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Abstract. This paper presents an approachotgect view database. The results of these queries are then processed to
management for relational databases. Such a view mechderm the answer to the initial query. In this paper, we con-
nism makes it possible for users to transparently work withcentrate oraccessto relational databases via object views,
data in a relational database as if it was stored in an objectrot updates.
oriented (OO) database. A query against the object view Object views of relational databases are an important
is translated to one or several queries against the relationalomponent of multidatabase systéngBright et al. 1992;
database. The results of these queries are then processedLitwin et al. 1990; Sheth and Larson 1990). Most multi-
form an answer to the initial query. The approach is notdatabase systems use a canonical data model (CDM) to deal
restricted to a ‘pure’ object view mechanism for the rela- with the problem of data model heterogeneity. It is gener-
tional data, since the object view can also store its ownally agreed that object-oriented data models are appropriate
data and methods. Therefore it must be possible to processs the CDM in a multidatabase system (Saltor et al. 1991).
gueries that combine local data residing in the object viewUsing the terminology of Sheth and Larson (1990), if an
with data retrieved from the relational database. We discussbject-oriented CDM is used, the different local schemas
the key issues when object views of relational databasemust be mapped to object-oriented structures in the com-
are developed, namely: how to map relational structures t@onent schemas, i.e., object views must be established for
sub-type/supertype hierarchies in the view, how to represerthe different types of component databases. Since relational
relational database access in OO query plans, how to providdatabases have such a dominating position on the database
the concept of object identity in the view, how to handle the market, techniques for developing object views of relational
fact that the extension of types in the view depends on thelatabases are especially important.
state of the relational database, and how to process and op- The results in this paper are based on experiences from
timize queries against the object view. The results are basethe development of an object view mechanism for the rela-
on experiences from a running prototype implementation. tional DBMS Sybase. The approach presented in this paper
is not restricted to ‘pure’ object views of relational databases,
Key words: Object views — Relational databases — Object-since the software component implementing an object view
oriented query processing — Object-oriented federated datazan also store its own data and methods. In fact, the object
bases — Query optimization view mechanism has been implemented by extending an ex-
isting OO DBMS (AMOS). The result is an OO DBMS
which can handle existing relational data in a general and
efficient way. We will use the terrfiranslatorfor this soft-
ware component. Part of the schema of the Translator is an
1 Introduction object view of a relational database. Figure 1 compares the
architecture of an OO DBMS to that of a Transldtor

An object view of a relational database makes it possible for Figr‘]”e 2 shoxvs tfgg design phzsesdindourhgpproach. Firzt,
users to transparently work with data in a relational databasf€ Schema of the object view is decided. This means mod-
as if it was stored in an object-oriented (OO) database. Whe lling the information in the relational database using our OO

the term ‘OO database’ is used in this paper, it refers to ata model. OO data models are semantically richer than the

database system with an OO data model and a query lar€lational data model, and the object view schema explicitly

guage that is at least as powerful as $QQueries against 2 We use the term ‘multidatabase system’ for the general concept of a
the object view are translated to queries against the relationalystem in which it is possible to access data from multiple databases, which
may be distributed, heterogeneous, and autonomous.
Correspondence toTore Risch 3 Note that we are assuming a ‘bottom-up’ development — the object
1 The term ‘object-relational’ is becoming more and more used for this view is created for aexistingrelational database, we do not use a relational
kind of system (Stonebraker and Moore 1996) database as persistent storage for an OO DBMS
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Fig. 2. Object view design phases

captures semantics which was only implicitly represented in  Figure 4 gives the corresponding overview of query pro-
the relational schema. cessing in our Translators. A new phase is added: object
To simplify the mapping between the relational databaseview resolution. Some predicates in the object calculus are
and the object view, we assume that the relational databas#efined in terms of relational database access. During ob-
is structured in a particular way. Relational databases strugect view resolution, these predicates are replaced by their
tured this way are said to kirectly mappableo the target  definitions.
object view. When the relational databaisenot directly A Translator needs a way to represent relational data-
mappable to the object view, we first define an external rebase access in query plans. We use domain relational calcu-
lational schema, i.e., a set of relational views, teatirectly  lus (DRC) predicates for this. Thus, the output from object
mappable. view resolution is an object calculus expression where some
During the third phase, the mapping between the objecpredicates are specially marked predicates (DRC predicates)
view and the relational database is defined usinglaject  representing queries to the relational database.

view definition languageThe types and functions in the ob- The optimization phases face new requirements due to
ject view are created, and a set of object view resolutiorthe fact that part of the Translator schema is a view of a
rules are generated. relational database:

The focus of this paper is oquery processingver ob- o _
ject views of relational data. Figure 3 illustrates the conven- ® The calculus optimizer needs to be extended with new
tional database query processing methodology (Jarke and Semantic rules for simplifying the calculus expression.
Koch 1984) adapted for OO databases. A high-level query ® During algebra generation, the DRC predicates must be
language is used to formulate the query. This is converted replaced with function calls which send SQL queries to
to an internal declarative representation — an object calcu- the relational database. The algebra generator must be
lus expression. The calculus optimizer applies syntactic and €xtended with knowledge of the different ways to gen-
semantic rewrite rules to simplify the calculus expression. ~erate these SQL queries. _

The calculus expression can be translated to many equiv-® The cost estimator must be extended with knowledge of
alent, procedural, algebraic expressions. This translation is the cost of sending different SQL queries to the relational
performed by the algebra generator. The execution cost for database.

each of these algebraic expressions is then estimated and the

cheapest is selected for execufion The reader might find it useful to skim through appendix

C at this point. It describes the query processing steps for
4 Of course, this is only a schematic overview. For example, the entire@N €xample query to the Translator, and even though the
set of possible algebraic expressions is seldom generated, it may even ddetails will be hard to follow, it might assist in providing an

impossible to do so in finite time. One way to deal with the complexity is overview of the problems addressed in this paper.

to use a randomized algorithm for exploration of the search space. Another

common algebraic optimization methodology is to genecateinitial al- 5 A useful analogy is view expansion during query processing in a rela-
gebra expression, and then apply equivalence-preserving rewrite rules tdonal database system. There, relational calculus predicates referring to a
translate the algebra expression into a cheaper one. view are replaced with predicates re ferring to base relations.
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We will end this introductory section by listing the con-
tributions of the paper (Sect.1.1) and by presenting an ex-
ample (Sect. 1.2) which will be used throughout the paper.
The rest of the paper is organized as follows.

Section 2 discusses related work. Section 3 gives a brief
overview of the AMOS project (Fahl et al. 1993), which
is the framework in which this work has been performed.
The section describes the AMOS data model and query lan-
guage, and gives an overview of query processing in AMOS,
which includes presenting the object calculus and object al-
gebra used in this paper. Section 4 covers the three design
phases in Fig. 2. The first phase — specification of the target
object view schema — is only discussed very briefly, since it
has been covered extensively in previous work. Section 4.1
concerns the second phase — creation of directly mappable
external relational schemas. Sections 4.2—4.4 cover the third
phase — creation of the O®- relational mapping. Sec-
tion 4.2 discusses ways to represent relational database ac-
cess in OO query plans. Section 4.3 shows how the concept
of object identity can be provided in the view. Section 4.4
discusses type membership tests. Section 5 covers query op-
timization. Calculus optimization is discussed in Sect.5.1
and algebra optimization is discussed in Sect. 5.2. Section 6,
finally, gives a summary of the paper and discusses future
work.

1.1 Contributions

Some of the discussion in this paper on the relationship be-
tween the relational data model and OO data models, and
the semantics of object views of relational data has been
covered in previous work, especially in the Pegasus project
(Shan et al. 1995). See the section on related work (Sect. 2).
Our main contributions are in the areadfery process-

ing in object views of relational data. The paper aims to give
a complete overview of the problem, including query pro-
cessing. More specifically, the following aspects have not
been covered in previous work:

e The concept of a relational database being directly map-
pable (DM) to an object view and the use of relational
views for relational databases that are not DM.

e The importance of having all relational database access
explicitly represented in object view query plans, the use
of DRC predicates to accomplish this, and the applica-
tions of this to function calls.

e Explicit coverage of the role of object identity and
instance-of relationships during query processing.

e Semantic optimization rules for simplification of sub-
queries which are overlapping due to the definition of
object views, and for removal of unnecessary transla-
tions between OIDs and primary key values.

e A discussion on the additional complexity introduced to
query optimization by the presence of relational database
access in query plans, and a heuristic rule suitable as an
initial way to manage this new complexity.

Since our Translators can store their own data and meth-
ods, the paper also addresses a special case of query pro-
cessing in heterogeneous multidatabase systems, namely in-
tegration of relational and OO databases.
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The functional data model used in this paper is in somesecretary  (salesman ) table with the enr that corre-
aspects closer to the relational data model than many othesponds to the object. For example, the objext is an
object models. However, the problems associated with subinstance of the typsalesman , since there is a tuple with
type/supertype hierarchies, object identity, the instance-oenr=314 in thesalesman table.
relationship, and function/method application, are common
to all object models. The relative simplicity of our object
model should hopefully make the discussion on these gen2 Related work
eral concepts clearer.

Multibase (Landers and Rosenberg 1982) has an architec-

ture similar to that of AMOS and uses the functional data
1.2 The Company examp'e mOdel DAPLEX (Shlpman 1981) as the CDM. AMOSQL

is a DAPLEX derivative, but an important difference is that
Throughout the paper we will use the same example of a ePMOSQL is object-oriented. Queries in AMOSQL can re-
lational database. We will use this example to show the relaEum object |de_znt|f|ers (OIDs). Another difference is the role
tionship between.a relational database and the correspondi gf the translation component. An AMOS Translator captures
object view, and to show how queries against the object vie much .Of the semantics of the data SOurce as pqs&ble,
are procesée d. The examples are intentionally kept very Siv\(/_vher_eas, in Multibase, th.e tran_slated sc.hema is the S|.mplest

' ; ; ossible and all semantic enrichment is performed in the

ple to enable us to focus on .the essentials. The impact tr?%‘tegration modules.
complex databases and queries would have on our approac

is discussed in the section on future work (Sect. 6.1). How-, The Pegasus project (Albert et al. 1993; Ahmed et al.
. . R 1993; Shan et al. 1995) uses the IRIS data model as the
ever, note that scalability regarding database and sche

size is not a problem, since our approach is based on n(;TBDM and an extension to OSQL as the data manipulation
P ' PP r]anguage. In the area of object views of relational data, the

_matenahz_ed VIEWS and_ query translatlon_. No rela_ltlonal dataPegasus project has concentrated on techniques for automatic
is stored in the object view, only schema information and the

: X . ageneration of theschemaof the object view.
mapping tp the rquuon_aI database. The example relation The relationship between schemas in the relational data
database is shown in Fig. 5.

We will use the AMOS data model as our example 0fmodel and schemas in semantically rich data models, such
an OO data model. It is a functional and OO data modelt=_2 OO data model or an extended _entity-relationship

o . (EER) model, is fairly well understood. Translation of an
which is based on the IRIS qlata_mpdel (F|s_hman etal. 1989EER schema into a relational database schema is a central
Lyngbaek et al. 1991), which in its turn is based on the

) ; part of many database design methodologies (Elmasri and
functional data model DAPLEX (Shipman 1981). The SUbsetNavathe 1989). Recent work has shown how to identify se-

of the AMOS data model used in this paper is identical to the : ; . :
IRIS data model. It is further described in Sect. 3.1. Figure 6mant|c modelling constructs in a relational database schema,

. ) ; and how it can be (semi-) automatically transformed into
shows the schema of the corresponding object view of thean EER/OO schema (Albert et al. 1993; Johannesson and

g?:pagg’ d:ta?(:;e.lgh:etypﬁgeta;ye t-gndosfaéenfn?gnee Kalman 1989; Markowitz and Markowsky 1990; Navathe
SUblypes ployee . properties POYEES, and Awong 1987; Litwin et al. 1990).

o o oy st ikt s " The focus of cur wok s omuey processingn ron-
y materialized object views of relational data. We show how

is a multi-valued function. : : : : oo
: . . . queries against the object view are translated and optimized.
E|gure 7 shows the extension o_f the object view. The Query processing in object views of relational data re-
relational database stores information about four employ-Iates to query processing in OO database systeREsy(
e‘es..T,vvq of these (‘anne’ and "bob’) are s.al,es.men.and ON%nd Blakeley 1994). Object algebras and algebra optimiza-
(‘doris’) is a secretary. One of 'them (‘colin’) is ne|thelr a ton are discussed in Straube afdsu (1990), Shaw and
salesman nor a secretary, but still an employee. Accordmglyzdonik (1990), and Demuth et al. (1994). Other related re-
Fggre :r?((j)ueli t))e';\,?,gro?t?ﬁgs 'Sr;]g;? dogéegfr\eltﬁr%(siéﬁge’s of search areas are views in OO database systems (Abiteboul
'sale:sman. on'e a direct instance skcretar and one and Bonner 1991; Bertino and Martino 1991; Chomicki and
’ y o Litwin 1994; Heiler and Zdonik 1990), and work on provid-

: ; 6
a direct instance oémploy_ee : . ing a more general view mechanism for relational databases
Informally, the semantics of the mapping between tuples

in the relational database and objects in the object view is agKri.SrEre]aVTOl:Ltrxoitt ?:Ilbiglg 1r)élate d to ours that we are aware
follows. There is one object for each tuple in graployee y

table. The primary keenr is used to define the correspon- of is reported in (Kemp et al. 1994). The main differences

dence between tuples and objects. For example, the enr 3£ﬂ their approach are that object identifiers (OIDs) are stored
corresponds to the objea1 . All objects are instances of in the relational database, that new objects cannot be added

the emplovee tvbe. An obiect is also an instance of the to the relational database, and that queries that need to com-
tvpe seF)cre{ar yp(s'alesma# ) if there is a tuple in the bine relational data with other data causes the execution of
yp y P many small SQL queries. We will further relate our work

6 We distinguish between an object being a direct instance of a type an 0 theirs .later in the paper. Me.thOdS tO. completely translate
being an instance of a type by generalization. For example, the object :el i O queries to the correspondmg relational ones have been

adirect instancef the type salesman, and it is &stance by generalization ~ Proposed recently by (Qian and Raschid 1995) and (Yu et
of the supertypes to salesman. al. 1995), but neither of these proposals handle OO queries
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enr | name I salary | manager emp I hobby enr | typingspeed enr | district | sales
314 | anne 20000 265 314 sailing 358 |1100 159 | charlotte| 70
159 | bob 15000 314 314 golf 314 | raleigh 40
265 | colin | 25000 | NULL 159 golf
358 | doris | 13500 | 314 265 tennis

265 fishing

265 golf

358 tennis

Fig. 5. The company database (example of a relational database)

manager

salary hobby
P arrerin>
enr ; name

typingspeed
district

Fig. 6. Schema of the object view of the company database

that return OIDs or that combine object view data with data  Types are organized in a subtype/supertype graph. Fig-

in the relational database. ure 8 shows part of the type graph of AMOS. The most
general type isobject ; all other types are subtypes of
object . User-defined types are subtypes of a special type

3 AMOS called usertypeobject . Types are objects too, and are
instances of the typg/pe . User-defined types are also in-

This section gives an overview of the AMOS project (Fahl stances of the typasertype

et al. 1993) which is the framework in which this work has A function is implemented in one of three different ways;

been performed. Section 3.1 presents the data model arittmay bestored derived or foreign For stored functions,

query language used in AMOS. Readers familiar with thethe extension is stored directly in the database. A derived

IRIS data model (Fishman et al. 1989) and the OSQL quenyfunction uses the AMOSQL query language to calculate the

language (Lyngbaek et al. 1991) may skip this section sincextension. A foreign function is implemented in a general

the subset of the AMOS data model and query language thgirogramming language, such as C or LISP. Functions can

is used in this paper is identical with IRIS/OSQL. Section 3.2be overloaded and they are invertible.

describes the multidatabase aspects of AMOS. In this paper, The general syntax for queries is:

we concentrate on the AMOS components called Transla-

tors, i.e., the software that implements an object view of aS€lect <result> _

relational database. Translators are the subject of Sect. 3.5r each <type declarations for local

Section 3.4 briefly describes query processing in AMOS and variables>

the object calculus and object algebra used in this paper. Where <condition>

For example:

3.1 The AMOS data model and query language select name(e)
for each employee e
There are three basic constructs in the AMOS data modelvhere hobby(e)="sailing’

objects typesand functions Objects are used to model en- : and queries retubaas of tuples of obiect
tities in the domain of interest. Types are used to cIassify'A"vIOS functions quenes retutiags o lupies 18GtS

denoted{| < ... >, ..., < ... > |}. The semantics for

ObJ.eCtS; an .ObJeCt IS an Instance of one or more types. Profguested function calls, which will be referred to as ‘DAPLEX

erties of objeqts and relationships between objects are mo Semantics’ (Shipman 1981; Gray 1984), is defined as:

elled by functions.
Types are divided inttiteral types andsurrogatetypes.  f(g(x)) = {| y such thaty is in f(z) andz is in g(z) |}

The extension of a literal type is fixed (often not enumer-

able), and instances of a literal type are self-identifying; no

extra object identifier is needed. Examples of literal types3.2 The AMOS multidatabase system architecture

areinteger , charstring , andreal . Surrogate types

and instances of surrogate types are created by the systelhe software components of the AMOS multidatabase sys-

or by users. Instances of surrogate types are identified byem architecture (Fahl 1994) are shown in Fig. 9. Using the

a unigue, immutable, system-generated OID. Examples oferminology of Sheth and Larson (1990), it can be seen as

surrogate types angerson , document , country , etc. a combination of a loosely coupled and a tightly coupled
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direct_instance_of (:typeEmployee)=:e3
direct_instance_of (:typeSecretary)=:e4
direct_instance_of (:typeSalesman)=:e2
direct_instance_of (:typeSalesman)=:el

enr(:el)=314 enr (:e2)=159 enr (:e3) =265 enr (:e4)=358
name(:el)='anne’ name (:e2)='bob’ name (:e3)='colin’ name (:e4)="doris’
salary(:el)=20000 salary(:e2)=15000 salary(:e3)=25000 salary(:e4)=13500
manager (:el)=:e3 manager (:e2)=:el hobby (:e3)='tennis’ manager (:e4)=:el
hobby (:el)='sailing”’ hobby (:e2)="golf’ hobby (:e3)='fishing’ hobby (:e4)='tennis’
hobby (:el)="golf’ district(:e2)='charlotte’ hobby (:e3)='golf” typingspeed(:e4)=1100
district(:el)='raleigh’ sales(:e2)=70

sales(:el)=40

Fig. 7. Extension of the object view of the company database

object
type function literal ce usertypeobject
usertype number boolean ... charstring (user defined types)

integer real

Fig. 8. Part of the AMOS subtype/supertype graph. Ebch represents a subtype/supertype relationstiggect  is the most general type

£ o\ R L Figure 10 shows the subtype/supertype graph for Trans-
lators. Mapped types are subtypes to the typertype-
object and are instances of the typeappedtype . Fig-
ure 11 shows how mapped types fit into the subtype/super-
type graph.

We will use the ternmost general mapped tygengmt
for short) for mapped types that are direct subtypes to

usertypeobject . In Fig. 11, the typeMT; andMT; are

DBMS DBMS DBMS DBMS

mgmts. In the company example, the tygraployee is the
Ej Ej 8 Ej only mgmt.

(Integrator )  (Integrator )

(Translator ) ~ (Translator ) ~ ("Translator )  (Translator )

) ) ) ) We will also use a function callecthgmt. The function

Fig. 9. Software components in the AMOS multidatabase system amh'tec‘takes a mapped type MT as argument and returns the super-
t o

ure type to MT which is a mgmt. For example:

federated database system. The basic way to access dd{}jgmt(ftypeSalesman) - EtypeEmponee
mgmt(:typeEmployee) = :typeEmployee

in AMOS is through a multidatabase language, but it is also ) : ) ~
possible to provide integrated views of multiple data Sourcesmg_mt(dwectgnstance_of(.e4)_) n

In this paper, we concentrate on Translators for relational — Mdmt(typeSecretary) = :typeEmployee
databases, i.e., the software component that implements an

object view of a relational database. o ) .
3.4 Query processing in AMOS — object calculus and object

algebra

3.3 Translators ] ] ] ) ]
Figure 3 in Sect.1 gives an overview of query processing

in AMOS. This section uses an example query to describe
the query processing steps and the object calculus and alge-
bra used in AMOS. A more thorough description of query
rocessing in AMOS can be found in (Litwin and Risch

A Translator provides the functionality of an AMOS DBMS
augmented with the notions ohapped typesnd mapped
objects A mapped type is a type for which the extension is
defined in terms of the state of an external database. In OLR
case, the external database is relational, and the extension
of a mapped type is defined so that there is a one-to-one
mapping between instances of the mapped type and tuples kelect s, salary(manager(s)) Q)
some relation or view in the external database. The instance®r each salesman s

of mapped types are called mapped objects where hobby(s)="golf’

Cohsider the following AMOSQL query:

7 The notions of mapped types and mapped objects are similar to what 8 (Litwin and Risch 1992) use the logical language ObjectLog to de-
is calledvirtual classesand imaginary objectsn (Abiteboul and Bonner  scribe internal query processing. Object calculus expressions in this paper
1991). The main difference is that the object view in Abiteboul and Bon- correspond to type-resolved ObjectLog rules in (Litwin and Risch 1992).
ner (1991) is defined over an OO database, rather than over a relation@bject algebra expressions in this paper correspond to type- and binding-
database. pattern-resolved ObjectLog rules in (Litwin and Risch 1992).
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////Ezfj\ function literal
usertype  mappedtype number boolean
integer real

Fig. 10. Subtype/supertype graph for Translators

object

usertypeobject

T Y

MT, MTg UDT, UDTy

N N

MT,  MT, UDT,  UDT,

/\

MT, MTs

Fig. 11. Mapped types X/ 11 _¢) and user-defined type&/(DT1_4) in the
subtype/supertype graph for Translators

A natural language formulation of this query would be some-
thing like: ‘for each salesman that has golf as a hobby, re
trieve that salesman together with the salary of his/her ma
ager'.

The calculus generator transforms the query to a normal
ized, type-resolvetf object calculus expression (existential
guantifiers are implicit):

{s,sal |
Employee(m) A
sal = 5Lar Yemplopee —integer(m) A
m = Manageremployee—employee(s) A
'gol f' = hobbyempioyee—charstring(s) A
Salesman(s) }

The calculus optimizer applies syntactic and semanti
rules to simplify the calculus expression.
such rules are applicable.

The algebra generator transforms the calculus expressi
to equivalent procedural representations — object algebra e
pressions. Figure 12 shows two of the possible object algebr
equivalents. The input to and output from an algebra opera
tor is a bag of tuples of objects. For simplicity reasons, we
do not show the full signature of the type-resolved functions
in the algebra trees.

The leaf nodes in an algebra tree are enumerable typeg
producing their extent as output. An algebra operator is one

of {m, o, x,U,N,x,v}. Ther, x, U, N, and x operators
have the same semantics as their relational counterparts (
masri and Navathe 1989), with the exception that input an
output are bags (denoted...|}) rather than sets. The
(generate) operator is a new operator that performs func

9 Disjunctions of conjunctions, no nested function calls, existential quan-
tifiers moved out as far as possible.
10 | e. where functions are annotated with their type signatures

charstring

c
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usertypeobject

(user defined
and mapped
types)

tion application. It can thereby introduce objects other than
those produced by the leaf nodes into the query plan. In this
way, the~ operator is similar to the generate operator in
Straube andDzsu (1990), and the image operators in Shaw
and Zdonik (1990) and Demuth et al. (1994). Théselect)
operator is identical to the relational selection operator with
the exceptions that input and output are bags, and that the
selection condition may contain function calls. Thando
operators are defined formally in appendix A.

Figure 13 shows the flow of ddfaif our example query
is executed according to the left plan in Fig.12 (assuming
the database extension in Fig. 7).

Let us use the node marked (*) to illustrate the ‘DAPLEX
semantics’ of they operator. The employee object (:el) of
the first input tuple €:el, 20000) is the manager of two

n'(_amployees (:e2 and :e4). This means that the first input tuple

results in two output tuples<¢el, 20000, :e2 and <:el,
20000, :e4-). The employee object of the second input tuple
is not the manager of any employees, which means that the
second input tuple results in zero output tuples. The third
and fourth input tuples result in one and zero output tuples,
respectively, giving a total of three output tuples.

To simplify the expressions in our examples, we allow
the v operator to exclude some of the input variables from
the result, i.e., perform projection. This is used in the top
two nodes in the query plan to the right in Fig. 12.

The optimizer uses a cost model (Litwin and Risch 1992)
to select the cheapest algebra expression.

4 Object view design

In this case NOThis section covers the three design phases of our approach

illustrated in Fig. 2.

N The first step when developing an object view for a rela-
fional database is to identify semantic modelling constructs

fh the relational database, and to define the OO schema
corresponding to the relational database. Information that
could be used as an aid in this process includes the database
schema, the database content, and functional dependencies.
This has been covered extensively in previous work (see
ect. 2) and will not be discussed further here.

Section 4.1 concerns the second phase — creation of ex-
rnal relational schemas that are DM to an object view. We

e
E}'ssume that subtype/supertype relationships are represented

n a particular way in the relational database, and define
relational views otherwise.

11 Since AMOS uses stream-oriented query processing (Straub®zsul
1995), the intermediate results are not actually materialized. On the physical
level, the input to and output from an algebra operatorss@am of tuples
of objects
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T <s,sal>
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<m, sal, s>
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<m, sal>

Y\ im) .<m, salary(m)>

T <m>

Employee

T <s2>

Salesman

T <s,sal>

YAr(s.m) .<s,salary(m)>

<s,m>

Yar(s,n) .<s,manager (s) >
A

<s>

Gas) .hobby (s)="golf’

T <S>

Salesman

Fig. 12. Two of the possible object algebra representations for the example query: straightforward, but non-optimal translation fromletijcalod ¢ne
of the candidates for optimal execution strateggh(t)

{{<:e2,20000>,
<:el,25000> |}

T A(m,sal,s,s2) .<s,sal>

<:e3,25000, :el, :el>|}

{<:e1,20000, :e2, :e2>, T

M)\.(<m, sal, s>, <s2>) .s=s2

<:e3,25000,:el,>[}

{<:el,20000,:e2,>, T

O\(m,sal,s).hobby(s)='golf’

{|<:e1,20000, :e2>,
<:e1,20000, :e4d>,
<:e3,25000,:e1>p

A

{<:el>,
<:e2>|}

Salesman

'YA.(m, sal) .<m, sal,manager™! (m)>

(*)

{|<:
<:
<:
<:

Fig. 13. Data flow during query processing according to the left plan in

Fig. 12

el,20000>,
e2,15000>,
e3,25000>,
e4,13500> |}

Yk(m) .<m, salary (m)>

{<:

<:

<

<:

el>, 4

e2>,
e3>,
e4>|}

Employee

During the third design phase, the mapping between the
relational database and the object view is created. In our
prototype implementation, the mapping is defined using a
declarative object view definition language like the one in
(Albert et al. 1993). For example:

declare primary key of 'employee’
is ‘enr’;
create type employee as
mapped to relation 'employee’;
create function
salary(employee)->integer
as mapped to attribute
‘employee.salary’;

The Object View Definition Language is not discussed fur-
ther here.

The view definition commands result in the creation of
the object view types and functions, and in a set of object
view resolution rules. Sections 4.2—4.4 concern the internal
representation of the O©- relational mapping.

Section 4.2 discusses the importance of having all rela-
tional database access explicitly represented in query plans in
the object view. We use DRC predicates for this. Section 4.3
shows how the concept of object identity can be provided
in the object view even though there is no such concept in
the relational data model. Section 4.4 discusses type mem-
bership tests in object views. The extension of types in the
object view depends on the state of the relational database.
The consequences of this for query processing are discussed.

4.1 DM relational views

The concept of subtype/supertype relationships in OO data
models has no corresponding concept in the relational data
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(A) salary

employee secretary salesman
(RD Ignx_lname I salaryl |9_ur_l typingspeedl Im[ district | sales l
R2 secretary salesman
( ) |m| name | salaryl typingspeedl Igm;l name | salary I district I sales I
secretary’ null if null if
’sal:srman’ jobtype="salesman’ jobtype="secretary’
employee
(R3) - .
|en:| name I salary |jobtype | t:yplngspeedl district I sales]
(R4 empl emp2 emp3 secretary salesman
) |ml name | |_em;l salary] Igm;l typingspeedl |§QLI district I sales l

Fig. 14. Representing subtype/supertype relationships in relational schemas. Four alternative mappings from the AMOS schema (A) to relational schemas
(R1, R2, R3, R4) are given

model. When subtype/supertype relationships exist betweeternative (R2) cannot be used for partial specialization. Al-
objects in the domain which is modelled, this is only repre-ternative (R3) cannot be used for overlapping specialization.
sented implicitly in relational databases. To simplify the mapping between the relational database
Figure 14 shows four alternative mappings from anand the object view, we will assume that subtype/supertype
AMOS schema, where subtype/supertype relationships areelationships are represented in a particular way in the re-
represented explicitly, to a relational database schema [adafational database. Relational databases represented in this
ted from Elmasri and Navathe (1989)]. Alternatives (R1) andparticular way are said to be DM to the object view.
(R2) are probably the most common. Note that the AMOS  When an object view is defined over a relational database
schema is a subset of the company example used elsewhetteat is not DM to the object view, the first step is to use the
in the paper. relational view mechanism to define an external relational
In alternative (R1) all types have their own relation. In schema thais DM.
alternative (R2) there is no relation for the supertype em- We define DM as follows:
ployee. The attributes (functions) of the supertype are du-
plicated in all the relations representing the subtypes. Al-Let OS be an EER/OO schema and RS the corresponding
ternative (R3) has one relation for all types. Tibbtype relational database schema. RS is DM to OS if:
attribute specifies the type of the employee (secretary or for each type TP in OS there exists a relation R in RS
salesmarff. The relation schema contains all the attrib such that there is a one-to-one mapping between instances
utes of all the subtypes. If an attribute is not applicableof TP and tuples in R.
(e.g., typingspeed  for salesmen) it is given the value _
null . Alternative (R4) is similar to (R1), but the name (End of definition.)
and salary for employees are stored in separate relation
This kind of vertical fragmentation is often used to avoid
null  values in a relation. There are inclusion dependencie
from emp2.enr to empl.enr , and fromemp3.enr to
empl.enr .
Alternatives (R1) and (R4) can be used for all kinds of
specialization (overlapping/disjoint and total/parti&l)Al-

T Fig. 14, schemas (R1) and (R4) are DM to schema (A),
é[vhereas schemas (R2) and (R3) are not.

The main benefit of having the relational schema DM
is that the object view mechanism does not need to handle
all possible cases of relational database schemas. The reason
for choosing our particular representation is that it simpli-
fies management of the instance-of relationship. To check
whether an object is an instance of a particular type, or to

12 Or null, if the employee is neither a secretary nor a salesman (Yjust’
an employee).

13 A specialization isoverlappingif an instance of the supertype can be
an instance of more than one of the subtypes. Otherwisedisjsint A of some of the subtypes. Otherwise itpartial. The overlapping/disjoint
specialization igotal if an instance of the supertype must be an instance and total/partial criteria are orthogonal.
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retrieve all instances of a particular type, it suffices to ex-A straightforward, but naive, OO-to-relational mapping
amine a single relatidf. would be to view the name and salary functions as one
When an object view over a relational database that isatomic unit each, and implement them as foreign functions
not DM is going to be created, the developer must first crewhich made calls to the relational database. This would re-
ate an external relational schema that is DM to the objecsult in a query plan which would start with the salary func-
view. Consider, for example, schema (R3) in Fig. 14. Thetion, which would execute the following SQL query:
following SQL statements could be used to define an exter-

nal schema DM to schema (A): Sel@%terinrs;{g:;—fg(‘)%gyee

create view employee* as For each of the results (say X) of this query, the name func-
select enr, name, salary from employee tion would be called, resulting in SQL queries of the fol-
lowing kind:

create view secretary* as
select enr, typingspeed select name from employee where enr=X
from employee

where jobtype="secretary’ It is obvious that an optimal translation should result in a

single query against the relational database:

create view salesman* as select name from employee
select enr, district, sales where salary=15000
from employee . . .
where jobtype='salesman’ The problem with the simple approach taken above is that

access to the relational database is embedded in the code of

The attribute(s) we use as the basis for the instance-of rethe salary and name functions. For the optimizer to be
lationship may contain duplicates. This may happen if theable to reason about and optimize access to the relational
attribute is part of a composite key, or if key constraints database, it is essential that all relational database access is
are not enforced. These cases require relational view definkepresented explicitly in query plans.
tions with a ‘distinct’ specification to produce DM external A general requirement on all kinds of Translators should
schemas. be that atomic units of access to the foreign data source

Note that it is not possible to create DM external rela- are represented in Translator query plans in some way. The
tional schemas for all kinds of relational database schemagjuery processor of the Translator must be extended with
For example, the DM external schema over schema (R3knowledge about the foreign data source, so that it can de-
above could only be created because we assumed that tlede in which cases it is possible and advantageous to com-
domain of thejobtype attribute was fixed. Suppose that bine multiple atomic units of access into a single call to the
this assumption could not be made, i.e., that the domairdoreign data source.
of the jobtype attribute was character strings in general In our case, where the foreign data source is a relational
rather than the two specific character strings ‘secretary’ andlatabase, we can take advantage of the fact that on a syntac-
‘salesman’. In that case, the DM extern | schema shouldic level, predicates in the DRC are a subset of the predicates
have one relation for each distinct value that occurred in theallowed in the object calculus used here. Access to the re-
jobtype column. In other words, the number of relations inlational database is therefore represented in the Translator
the external schema would depend on the state of the urguery plan with DRC predicates. The calculus optimizer of
derlying database. Such views cannot be created in currerthe Translator treats these predicates just like any other ob-
relational database systems. More general view mechanisnjsct calculus predicates, whereas the algebra generator is ex-
for relational databases are discussed in Krishnamurthy eiended with knowledge of how to combine DRC predicates
al. (1991) and Litwin et al. (1991). to replace them with SQL calls to the relational database.

4.2 Representing relational database access in query plans4.2.1 DRC predicates

In most cases, it is advantageous to translate AMOSQL queThe object calculus representation of a query to the Trans-
ries to as few and as large SQL queries as possible. A naiviator will contain sp.eC|aIIy marked predicates representing
translation method that leads to a large number of smalfccess to_the re_Iatlon_aI database. The semantics of these
queries against the relational database would result in unPRC predicates is defined as follows:
necessary communication between the Translator and the ) ) ) )
relational database. a DRC predicatesr(x, . . ., zy) is true if and only if there

For example, consider the following AMOSQL query: IS @ tuple< zi,..., 2, > in the relation named- in the

relational database.

select name(e) (Q2)
for each employee e
where salary(e)=15000

(End of definition)

All functions in the object view which require access to
14 The pivot relation plays a similar role in PENGUIN (Barsalou et al. the relational database are defined in terms of one or more
1991), which basically is a system where views can contain nested relationdRC predicates. During object view resolution, predicates
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using such a function are replaced by their definitions. For( Translator ) ("Application; ) «++ (_Application, )

examplé®: \ X /

Salaryemployeeﬂinteger(e) =sal & RDBMS

. N\ xemployee(enr, ,sal, ) @

We now return to example query (Q2). The object cal-
culus representation of this query will contain two DRC Fig. 15. The Translator works in parallel with existing applications
predicatet’:

{n|... A xemployee(enr,n, , ) A Algorithmic generation of OIDs means that the OID is
A semployee(enr, 15000 ) A ) somehow calculated based on the value of the primary key.
’ proyee B B One way to guarantee that different values always generate

which in the executable query plan will have been replaceddifferent OIDs is to represent OIDs by a concatenation of the

with the desired, single, SQL query: relation name and the primary key value. This is proposed as
a plausible implementation in the Pegasus project (Ahmed

select name from employee et al. 1993).
where salary=15000 In the mapping tables approach (Fahl 1994), which is

used in AMOS, there is no mathematical correspondence be-
tween the OID and the primary key value. OIDs for mapped
4.3 Object identity objects are generated dynamically the first time they are
needed and are thereafter maintained by the Translator. The
A major difference between relational and OO databasegnapping between OIDs and primary key values is stored in
is that relational databases avalue basedwhereas OO internal tables in the Translator.
databases ar@entity based The reason for calling OO The approach to OID management described in this pa-
databases ‘identity based’ is that objects have an existengeer does not depend on whether the algorithmic or mapping
independent of the values of their attributes. Each object i¢ables approach is used.
uniquely identified by an OID which can always be used The mapping between OIDs and primary key values is
to refer to it. In contrast, if two tuples in a relational data- modelled with system-generated functions caltsd map
base have identical values for all attributes, the tuples ardéunctions.
considered identical. This is usually handled by having a Since the Translator provides an object view ofeaq
set of attributes (the primary key) whose values are alwaysdsting relational database, it may have to coexist with other
different for different real-world objects applications of that database. This is illustrated in Fig. 15.
In an object view of a relational database, there will be aThis makes it not feasible for the Translator to keep locks
correspondence between primary key values in the relationgdn all relations from which OIDs have been generated, since
database and OIDs in the view. The Translator must generaféat would soon end up locking large parts of the data-
OIDs which correspond to the different primary key valuesbase from other applications. Transactions in the relational
and guarantee that a primary key value is mapped to thé€latabase started by the Translator can therefore be charac-
same OID each time it is accessed. This is a general problerigrized as ‘access and commit immediat€lyThis means
for object views (Abiteboul and Bonner 1991). Suppose, forthat oidmap functions must access the relational database
example, that an application issues a query which returngo check that the primary key value is still there, since it
an OID (let us call thisobj). The application disconnects may have been deleted by another application.
from the Translator but maintains the reference to :obj. The The oidmap functions are defined in terms of DRC pred-
next time the application connects to the Translator, it issueécates and another kind of system-generated functions called
a query which retrieves some property of :obj. Now, theoid translatefunctions. This avoids that relational database
Translator must map :obj to the same primary key value agiccess is embedded within the code of theroiap functions.

when it was retrievel§. The oidtranslate functions translate between OIDs and pri-
Two approaches to generation and maintenance of OlD&ary keys but do not access the relational database.
in object views can be distinguishealgorithmic generation Section 4.3.1 describes oidap functions and Sect. 4.3.2
of OIDs, and the use of Ollnapping tables describes oidranslate functions. Section 4.3.3 discusses the
semantics when primary key values for which OIDs have
1% The complete definition of this function is given in Sect.4.3.1. been generated are deleted from the relational database.

The variable “ can be read as "don’t care”. For readability, we use this For ease of presentation we will only consider primary

notation for variables that only occur once in the query plan. keys consisting of a single attribute. This can easily be ex-
16 A complete description of the query processing steps for this query is )

given in appendix D. tended to primary keys consisting of multiple attributes.
17 Most commercial relational databases do not enforce tuple uniqueness.
See Sect. 4.1.
18 |n Kemp et al. (1994), OIDs are stored in the relational database. Extra
‘OID columns’ are added for this purpose. We want to avoid this approach, 1° We assume that the relational databsseemaused when defining the
since it assumes permission to modify the relational database. mapping to the object view is not changed.
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4.3.1 oidmap functions 4.3.2 oidtranslate functions

The oidmap function is overloaded and there is one resol-Just like the oidmap functions, an oidranslate function
vent function for each mapped type. An aithp function takes a mapped object as argument and returns the primary
takes a mapped object as argument and returns the prima*&ﬁy value that the object is translated to. However, unlike
key value that the object is mapped to. IMT be a mapped 0id map functions, oidranslate functions do not involve ac-
type, REL be the relation that MT is mapped to, ah@l be  cess to the relational database. They are only concerned with
the literal type corresponding to the domain of the primarythe translation between OIDs and primary key values. The
key attribute of REL. For each MT, the system generates th@id translate function is overloaded and there is one resol-

function vent function for each mgmt:
oid mapyr— LT oid translateyraypr—rT
For example: For example:

. otd translatecmployee—integer
oid MapPemployee—integer poy 9

_ Oid translate functions are only defined for mgmts. Subtypes
0id Mapsalesman—integer to these types inherit the oitlanslate function.

All functions in the object view that reference a mapped
type in their signature are implemented as derived functiong, 3 3 peletion semantics
which make a call to the oidhap function. For example, the
salaryemployee—integer fuNction is defined in terms of the

. . , Since the Translator does not keep locks on relations from
0id MAPemployee—integer TUNCiON and a DRC predicate:

which OIDs have been generated, primary key values in
these relations may be deleted by other applications. This
section discusses possible semantics for the object view
) when this happens. In the following discussioabj is a

0id Mapemployee—integer(€) = €nr A mapped object anMT is the mapped type of which :obj is

xemployee(enr, ,sal, ) a direct instance.

Let us first consider the case when the primary key value

We assume that the semantics for amdp functions implies s deleted from a relation which is mapped to a type which
that a result value must be present in the relational databasg not an mgmt. This causes no problems — the only thing
in order to be returned. This means that apart from transthat happens is that the type membership for :obj changes.
lating between OIDs and primary key values, an midp  |nstead of being a direct instance of MT, it will be a direct
function must access the relational database. This is true rgnstance of the supertype of MT. For example, if the tuple
gardless of whether it is used in the forward or backwardwhere enr=314 is deleted from the salesman relation, the
(inverse) direction. object :e1 will no longer be an instance of the type salesman,

As was discussed in Sect. 4.2, good optimization requiregut it will still be an instance of the type employee.
that all relational database access is represented explicitly in - The problems start when (1) MT is an mgmt, and (2)
query plans. We therefore define all aitbp functions as  some application has a handle to :obj. Suppose, for example,
derived functions: that some application has issued a query against the object
view which returned the object :el, that the application keeps
a reference to this object, and that later the tuple where
enr=314 is deleted from the employee relation. The question

5alaryemployee—>intege7‘(e) =sal &

oid mapMTHLT(OBJ) =VAL &

oid translatemgmiiry—r7(OBJ) = VAL A is what should happen when the application issues a new

«*REL(...,VAL,..)) query which involves the object :el, for example:
For example: select salary(.el)
0id MaPemployee—integer(€) = €nr & In the current prototype, a query like this will simply return

. _ an empty result. The Translator will first execute
oid translatecmployee—integer(€) = enr A
*employee(en’r, . ) oid tranSlateen?,ployee%intege’r‘(:el)
to get the primary key value (314) that :el is mapped to.

0id MaPsalesman—integer(S) = enr < It will then send the following SQL query to the relational

oid translatecmpioyee—integer(s) = enr A database:

xsalesman(enr, , ) select salary where enr=314

The DRC predicate ensures that the result value is a primargince there is no tuple where enr=314, the initial query will
key in the relation that MT is mapped to. The didnslate  not return anything.

function handles the translation between OIDs and primary  Other semantics are conceivable for a situation like this.
key values. The Translator could notify the application that the reference
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to :obj is obsolete, rather than just return an empty result foiis not an instance of the type department, even if there is a
queries like the one above. The notification could either bedepartment with the primary key value dnr=314.
performed the first time the application uses :obj in a query, Type membership tests require access to the relational
or as soon as the primary key value is deleted. The lattedatabase. This makes these tests very expensive, and it is
case would require an active database mechanism (Hansa@ssential that they are handled in an efficient way by the
and Widom 1993; S#d and Risch 1996) or some kind of optimizer. The relational database access required by type
monitoring (Risch 1989) of the relational database. membership tests should be combined with the other rela-
A related question is what should happen if the primarytional database access in the query plan. For example, con-
key value is added to the relational database again. In theider the following AMOSQL query:
current prototype, the primary key value is mapped to the
same OID and applications are unaffected by the fact thé
value was deleted for a period of time (unless they tried to
use it while it was absent). This may be fine for some do-A normal OO query plan would start by retrieving all sales-
mains, but would be dangerous if primary key values couldman objects and then applying the salary function to these
be re-used for different real-world objects. Employee num-gbjects. If this strategy was followed for an object view of a

bers may, in fact, be an example of this if they are re-usedelational database, this would imply execution of the query
when employees quit.

elect salary(s) for each (Q3)
salesman s

select enr from salesman

to retrieve the primary key values for all salesman objects
and then for each of these values (say X) executing queries

Query plans in OO databases often contain tests of th((amc the form

instance-of relationshipi.e., which objects are instances of gelect salary from employee where enr=x

which types. We will refer to these teststgpe membership

tests They may, for example, be used to retrieve all in- Clearly, this is a non-optimal execution strategy. An optimal
stances of a type or to test whether an object is an instancexecution strategy results in a single SQL query:

of a particular type.

Consider, for example, query (Q1) from Sect.3.4. TheSelect salary
Employee(m) predicate in the object calculus representationffom employee, salesman
of this query constrains the type membership of the variablevhere employee.enr=salesman.enr
m. In the object algebra translation to the left in Fig. 12, the
Employee(m) predicate from the calculus has resulted in
the Employee node at the bottom, generating the set of a
employee objects.

In an OO database, the relationship between objects anlg1 s
types (which objects are instances of which types) can b%x
specially represented directly in the database, for example;
by encoding the type information directly in the OID. This
mﬁqk_es t|It possible to implement type membership tests VernrpOBJ) <
efficiently. . _

In an object view of a relational database, the relation- oid translatemgmyrp)—1r(OBJ) = VAL A
ship between objects and types depends on the state of the *REL(...,VAL,..))
relational databag® Definition:

4.4 Type membership tests

The problem is that type membership tests require access to
@he relational database, and that this access is embedded in
he code implementing these tests.

To resolve this problem, observe that the definition of the
tance-of relationship for mapped objects and types can be
pressed as follows:

For example:

A mapped objecO B/ is an instance of a mapped tyj&e’ Employee(e) <
if:

oid translatecmployee—integer(€) = enr A

(a) OBJ is mapped to a primary key value that occurs in  xEmployee(enr, , , )
the relation thafl’ P is mapped to, and
(b) mgmt(T P) = mgmt(direct instance of(OB.J)). Salesman(s) <

_ oid translate, integer(8) = enr A
(End of deflnltlon) employee LILthCT( )
xSalesman(enr, , )

Condition (b) is necessary to handle cases where a priThis assumes that condition (b) in the definition above is
mary key value occurs in two relations which are mappedguaranteed by theid translate predicate. For example, as-
to types with different mgmts. For example, an employeesume that :d is a department object which is mapped to the
object which is mapped to the primary key value enr=314primary key value 314. Then the function calld trans-

late i should return an empty result, and
20 Unless the extent of mapped types is assumed to be stable, i.e., ng . ¢7Plovee integer() Pty

; : -1
tuples are added or removed from relations corresponding to mapped typeb1€ function call oid translate_ integer—employee(314)
In that case, the extent of a mapped type can be materialized, once and f&hould return the employee object :el but not the depart-
all, in the Translator. This assumption is made in Kemp et al. (1994). ment object :d.
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Substitution of TP(OBJ) predicates according to the Using the instancef function, this can be written as:
above rule is a part of the object view resolution phase.
Again, consider AMOSQL query (Q3). The final calculus OBJ = instance ofiype—object(T'P) <
representation of this query after object view resolution and  ;d translatemgmyrp)—i(OBJ) = VAL A

calculus optimization is as follows «REL(...,VAL,..))
{ sal | This substitution rule can only be applied when TP is
known at compile-time. For queries (Q4) and (Q5) above,
xsalesman(enr, , ) A TP is bound at run-time, which means that the execution
xemployee(enr, ,sal, )} plan contains calls to the inverse of instarafe

. ) . ) . The instance o f—lobjechty,,e function takes an object
Which results in a single SQL query against the relationalyg argument and returns the types that the object is an in-

database: stance of. The semantics for @nstance of oy ect—type
select salary (OBJ) function call is as follows: Calculate the primary key
from employee, salesman value (v) that corresponds to OBJ. Let TREE be the subtree
where employee.enr=salesman.enr of the type tree that hasigmt(direct instance of(OBJ))

as its root. Traverse TREE top-down and for each type TP
that is a node of TREE do the following: let rel be the rela-
4.4.1 Remaining problems with type membership tests  tion that TP is mapped to. Check if v is a primary key value
in rel. If itis, TP is one of the types that should be returned.
A more general way to describe type membership tests idf it is not, do not traverse the subtree having TP as its root
with the instance ofiypeonject fUNction. It takes a type any further. . . .
object as argument and returns the objects that are instances For example, query (Q4) will result in the following SQL
of that type (direct or by generalization). Using this notation, querie$*

a predicate of the forrfi’ P(OBJ) would be written _
select 'T' from employee where enr=314

OBJ = instance o fiype—object(T'P) select 'T' from secretary where enr=314

select 'T' from salesman where enr=314
For example:

As this example shows, queries that require the instarfice
function to be used in the backward direction are very expen-
When the type is known at compile-time, the instaofe sive. Furthermore, global optimization is impossible since
function will be used in the forward direction. This was the relational database access is embedded within the code of
case in all examples in the previous section, and can be sedhe instanceof function.

as the normal case. However, some unusual queries require Our approach is based on full query translation and no
the instanceof function to be used in the backward direction view materialization. Clearly, queries like the ones in this

e = instance ofiype—object(: typeEmployee)

(i.e., the inverse). section would benefit greatly if the instance-of relationship
One example of this is a metadata query like the follow-was materialized. However, view materialization introduces
ing: new problems such as keeping the materialization up-to-date

(Gupta and Mumick 1995). Which approach to take should
be based on the nature of data (update frequency) and ap-
plications (query types).

select t (Q4)
for each type t
where :el = instance_of(t)

Other examples are queries that require late binding. For
example, suppose the salary function is overridden for th

salesman type. Then, a query like S Query optimization

select salary(e) for each (Q5)

employee e Query optimization is performed in two steps (see Fig. 4):

calculus optimizationand algebra optimization Calculus
requires late binding of the salary function. For each em-optimization (Sect.5.1) concerns rewrite rules to simplify
ployee object (E), the inverse of theustance of func- the declarative calculus representation of the query. Sec-

tion must be used to retrieve the types that E is an intion 5.1.1 describes the technique of simplification using key
stance of. This decides whether th€aryempioyeeinteger  iNTOrmMation. Section 5.1.2 presents a rewrite rule which takes

or salarysaiesman—integer r€SOIVENt should be applied to E. advantage of the semantics of the didnslate function. Al-

Recall the substitution rule for TP(OBJ) predicates: ~ gebra optimization is the process of finding the cheapest
algebraic representation of the query. This is discussed in
TPOBJ) < Sect. 5.2.
oid translatemgmyrpy—rr(OBJ) = VAL A
*REL(...,VAL,...) 22 The queries are used to test whether a certain value is in the database

or not. It does not mattewhatis returned, only thasomethings returned.
21 The query processing details for this query are given in appendix E. Hence “select 'T...”
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5.1 Calculus optimization
5.1.1 Simplification using key information {n,sal |

oid translatecmployee—integer(€) = enry A
Information about keys can be used to simplify calculus xemployee(enry, , , ) A
expressions. This is the case when two predicates have the
same predicate symbols, have the same constants/variables
in the key attributes, and there are no conflicts between con- xemployee(enry,n, ;) }

stants in the non-key attri_butes. For example, consider th‘F\IOW, the xemployee predicates have the same variable
following calculus expression: (enr1) in the key positio&®. Unification gives:

xemployee(enry, ,sal, ) A

{ n,sal |
{saly | oid translatecmpioyee—integer(€) = enry A
salaryemployee—integer(€) = saly A vemployee(enry, n, sal, ) }
salaryemployeeeinteger(6) =saly N
foo(saly) }

5.1.2 Removal of unnecessary OID translations
The argument to the salary function is a key since employ-
ees can only have one salary (the function is single-valued)it is sometimes possible to remove predicates on the form
Since the two salary predicates have the same variable (e) agd translateygyr—rr(OBJ) = VAL from the query
argument, they can be unified and replaced by a single predslan without affecting the semantics of the query. We define
icate, provided that the resulting substitutiealp should be  the rule for this as follows:
replaced bysal,) is applied to the rest of the predicates:

If: The argument (i.e., the OID) to the&d translate func-

tion is a variable which does not occur in any other predicate

{ saly | of the calculus expression and is not one of the result vari-
salaryemployeeﬁinteger(e) =saly A ables of the query.
foo(salz) } Then: The predicate containing théd translate function

e . call can be removed from the calculus expression.
These simplifications are often needed during query pro-

cessing due to the definition of the object view. Consider

for example the following query: Before we motivate why the removal rule can be applied,

observe that the only case we need to discuss is when the

select name(e), salary(e) (Q6) function is used in the backward direction (i.e., the inverse).
for each employee e If the function is used in the forward direction, the argument
variable has been bound by some other predicate and the
This is translated to the following calculus expression: precondition of the rule is not satisfied.
A predicate of the formaid translateyrgrrr— 7 (OBJ)
{n,sal | = VAL for which the precondition holds can be removed
Employee(e) A from the query plan, sinceid translate~! is a single-
sal = salaryemployee—integer(€) A valued function that never fails. Its only purpose is to com-

pute the OID which corresponds to a certain primary key
value. Thus, if the computed OID is never used, then the
Object view resolution gives the following, which is the whole translation can be omitted.

input to the calculus optimizer: We return to the example query from the previous section
(5.1.1). Since the argument to thed translate function

N = NAaMEemployee—integer (e) }

n, sal : X
{n, i | (e) does not occur elsewhere in the calculus expression, the
oid translatecmpioyee—integer(€) = enry A predicate can be removed:
xemployee(enry, , , ) A

. l { n,sal |
oid trans ateemployeeﬂinteger(e) =enry A *employee(enrl, n, Sal, ) }

xemployee(enry, ,sal, ) A
oid translatecmpioyee—integer(€) = enrs A

xemployee(enrz,n, , )} 5.2 Algebra optimization

Since all three oidranslate function calls take the same vari- The object calculus that is the input to the algebra gen-
able (e) as argument, and since the whslate function is  erator contains DRC predicates that represent access to the
single-valued, they can be unified. Each occurrence of varirelational database. During algebra generation the query pro-
ablesenr, andenr; are replaced bynr;: cessor creates temporary functions which replace the DRC

23 Or more generally, information about functional dependencies (Qian 2 Information about keys in the relational database is collected during
and Raschid 1995). schema translation.
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T <n, sal> T <d,sal>

select name, salary (a)
Yk() .<sql_execfr°m employee ()

select district,salary
from salesman, employee

T <> 'YX() .<sql_execWhere salesman.enr:employee.enr()>
T <>
T <n,sal> Fig. 17. Two DRC predicates are replaced by a singjé exzec? function
call

select salary
from employee (b)
Yl(n) .<n, sql_execWhere name=!vl(p),

select district(s), salary(s) (Q7)
T<n> for each salesman s
This is translated to the following optimized calculus ex-
pression:
,sal
T<n sal> {d,sal|
oo i loyes © xsalesman(enr,d, ) A
where name=!vl
O (n,sal) .sql_execand salary=Iv2 ), xemployee(enr, ,sal, )}
T <n. sal> Figure 17 shows how the two DRC predicates can be re-
placed by a singleql exec? function call.
Fig. 16. Query tree nodes where zero, one, and two of the variablasd _\Nhen two DRC pred|ca.teslo n_Ot have any common
sal are bound variables, replacing them with a singlgl exec? function

call would result in a ‘cartesian product query’ to the rela-
. . _ tional database.
predicates. These temporary functions send SQL queries to o jllustrate this, we will assume that the Translator for

the relational database. ~ the company example contains the following local funcifon
The temporary functions are calledl exec? where q is

an SQL query. The query q may be parametrized with vari-"€€T€ationcharstring—charstring

ables on the formd,, where x=1, 2, 3 etc. A parametrized The function takes a district as argument and returns the
query is instantiated at execution time. The first argument tQecreational activities that are possible in that district. We

the sql exec? function replaces the variable,} the second |l assume the following extension for the function:
replaces#, etc. Thesql exec? function call returns the bag

of tuples that is the result of the SQL query. An example'€creation(‘charlotte’)="squash’

will help to illustrate this. Consider the following calculus "écreation(’charlotte’)="fishing’
recreation(’charlotte’)="skiing’

expression:
P recreation('raleigh’)="golf’
{ n Now suppose that the following query is given to the Trans-
n,sa lator (‘what salesmen work in a district where the hobby of
foo(17)=n A some employee earning 25000 can be practié&d’)
fie(42) =sal N select s (Q8)
xemployee( ,n, sal, ) } for each salesman s, employee e

The DRC predicateemployee is replaced with different Where recreation(district(s))=hobby(e)
sql exec? function calls depending on which, if any, of the and salary(e)=25000
variablesn andsal are bound, i.e., depending on the position The input to the algebra generator will be the following
of the sql exec? function call in the query tree. Figure 16 cajculus expression:
shows the resulting query tree nodes when zero, one, and
two of the variables are bound. If both variables are bound{ ¢ |
the SQL query works as a boolean test. In that case, the oid translatecmpioyce—integer(s) = snr A
node is a selects() node and not a generatg)(node.

When the calculus expression contains more than one
DRC predicate, different combinations of these predicates
may be grouped together to be replaced by a singlexec? xemp hobbies(enr,a) A
function call. The algebra optimizer must be extended with  xemployee(enr, ,2500Q ) }
knowledge of how to find the optimal grouping of DRC
predicates.

When two DRC predicates have a common variable, thi
represents a join between two relations. For example, con-25 | e_ a function for which the extent is stored directly in the Translator.
sider the following query: 26 The query processing details for this query are given in appendix C.

Tecreationchurstriny%churstring(d) =a A

xsalesman(snr,d, ) A

Figure 18 shows one of the possible execution plans where
Sthe three DRC predicates are replaced by a sipgleexzec?
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T <s> The cost of an execution plan in the Translator depends
on the relative costs of computations in the Translator, trans-

mission costs, and the costs of processing the queries in the

relational database. Ideally, the query optimizer of the Trans-

'Yk(d, snr,a) .<oid_translate“:L (snr)>

<d, snr,a> lator should estimate the cost of all possible execution plans
and select the cheapest. This optimization problem is even
O ).(4, snr,a) .recreation (d)=a more computationally intractable than regular query opti-
mization, since DRC predicates may or may not be grouped
<d, snr, a> together to be replaced by a singlel exec? function. To
— achieve an accurate estimation of the costs of the relational
select s.district, . . .
s.enr, eh.hobby queries, the cost model of the relational database system will
;f‘gmhg‘gﬁiggeghf' have to be simulated in the Translator. Note that the statistics
salesman s and cost model parameters of the relational database system

where e.enr=eh.emp

YA() .<sql_execand e.salary=25000 ) may not be available. In that case, they could be estimated

by running a well-chosen set of test queries (Du et al. 1992).

T <> In the current prototype implementation we use the
heuristic rule to generate as few SQL queries as possible,
Fig. 18. Execution plan for query (Q8) witbne sql ezecd function call but never cartesian product queries. This reduces the search
space significantly and avoids the worst cases. The costs

T s> of the remaining query plans are then estimated and the
cheapest is selected for execution. The estimated cost of an

algebra operation involving asyl exec? function call is set

Ya .<oid -1 X . L
(snr) -<old_translate™(snr)> to a fixed, very high value. The cardinality of the result of

<snr> an algebra operation involving aml exec? function call is
estimated based on the number of bound and free variables.
select enr For example, algebra node (a) in Fig. 16 can be expected to
from salesman . . . . .
YA(d) .<sql_execwhere district=1vl(g)s greatly increase the cardinality since both variablesugd
'y sal) are free. Algebra node (c) can be expected to decrease
<d> the cardinality, since both variables are bound.

YA(h) .<recreation=1(h)>

6 Summary and future work
<h>

select oh.hobby We have presented an approach to object view manage-

from employee e, ment for relational databases. The software component im-
e o emp plementing the object view can store its own data and meth-
YA().<sql_execand e.salary=25000 ) ods. This means that queries can combine local data resid-
ing in the object view with data retrieved from the relational
T <> database.

To simplify the mapping between the relational database
and the object view, we assume that subtype/supertype rela-
tionships are represented in a particular way in the relational
: . . . database. Relational databases represented in this way are
function call. A single query will be sent to the relational said to be DM to a particular object view. When a relational

database. The query will join the employee and émpbies . ; ; X ; .
relations and then create the cartesian product of this and th{%atabgses notDM to a des_lred object view, the first step is
0 define an external relational schema tisat

salesman relation. Global optimization requires that all relational database
Figure 19 shows one of the possible execution plans P q

: access is represented explicitly in object view query plans.

mzi:ﬁ)rtlhfagzc predicates are replaced by to czect We use.DRg predicates F?or tr){is. Thcje object c?all_cul)ijs rep-
The first sql exec? function will be executed once and resentation of a query may contain DR_C predicates. Al
produce three output tuples:'tennis™, <’fishing’>, and funcpons in the object view which require access to the
<'golf' >. *fishing’ is a recreational activity in ‘charlotte’, relgtlonal databasg are defined as derived fungtlons. During
and ‘golf is a recreational activity in ‘raleigh’, which means object view resolution, they are replaced by their definitions,

that the secondql exec? function will be executed two which mclude.one el pred|c§tes. .
The mapping between OIDs and primary key values is

Fig. 19. Execution plan for query (Q8) wittwo sql exec? function calls

times: modelled with system-generateil mapfunctions. To avoid
select enr from salesman that relational database access is hidden within the code of
where district="charlotte’ oid map functions, they are defined as derived in terms of
DRC predicates andid translatefunctions. DRC predicates
select enr from salesman handle the relational database access andraitslate func-

where district="raleigh’ tions handle the ‘pure’ OID translation functionality.
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The relationship between objects and types is modelledicknowledgementThe authors wish to thank the anonymous referees for
by the instanceof function. When the argument to an in- their substantial comments on an earlier version of the paper. This research
stanceof function call is a mapped type that is known at Was supported by the Swedish Resgarch Couqsil for Engineering Sciences
compile-time, the function call can be replaced by a DRC (NUTEK) and the Center for Industrial Information Technology (CENIIT).
predicate and an oittanslate function call. This avoids that
relational database access is hidden within the code of th
instanceof function.

The calculus optimization techniques simplification
using key informatiomndremoval of unnecessary otcans-
late predicatesre used to simplify query plans and avoid un-
necessary OID translations. The query optimizer must therY” = {| < y1,, -, ¥1, >y, < Ymys--->Ym, > |}
decide how to replace DRC predicates with actual calls toThen
the relational database. DRC predicates may be combined ™"
in many different waé/s VI\;hiCT] increases theh colrgplexity Of VA1, 20). <1y eesr, O @1y yzn)> (V) =

uery optimization. Ideally, the optimizer should estimate ba
'?he c%stpof all possible exgcution p?ans and select the cheap- U™ Al < wisomi > [} < O, - 93.)
est. The cost depends on the relative costs of computations
in the object view, transmission costs, and the costs of proThe semantics of the operator is defined as follows (where
cessing the queries in the relational database. We currently™ is the relational algebra selection operator with bag se-
use the heuristic rule to generate as few SQL queries as pograntics):
sible, but never cartesian product queries. This reduces thg
search space and avoids the worst cases.

ippendix A

The semantics of the operator is defined as follows. Let
Y be the input bag of tuples of objects:

i=1...m

M@ty 20). 01, )=z (A) =

6.1 Future work C =o' in ) y==(B)

and
As discussed in Sect. 4.1, the first step of the mapping pro-

cedure is to define an external relational schema that is DMB = VAw1,....¢0).<a1,...,20,0(@1,...n)> (A)

(DM) with respect to a particular object view. Unfortunately,

current relational view definition languages are not general ]

enough to allow all types of mappings (for an example, seefPpendix B

Sect.4.1). Two different solutions are possible. (a) Extend . , ,

relational view definition languages, so that a DM external Object view resolution rules in the company example:
schema can be defined for all types of relational schemasg;,pioyee(e) <

or (b) add constructs to the object view definition language,

so that all relational schemas can be directly mapped to the oid translatecmployee—integer(€) = enr A

desired object view, including those for which the relational ~ *employee(enr, , , )
view mechanism is not powerful enough to define the DM
external schema. Salesman(s) <

The heuristic rules used for algebra optimization are not  oid translatecmpioyec—integer(s) = enr A
adequate in the general case. The selection of execution strat-
egy should be based on real cost estimates. To estimate the
costs of relational queries, the cost mpdel of the rel.ationaISecremTy(s) N
database system has to be simulated in the object view.

The approach should be tested on existing relational
databases. Scalability regarding database and schema size *secretary(enr, )
is not a problem, since our approach is based on non-
materialized views and query translation. But realistically €n7cmpioyee—integer(€) = enr <
sized databases raise the demands on query optimization o;d translatecmployee—integer(€) = enr A
techniques, and our heuristics may prove inadequate. It is
also essential to study the effects that bad or unusual data
design has on the usability of our approach. For example
how frequent it is that DM views cannot be defined. .

The approach should also be generalized for complex ©id translatecmployee—integer(€) = enr A
gueries involving, for example, aggregation and grouping.  xemployee(enr,n, , )

Queries requiring late binding are currently very expensive,

as discussed in Sect.4.4.1. Materialization of the instancesalaryempioyee—integer(€) = sal <

of relationship may be necessary in order to achieve good ;q translateemployee—integer(€) = enr A
performance for late binding queries. This introduces new
problems such as view maintenance.

xsalesman(enr, , )

oid translatecmployee—integer(s) = enr A

xemployee(enr, , ;)

nameemployeeﬂcharstring(e) =n <

xemployee(enr, ,sal, )



T <s>

Yk(d, snr,a) .<oid_translate ! (snr)>

<d, snr,a>

O A(d,snr,a) .recreation (d)=a

<d, snr, a> o o o

select s.district,
s.enr, eh.hobby
from employee e,
emp_hobbies eh,
salesman s
where e.enr=eh.emp

YA() .<sql_execand e.salary=25000 ()

T

Fig. 20. Algebraic translations of the example query in Appendix C

manageremployeeﬂemployee(6) =m <
oid translatecmployee—integer(€) = enr A
oid translatecmpioyee—integer (M) = mnr A

xemployee(enr, , ,mnr)

hObbyemployee—)cha?'string(e) =h &
o0id translatecmplioyee—integer(€) = enr A

xemp hobbies(enr, h)

typingSpeedsecretaryﬂinteger(3) =ts <
oid translatecmpioyce—integer(s) = enr A
xsecretary(enr, ts)

diStriCtsalesmanﬁcharstring(8) =d &
oid translatecmployee—integer(s) = enr A

xsalesman(enr,d, )

salessales7nan—>integeT(S) =sls &
o0id translatecmployee—integer(s) = enr A

xsalesman(enr, , sls)

Appendix C

AMOSQL query:

select s

for each salesman s, employee e
where recreation(district(s))=hobby(e)
and salary(e)=25000

Object calculus:
{s]
Salesman(s) A
Employee(e) N
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T <s>

YA(snr) . <0id_translate~l(snr)>

<snr>

select enr
from salesman

YA (d) .<sql_execwhere district=!vl (g)>

¥
<d>

Y A(h) .<recreation-1 (h)>

<h>

select eh.hobby

from employee e,
emp_hobbies eh

where e.enr=eh.emp

Yk() .<sql_exec and e.salary=25000()

T

7"ecreatiancharstringﬁcharstring(d) =a A
distriCtsalcsmanﬁcharstring(s) =d A
hObbyemployeeﬁcharstring(6) =a A
Salarye7nployee—>integer(e) = 25000}

Object calculus after object view resolution (see Appen-
dix B):

{5
oid translatecmployee—integer(s) = snr A
xsalesman(snr, , ) A
oid translatecmployee—integer(€) = enr A
xemployee(enr, , , ) A
’recreationcharstring—»charstring(d) =a A
oid translatecmpioyee—integer(8) = snr2 A
xsalesman(snra, d, ) A
oid translatecmployee—integer(€) = enra A
xemp hobbies(enry,a) A
oid translatecmployee—integer(€) = enrs A
xemployee(enrs, ,2500Q ) }

Object calculus after simplification using key information
(calculus optimization phase 1):

{s|
oid translatecmployee—integer(s) = snr A
oid translatecmpioyce—integer(€) = enr A
recreationcharstring—charstring(d) = a A
xsalesman(snr,d, ) A
xemp hobbies(enr,a) A
xemployee(enr, ,2500Q ) }

Object calculus after removal of unnecessary toahslate
predicates (calculus optimization phase 2):
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{s] T <n>
oid translatecmpioyce—integer(s) = snr A
. _ select name
recreatzoncharsmngﬁchammng(d) =a A y from employee
A0) . 1 where salary=15000
xsalesman(snr,d, ) A 1) .<sql_exec 0>

xemp hobbies(enr,a) A T <>
xemployee(enr, ,2500Q ) }
Fig. 21. Algebraic translation of the example query in Appendix D
Algebraic translations of the calculus expression are gener-
ated’. See Fig. 20. T <sal>

The cheapest is selected for execution. See the rightmos ) )
H H select salar:
query plan in Flg- 20. from employe}e, e,

salesman s
'YM) .<sql_exec where e.enr=s.enr (),

+

Appendix D T <>

Fig. 22. Algebraic translation of the example query in Appendix E
AMOSQL query:

select name(e)

for each employee e Appendix E
where salary(e)=15000 AMOSQL query:
Object calculus: select salary(s) for each salesman s
{n] Object calculus:
Employee(e) N { sal |
NAMEemployee— charstring(€) =1 A Salesman(s) A
salaryempioyee—integer(€) = 15000} salaryemployee—integer(s) = sal }
Obiject calculus after object view resolution (see Appen-Object calculus after object view resolution (see Appendix
dix B): B):
{n| { sal |

oid translatecmpioyee—integer(€) = enr A oid translateempioyec—integer(s) = enr A

xemployee(enr, , , ) A xsalesman(enr, , ) A

oid translatecmployee—integer(€) = enra A oid translateempioyee—integer(s) = enra A

xemployee(enra,n, , ) A xemployee(enry, ,sal, )}

oid translatecmpioyee—integer(€) = enrs A Object calculus after simplification using key information
xemployee(enrs, ,1500Q )} (calculus optimization phase 1):
{ sal |

Object calculus after simplification using key information )

(calculus optimization phase 1): oid translateemployec—integer () = enr A
xsalesman(enr, , ) A

{n|

. xemployee(enr, ,sal, )}
oid translatecmpioyce—integer(€) = enr A

Object calculus after removal of unnecessary twahslate
predicates (calculus optimization phase 2):

Object calculus after removal of unnecessary wihslate (47 |
predicates (calculus optimization phase 2)

xemployee(enr,n, 1500Q ) }

xsalesman(enr, ;) A
{n] xemployee(enr, ,sal, )}

xemployee( ,n,1500Q ) } Algebraic translations of the calculus expression are gener-

The algebraic translation of the calculus expression is gen‘:’mEd and the cheapest is selected for execution. See Fig. 22.

erated (there is only one translation). See Fig. 21.

27In the current prototype implementation, we use the heuristic rule
to generate as few SQL queries as possible, but never cartesian product
queries.
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