b) Queries calling several derived
functions over IUTs.

cases, the AT extent functions and the extent functions
of the constituent types are expanded for both the ATs
appearing in the typecheck predicates. The optimizer
cannot infer on the basis of these predicates that the
whole disjunct will not produce any results. The re-
sulting query execution strategy cannot therefore take
advantage of the selections, and ships data propor-
tional to the size of the extents of the constituent
types. This leads to execution times with linear growth
with the size of the extents, as opposed to the much
slower growth of the execution time when the rewrite
rule for removal of the typechecks is applied.

Finally, we briey compare the execution times ob-
tained over a 10Mb network with the results of the
experiments using an ISDN connection over a pub-
lic telephone network. Keeping all the parameters of
the testing the same, the di�erence in the times can
be attributed to the properties of the networks. The
graph in Figure 7a shows that when the number of
the manipulated tuples is low, the results are propor-
tional. However, when the amount of shipped tuples
increases, as with the query without selection used in
Figure 7b, the execution times over ISDN rise faster
than over the 10Mb network. Closer examination re-
vealed that ISDN execution times follow the number
of data bulks sent over the network. We can conclude
that the unproportional increase is due to the fact that
the message setup time compared to the transmission
time per unit is higher in ISDN networks than it is in
the 10Mb Ethernet. Probing the network to determine
the bulking factor will be a topic of future investiga-
tions.
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Figure 7: Comparison of execution times over 10Mb
network with ISDN network.
6 Related Work

The research closely related to the work presented in
this paper can be divided into roughly two groups: (i)
integration systems that support constructs like the
IUT as [5, 4, 14] and (ii) systems that provide basic
multidatabase capabilities, but do not provide IUT-
like capabilities to deal with overlap and reconciliation
(e.g. [10, 18]) so the integration is to be born by the
user, using classical select-project-join queries. In the
latter, the user needs to simulate the IUT with a se-
ries of queries, loosing all the bene�ts of the coherent
view representation and the capacity augmenting fea-
tures. A comprehensive survey of the data integration
�eld is presented in [2]. Due to space constraints, here
we only overview the main di�erences between our ap-
proach and two di�erent query processing strategies
used in systems that support integration of overlap-
ping entities in the data sources. A more elaborate
comparison of AMOSII with other systems for data
integration can be found in [13].

In the literature there prevail two overall strategies
for processing queries in systems that provide integra-
tion of overlapping databases. A representative exam-
ple of the �rst group (where also AMOSII belongs) is
the Multibase system [4]. Here, outer-join based rec-
onciliation is broken into join and anti-semi-join opera-
tors. However, there is neither a concept of OIDs, nor
capacity augmentation in this system, yielding some
of the techniques presented here not applicable. Also,
the proposed query rewrites are based on analysis of
the query attributes which is more complex than the
simple type-based rewrite proposed in this work.

The strategies of the second group are exempli�ed
by the strategy used in the Pegasus [5] system where
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the reconciliation is performed by a reconciliation op-
erators. These are pushed \upwards" the query tree by
the query heuristics, in order to be able to push down
joins over small tables through the expensive outerjoin
operation. This approach has an advantage of more
compact queries in comparison with AMOSII. Some
disadvantages are that selections based on the recon-
ciled functions are not pushed to the data sources for
the anti-semi-join. Also, the whole outer-join needs to
be materialized in the mediator before application of
the reconciliation operator, preventing streamed exe-
cution strategies as used in AMOSII. In the experi-
ments above, we can note that the execution times of
the queries with selections are about one third of the
times without selection, corresponding to the portion
of the integrated extents that overlap.

Late binding has been used for data integration in
[7], but that system uses instance-level evaluation and
no reconciliation facilities.

None of the compared systems provided an ex-
tended experimental assessment of the used strategies
as the one provided in this work.

7 Summary

We presented a novel framework for data integration
based on OO type hierarchies and late binding. Inte-
gration union types (IUTs) were introduced to model a
coherent view of heterogeneous data in multiple repos-
itories. IUTs allows for resolutions of conicts in the
metadata (e.g. naming, scaling etc.) and for dealing
with overlaps in the extents of the integrated types.
Furthermore, instances of the IUTs can be assigned
OIDs used in locally stored and derived functions.

Each IUT is mapped by the system to a hierarchy of
system generated derived types, called auxiliary types
(ATs). The ATs represent disjoin parts (a join and two
anti-semi-joins) of the outerjoin needed for the data
integration. The reconciliation of the attributes of the
integrated types is modeled by a system generated set
of overloaded derived functions, The implementation
of each function is inferred from the CASE clause in
the IUT de�nition.

Several novel query processing and optimization
technique were developed for e�ciently processing
queries containing overloaded functions over the
system-generated OO views. Queries over such a type
hierarchy contain late bound calls. The late bound
calls are translated to disjunctive calculus expression
which are suitable for application of techniques such
as: bulk-oriented processing, type-aware query rewrit-
ing, selective OID generation, and dynamic genera-
tion of indexes for nested subqueries. The reported
measurements compare the impacts of di�erent query
processing strategies showing that the combination of
these techniques drastically lower the execution times,
in some cases by several orders of magnitude.

Our current work includes methods to easily han-
dle non-relational data sources and parallel execution
strategies for integration of large number of sources.
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