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Abstract. This paper presents an approach toobject view
management for relational databases. Such a view mecha-
nism makes it possible for users to transparently work with
data in a relational database as if it was stored in an object-
oriented (OO) database. A query against the object view
is translated to one or several queries against the relational
database. The results of these queries are then processed to
form an answer to the initial query. The approach is not
restricted to a ‘pure’ object view mechanism for the rela-
tional data, since the object view can also store its own
data and methods. Therefore it must be possible to process
queries that combine local data residing in the object view
with data retrieved from the relational database. We discuss
the key issues when object views of relational databases
are developed, namely: how to map relational structures to
sub-type/supertype hierarchies in the view, how to represent
relational database access in OO query plans, how to provide
the concept of object identity in the view, how to handle the
fact that the extension of types in the view depends on the
state of the relational database, and how to process and op-
timize queries against the object view. The results are based
on experiences from a running prototype implementation.

Key words: Object views – Relational databases – Object-
oriented query processing – Object-oriented federated data-
bases – Query optimization

1 Introduction

An object view of a relational database makes it possible for
users to transparently work with data in a relational database
as if it was stored in an object-oriented (OO) database. When
the term ‘OO database’ is used in this paper, it refers to a
database system with an OO data model and a query lan-
guage that is at least as powerful as SQL1. Queries against
the object view are translated to queries against the relational

Correspondence to:Tore Risch
1 The term ‘object-relational’ is becoming more and more used for this

kind of system (Stonebraker and Moore 1996)

database. The results of these queries are then processed to
form the answer to the initial query. In this paper, we con-
centrate onaccessto relational databases via object views,
not updates.

Object views of relational databases are an important
component of multidatabase systems2 (Bright et al. 1992;
Litwin et al. 1990; Sheth and Larson 1990). Most multi-
database systems use a canonical data model (CDM) to deal
with the problem of data model heterogeneity. It is gener-
ally agreed that object-oriented data models are appropriate
as the CDM in a multidatabase system (Saltor et al. 1991).
Using the terminology of Sheth and Larson (1990), if an
object-oriented CDM is used, the different local schemas
must be mapped to object-oriented structures in the com-
ponent schemas, i.e., object views must be established for
the different types of component databases. Since relational
databases have such a dominating position on the database
market, techniques for developing object views of relational
databases are especially important.

The results in this paper are based on experiences from
the development of an object view mechanism for the rela-
tional DBMS Sybase. The approach presented in this paper
is not restricted to ‘pure’ object views of relational databases,
since the software component implementing an object view
can also store its own data and methods. In fact, the object
view mechanism has been implemented by extending an ex-
isting OO DBMS (AMOS). The result is an OO DBMS
which can handle existing relational data in a general and
efficient way. We will use the termTranslator for this soft-
ware component. Part of the schema of the Translator is an
object view of a relational database. Figure 1 compares the
architecture of an OO DBMS to that of a Translator3.

Figure 2 shows the design phases in our approach. First,
the schema of the object view is decided. This means mod-
elling the information in the relational database using our OO
data model. OO data models are semantically richer than the
relational data model, and the object view schema explicitly

2 We use the term ‘multidatabase system’ for the general concept of a
system in which it is possible to access data from multiple databases, which
may be distributed, heterogeneous, and autonomous.

3 Note that we are assuming a ‘bottom-up’ development – the object
view is created for anexistingrelational database, we do not use a relational
database as persistent storage for an OO DBMS
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Fig. 1. Architectures of OO DBMSs (left) and Translators (right)

Fig. 2. Object view design phases

captures semantics which was only implicitly represented in
the relational schema.

To simplify the mapping between the relational database
and the object view, we assume that the relational database
is structured in a particular way. Relational databases struc-
tured this way are said to bedirectly mappableto the target
object view. When the relational databaseis not directly
mappable to the object view, we first define an external re-
lational schema, i.e., a set of relational views, thatis directly
mappable.

During the third phase, the mapping between the object
view and the relational database is defined using anobject
view definition language. The types and functions in the ob-
ject view are created, and a set of object view resolution
rules are generated.

The focus of this paper is onquery processingover ob-
ject views of relational data. Figure 3 illustrates the conven-
tional database query processing methodology (Jarke and
Koch 1984) adapted for OO databases. A high-level query
language is used to formulate the query. This is converted
to an internal declarative representation – an object calcu-
lus expression. The calculus optimizer applies syntactic and
semantic rewrite rules to simplify the calculus expression.
The calculus expression can be translated to many equiv-
alent, procedural, algebraic expressions. This translation is
performed by the algebra generator. The execution cost for
each of these algebraic expressions is then estimated and the
cheapest is selected for execution4.

4 Of course, this is only a schematic overview. For example, the entire
set of possible algebraic expressions is seldom generated, it may even be
impossible to do so in finite time. One way to deal with the complexity is
to use a randomized algorithm for exploration of the search space. Another
common algebraic optimization methodology is to generateone initial al-
gebra expression, and then apply equivalence-preserving rewrite rules to
translate the algebra expression into a cheaper one.

Figure 4 gives the corresponding overview of query pro-
cessing in our Translators. A new phase is added: object
view resolution. Some predicates in the object calculus are
defined in terms of relational database access. During ob-
ject view resolution, these predicates are replaced by their
definitions5.

A Translator needs a way to represent relational data-
base access in query plans. We use domain relational calcu-
lus (DRC) predicates for this. Thus, the output from object
view resolution is an object calculus expression where some
predicates are specially marked predicates (DRC predicates)
representing queries to the relational database.

The optimization phases face new requirements due to
the fact that part of the Translator schema is a view of a
relational database:

• The calculus optimizer needs to be extended with new
semantic rules for simplifying the calculus expression.

• During algebra generation, the DRC predicates must be
replaced with function calls which send SQL queries to
the relational database. The algebra generator must be
extended with knowledge of the different ways to gen-
erate these SQL queries.

• The cost estimator must be extended with knowledge of
the cost of sending different SQL queries to the relational
database.

The reader might find it useful to skim through appendix
C at this point. It describes the query processing steps for
an example query to the Translator, and even though the
details will be hard to follow, it might assist in providing an
overview of the problems addressed in this paper.

5 A useful analogy is view expansion during query processing in a rela-
tional database system. There, relational calculus predicates referring to a
view are replaced with predicates re ferring to base relations.
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Fig. 3. Query processing in OO DBMSs

Fig. 4. Query processing in a Translator

We will end this introductory section by listing the con-
tributions of the paper (Sect. 1.1) and by presenting an ex-
ample (Sect. 1.2) which will be used throughout the paper.
The rest of the paper is organized as follows.

Section 2 discusses related work. Section 3 gives a brief
overview of the AMOS project (Fahl et al. 1993), which
is the framework in which this work has been performed.
The section describes the AMOS data model and query lan-
guage, and gives an overview of query processing in AMOS,
which includes presenting the object calculus and object al-
gebra used in this paper. Section 4 covers the three design
phases in Fig. 2. The first phase – specification of the target
object view schema – is only discussed very briefly, since it
has been covered extensively in previous work. Section 4.1
concerns the second phase – creation of directly mappable
external relational schemas. Sections 4.2–4.4 cover the third
phase – creation of the OO↔ relational mapping. Sec-
tion 4.2 discusses ways to represent relational database ac-
cess in OO query plans. Section 4.3 shows how the concept
of object identity can be provided in the view. Section 4.4
discusses type membership tests. Section 5 covers query op-
timization. Calculus optimization is discussed in Sect. 5.1
and algebra optimization is discussed in Sect. 5.2. Section 6,
finally, gives a summary of the paper and discusses future
work.

1.1 Contributions

Some of the discussion in this paper on the relationship be-
tween the relational data model and OO data models, and
the semantics of object views of relational data has been
covered in previous work, especially in the Pegasus project
(Shan et al. 1995). See the section on related work (Sect. 2).

Our main contributions are in the area ofquery process-
ing in object views of relational data. The paper aims to give
a complete overview of the problem, including query pro-
cessing. More specifically, the following aspects have not
been covered in previous work:

• The concept of a relational database being directly map-
pable (DM) to an object view and the use of relational
views for relational databases that are not DM.

• The importance of having all relational database access
explicitly represented in object view query plans, the use
of DRC predicates to accomplish this, and the applica-
tions of this to function calls.

• Explicit coverage of the role of object identity and
instance-of relationships during query processing.

• Semantic optimization rules for simplification of sub-
queries which are overlapping due to the definition of
object views, and for removal of unnecessary transla-
tions between OIDs and primary key values.

• A discussion on the additional complexity introduced to
query optimization by the presence of relational database
access in query plans, and a heuristic rule suitable as an
initial way to manage this new complexity.

Since our Translators can store their own data and meth-
ods, the paper also addresses a special case of query pro-
cessing in heterogeneous multidatabase systems, namely in-
tegration of relational and OO databases.
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The functional data model used in this paper is in some
aspects closer to the relational data model than many other
object models. However, the problems associated with sub-
type/supertype hierarchies, object identity, the instance-of
relationship, and function/method application, are common
to all object models. The relative simplicity of our object
model should hopefully make the discussion on these gen-
eral concepts clearer.

1.2 The company example

Throughout the paper we will use the same example of a re-
lational database. We will use this example to show the rela-
tionship between a relational database and the corresponding
object view, and to show how queries against the object view
are processed. The examples are intentionally kept very sim-
ple to enable us to focus on the essentials. The impact that
complex databases and queries would have on our approach
is discussed in the section on future work (Sect. 6.1). How-
ever, note that scalability regarding database and schema
size is not a problem, since our approach is based on non-
materialized views and query translation. No relational data
is stored in the object view, only schema information and the
mapping to the relational database. The example relational
database is shown in Fig. 5.

We will use the AMOS data model as our example of
an OO data model. It is a functional and OO data model
which is based on the IRIS data model (Fishman et al. 1989;
Lyngbaek et al. 1991), which in its turn is based on the
functional data model DAPLEX (Shipman 1981). The subset
of the AMOS data model used in this paper is identical to the
IRIS data model. It is further described in Sect. 3.1. Figure 6
shows the schema of the corresponding object view of the
company database. The typessecretary andsalesman
are subtypes toemployee . The properties of employees,
secretaries, and salesmen are modelled by functions. The
hollow arrowhead for thehobby function indicates that this
is a multi-valued function.

Figure 7 shows the extension of the object view. The
relational database stores information about four employ-
ees. Two of these (‘anne’ and ‘bob’) are salesmen and one
(‘doris’) is a secretary. One of them (‘colin’) is neither a
salesman nor a secretary, but still an employee. Accordingly,
there should be four objects in the object view (:e1 , :e2 ,
:e3 , and :e4 ). Two of them should be direct instances of
salesman , one a direct instance ofsecretary , and one
a direct instance ofemployee 6.

Informally, the semantics of the mapping between tuples
in the relational database and objects in the object view is as
follows. There is one object for each tuple in theemployee
table. The primary keyenr is used to define the correspon-
dence between tuples and objects. For example, the enr 314
corresponds to the object:e1 . All objects are instances of
the employee type. An object is also an instance of the
type secretary (salesman ) if there is a tuple in the

6 We distinguish between an object being a direct instance of a type and
being an instance of a type by generalization. For example, the object :e1 is
a direct instanceof the type salesman, and it is aninstance by generalization
of the supertypes to salesman.

secretary (salesman ) table with the enr that corre-
sponds to the object. For example, the object:e1 is an
instance of the typesalesman , since there is a tuple with
enr=314 in thesalesman table.

2 Related work

Multibase (Landers and Rosenberg 1982) has an architec-
ture similar to that of AMOS and uses the functional data
model DAPLEX (Shipman 1981) as the CDM. AMOSQL
is a DAPLEX derivative, but an important difference is that
AMOSQL is object-oriented. Queries in AMOSQL can re-
turn object identifiers (OIDs). Another difference is the role
of the translation component. An AMOS Translator captures
as much of the semantics of the data source as possible,
whereas, in Multibase, the translated schema is the simplest
possible and all semantic enrichment is performed in the
integration modules.

The Pegasus project (Albert et al. 1993; Ahmed et al.
1993; Shan et al. 1995) uses the IRIS data model as the
CDM and an extension to OSQL as the data manipulation
language. In the area of object views of relational data, the
Pegasus project has concentrated on techniques for automatic
generation of theschemaof the object view.

The relationship between schemas in the relational data
model and schemas in semantically rich data models, such
as an OO data model or an extended entity-relationship
(EER) model, is fairly well understood. Translation of an
EER schema into a relational database schema is a central
part of many database design methodologies (Elmasri and
Navathe 1989). Recent work has shown how to identify se-
mantic modelling constructs in a relational database schema,
and how it can be (semi-) automatically transformed into
an EER/OO schema (Albert et al. 1993; Johannesson and
Kalman 1989; Markowitz and Markowsky 1990; Navathe
and Awong 1987; Litwin et al. 1990).

The focus of our work is onquery processingin non-
materialized object views of relational data. We show how
queries against the object view are translated and optimized.

Query processing in object views of relational data re-
lates to query processing in OO database systems (Özsu
and Blakeley 1994). Object algebras and algebra optimiza-
tion are discussed in Straube andÖzsu (1990), Shaw and
Zdonik (1990), and Demuth et al. (1994). Other related re-
search areas are views in OO database systems (Abiteboul
and Bonner 1991; Bertino and Martino 1991; Chomicki and
Litwin 1994; Heiler and Zdonik 1990), and work on provid-
ing a more general view mechanism for relational databases
(Krishnamurthy et al. 1991).

The work most closely related to ours that we are aware
of is reported in (Kemp et al. 1994). The main differences
in their approach are that object identifiers (OIDs) are stored
in the relational database, that new objects cannot be added
to the relational database, and that queries that need to com-
bine relational data with other data causes the execution of
many small SQL queries. We will further relate our work
to theirs later in the paper. Methods to completely translate
OO queries to the corresponding relational ones have been
proposed recently by (Qian and Raschid 1995) and (Yu et
al. 1995), but neither of these proposals handle OO queries
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Fig. 5. The company database (example of a relational database)

Fig. 6. Schema of the object view of the company database

that return OIDs or that combine object view data with data
in the relational database.

3 AMOS

This section gives an overview of the AMOS project (Fahl
et al. 1993) which is the framework in which this work has
been performed. Section 3.1 presents the data model and
query language used in AMOS. Readers familiar with the
IRIS data model (Fishman et al. 1989) and the OSQL query
language (Lyngbaek et al. 1991) may skip this section since
the subset of the AMOS data model and query language that
is used in this paper is identical with IRIS/OSQL. Section 3.2
describes the multidatabase aspects of AMOS. In this paper,
we concentrate on the AMOS components called Transla-
tors, i.e., the software that implements an object view of a
relational database. Translators are the subject of Sect. 3.3.
Section 3.4 briefly describes query processing in AMOS and
the object calculus and object algebra used in this paper.

3.1 The AMOS data model and query language

There are three basic constructs in the AMOS data model;
objects, typesand functions. Objects are used to model en-
tities in the domain of interest. Types are used to classify
objects; an object is an instance of one or more types. Prop-
erties of objects and relationships between objects are mod-
elled by functions.

Types are divided intoliteral types andsurrogatetypes.
The extension of a literal type is fixed (often not enumer-
able), and instances of a literal type are self-identifying; no
extra object identifier is needed. Examples of literal types
are integer , charstring , and real . Surrogate types
and instances of surrogate types are created by the system
or by users. Instances of surrogate types are identified by
a unique, immutable, system-generated OID. Examples of
surrogate types areperson , document , country , etc.

Types are organized in a subtype/supertype graph. Fig-
ure 8 shows part of the type graph of AMOS. The most
general type isobject ; all other types are subtypes of
object . User-defined types are subtypes of a special type
called usertypeobject . Types are objects too, and are
instances of the typetype . User-defined types are also in-
stances of the typeusertype .

A function is implemented in one of three different ways;
it may bestored, derived, or foreign. For stored functions,
the extension is stored directly in the database. A derived
function uses the AMOSQL query language to calculate the
extension. A foreign function is implemented in a general
programming language, such as C or LISP. Functions can
be overloaded and they are invertible.

The general syntax for queries is:

select <result>
for each <type declarations for local

variables>
where <condition>

For example:

select name(e)
for each employee e
where hobby(e)=’sailing’

AMOS functions and queries returnbags of tuples of objects,
denoted{| < . . . >, . . . , < . . . > |}. The semantics for
nested function calls, which will be referred to as ‘DAPLEX
semantics’ (Shipman 1981; Gray 1984), is defined as:

f (g(x)) = {| y such thaty is in f (z) andz is in g(x) |}

3.2 The AMOS multidatabase system architecture

The software components of the AMOS multidatabase sys-
tem architecture (Fahl 1994) are shown in Fig. 9. Using the
terminology of Sheth and Larson (1990), it can be seen as
a combination of a loosely coupled and a tightly coupled
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Fig. 7. Extension of the object view of the company database

Fig. 8. Part of the AMOS subtype/supertype graph. Eachline represents a subtype/supertype relationship.object is the most general type

Fig. 9. Software components in the AMOS multidatabase system architec-
ture

federated database system. The basic way to access data
in AMOS is through a multidatabase language, but it is also
possible to provide integrated views of multiple data sources.

In this paper, we concentrate on Translators for relational
databases, i.e., the software component that implements an
object view of a relational database.

3.3 Translators

A Translator provides the functionality of an AMOS DBMS
augmented with the notions ofmapped typesand mapped
objects. A mapped type is a type for which the extension is
defined in terms of the state of an external database. In our
case, the external database is relational, and the extension
of a mapped type is defined so that there is a one-to-one
mapping between instances of the mapped type and tuples in
some relation or view in the external database. The instances
of mapped types are called mapped objects7.

7 The notions of mapped types and mapped objects are similar to what
is called virtual classesand imaginary objectsin (Abiteboul and Bonner
1991). The main difference is that the object view in Abiteboul and Bon-
ner (1991) is defined over an OO database, rather than over a relational
database.

Figure 10 shows the subtype/supertype graph for Trans-
lators. Mapped types are subtypes to the typeusertype-
object and are instances of the typemappedtype . Fig-
ure 11 shows how mapped types fit into the subtype/super-
type graph.

We will use the termmost general mapped type(mgmt
for short) for mapped types that are direct subtypes to
usertypeobject . In Fig. 11, the typesMT1 andMT6 are
mgmts. In the company example, the typeemployee is the
only mgmt.

We will also use a function calledmgmt. The function
takes a mapped type MT as argument and returns the super-
type to MT which is a mgmt. For example:

mgmt(:typeSalesman) = :typeEmployee
mgmt(:typeEmployee) = :typeEmployee
mgmt(direct_instance_of(:e4)) =

= mgmt(:typeSecretary) = :typeEmployee

3.4 Query processing in AMOS – object calculus and object
algebra

Figure 3 in Sect. 1 gives an overview of query processing
in AMOS. This section uses an example query to describe
the query processing steps and the object calculus and alge-
bra used in AMOS. A more thorough description of query
processing in AMOS can be found in (Litwin and Risch
1992)8.

Consider the following AMOSQL query:

select s, salary(manager(s)) (Q1)
for each salesman s
where hobby(s)=’golf’

8 (Litwin and Risch 1992) use the logical language ObjectLog to de-
scribe internal query processing. Object calculus expressions in this paper
correspond to type-resolved ObjectLog rules in (Litwin and Risch 1992).
Object algebra expressions in this paper correspond to type- and binding-
pattern-resolved ObjectLog rules in (Litwin and Risch 1992).
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Fig. 10. Subtype/supertype graph for Translators

Fig. 11. Mapped types (MT1−6) and user-defined types (UDT1−4) in the
subtype/supertype graph for Translators

A natural language formulation of this query would be some-
thing like: ‘for each salesman that has golf as a hobby, re-
trieve that salesman together with the salary of his/her man-
ager’.

The calculus generator transforms the query to a normal-
ized9, type-resolved10 object calculus expression (existential
quantifiers are implicit):

{ s, sal |
Employee(m) ∧
sal = salaryemployee→integer(m) ∧
m = manageremployee→employee(s) ∧
′golf ′ = hobbyemployee→charstring(s) ∧
Salesman(s) }
The calculus optimizer applies syntactic and semantic

rules to simplify the calculus expression. In this case no
such rules are applicable.

The algebra generator transforms the calculus expression
to equivalent procedural representations – object algebra ex-
pressions. Figure 12 shows two of the possible object algebra
equivalents. The input to and output from an algebra opera-
tor is a bag of tuples of objects. For simplicity reasons, we
do not show the full signature of the type-resolved functions
in the algebra trees.

The leaf nodes in an algebra tree are enumerable types,
producing their extent as output. An algebra operator is one
of {π, σ,×,∪,∩,on, γ}. The π, ×, ∪, ∩, and on operators
have the same semantics as their relational counterparts (El-
masri and Navathe 1989), with the exception that input and
output are bags (denoted{| . . . |}) rather than sets. Theγ
(generate) operator is a new operator that performs func-

9 Disjunctions of conjunctions, no nested function calls, existential quan-
tifiers moved out as far as possible.

10 I.e. where functions are annotated with their type signatures

tion application. It can thereby introduce objects other than
those produced by the leaf nodes into the query plan. In this
way, theγ operator is similar to the generate operator in
Straube and̈Ozsu (1990), and the image operators in Shaw
and Zdonik (1990) and Demuth et al. (1994). Theσ (select)
operator is identical to the relational selection operator with
the exceptions that input and output are bags, and that the
selection condition may contain function calls. Theγ andσ
operators are defined formally in appendix A.

Figure 13 shows the flow of data11 if our example query
is executed according to the left plan in Fig. 12 (assuming
the database extension in Fig. 7).

Let us use the node marked (*) to illustrate the ‘DAPLEX
semantics’ of theγ operator. The employee object (:e1) of
the first input tuple (<:e1, 20000>) is the manager of two
employees (:e2 and :e4). This means that the first input tuple
results in two output tuples (<:e1, 20000, :e2> and<:e1,
20000, :e4>). The employee object of the second input tuple
is not the manager of any employees, which means that the
second input tuple results in zero output tuples. The third
and fourth input tuples result in one and zero output tuples,
respectively, giving a total of three output tuples.

To simplify the expressions in our examples, we allow
the γ operator to exclude some of the input variables from
the result, i.e., perform projection. This is used in the top
two nodes in the query plan to the right in Fig. 12.

The optimizer uses a cost model (Litwin and Risch 1992)
to select the cheapest algebra expression.

4 Object view design

This section covers the three design phases of our approach
illustrated in Fig. 2.

The first step when developing an object view for a rela-
tional database is to identify semantic modelling constructs
in the relational database, and to define the OO schema
corresponding to the relational database. Information that
could be used as an aid in this process includes the database
schema, the database content, and functional dependencies.
This has been covered extensively in previous work (see
Sect. 2) and will not be discussed further here.

Section 4.1 concerns the second phase – creation of ex-
ternal relational schemas that are DM to an object view. We
assume that subtype/supertype relationships are represented
in a particular way in the relational database, and define
relational views otherwise.

11 Since AMOS uses stream-oriented query processing (Straube andÖzsu
1995), the intermediate results are not actually materialized. On the physical
level, the input to and output from an algebra operator is astream of tuples
of objects.
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Fig. 12. Two of the possible object algebra representations for the example query: straightforward, but non-optimal translation from calculus (left), and one
of the candidates for optimal execution strategy (right)

Fig. 13. Data flow during query processing according to the left plan in
Fig. 12

During the third design phase, the mapping between the
relational database and the object view is created. In our
prototype implementation, the mapping is defined using a
declarative object view definition language like the one in
(Albert et al. 1993). For example:

declare primary key of ’employee’
is ’enr’;

create type employee as
mapped to relation ’employee’;

create function
salary(employee)->integer
as mapped to attribute
’employee.salary’;

The Object View Definition Language is not discussed fur-
ther here.

The view definition commands result in the creation of
the object view types and functions, and in a set of object
view resolution rules. Sections 4.2–4.4 concern the internal
representation of the OO↔ relational mapping.

Section 4.2 discusses the importance of having all rela-
tional database access explicitly represented in query plans in
the object view. We use DRC predicates for this. Section 4.3
shows how the concept of object identity can be provided
in the object view even though there is no such concept in
the relational data model. Section 4.4 discusses type mem-
bership tests in object views. The extension of types in the
object view depends on the state of the relational database.
The consequences of this for query processing are discussed.

4.1 DM relational views

The concept of subtype/supertype relationships in OO data
models has no corresponding concept in the relational data
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Fig. 14. Representing subtype/supertype relationships in relational schemas. Four alternative mappings from the AMOS schema (A) to relational schemas
(R1, R2, R3, R4) are given

model. When subtype/supertype relationships exist between
objects in the domain which is modelled, this is only repre-
sented implicitly in relational databases.

Figure 14 shows four alternative mappings from an
AMOS schema, where subtype/supertype relationships are
represented explicitly, to a relational database schema [adap-
ted from Elmasri and Navathe (1989)]. Alternatives (R1) and
(R2) are probably the most common. Note that the AMOS
schema is a subset of the company example used elsewhere
in the paper.

In alternative (R1) all types have their own relation. In
alternative (R2) there is no relation for the supertype em-
ployee. The attributes (functions) of the supertype are du-
plicated in all the relations representing the subtypes. Al-
ternative (R3) has one relation for all types. Thejobtype
attribute specifies the type of the employee (secretary or
salesman)12. The relation schema contains all the attrib
utes of all the subtypes. If an attribute is not applicable
(e.g., typingspeed for salesmen) it is given the value
null . Alternative (R4) is similar to (R1), but the name
and salary for employees are stored in separate relations.
This kind of vertical fragmentation is often used to avoid
null values in a relation. There are inclusion dependencies
from emp2.enr to emp1.enr , and fromemp3.enr to
emp1.enr .

Alternatives (R1) and (R4) can be used for all kinds of
specialization (overlapping/disjoint and total/partial)13. Al-

12 Or null, if the employee is neither a secretary nor a salesman (‘just’
an employee).

13 A specialization isoverlappingif an instance of the supertype can be
an instance of more than one of the subtypes. Otherwise it isdisjoint. A
specialization istotal if an instance of the supertype must be an instance

ternative (R2) cannot be used for partial specialization. Al-
ternative (R3) cannot be used for overlapping specialization.

To simplify the mapping between the relational database
and the object view, we will assume that subtype/supertype
relationships are represented in a particular way in the re-
lational database. Relational databases represented in this
particular way are said to be DM to the object view.

When an object view is defined over a relational database
that is not DM to the object view, the first step is to use the
relational view mechanism to define an external relational
schema thatis DM.

We define DM as follows:

Let OS be an EER/OO schema and RS the corresponding
relational database schema. RS is DM to OS if:

for each type TP in OS there exists a relation R in RS
such that there is a one-to-one mapping between instances
of TP and tuples in R.

(End of definition.)

In Fig. 14, schemas (R1) and (R4) are DM to schema (A),
whereas schemas (R2) and (R3) are not.

The main benefit of having the relational schema DM
is that the object view mechanism does not need to handle
all possible cases of relational database schemas. The reason
for choosing our particular representation is that it simpli-
fies management of the instance-of relationship. To check
whether an object is an instance of a particular type, or to

of some of the subtypes. Otherwise it ispartial. The overlapping/disjoint
and total/partial criteria are orthogonal.
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retrieve all instances of a particular type, it suffices to ex-
amine a single relation14.

When an object view over a relational database that is
not DM is going to be created, the developer must first cre-
ate an external relational schema that is DM to the object
view. Consider, for example, schema (R3) in Fig. 14. The
following SQL statements could be used to define an exter-
nal schema DM to schema (A):

create view employee* as
select enr, name, salary from employee

create view secretary* as
select enr, typingspeed
from employee
where jobtype=’secretary’

create view salesman* as
select enr, district, sales
from employee
where jobtype=’salesman’

The attribute(s) we use as the basis for the instance-of re-
lationship may contain duplicates. This may happen if the
attribute is part of a composite key, or if key constraints
are not enforced. These cases require relational view defini-
tions with a ‘distinct’ specification to produce DM external
schemas.

Note that it is not possible to create DM external rela-
tional schemas for all kinds of relational database schemas.
For example, the DM external schema over schema (R3)
above could only be created because we assumed that the
domain of thejobtype attribute was fixed. Suppose that
this assumption could not be made, i.e., that the domain
of the jobtype attribute was character strings in general
rather than the two specific character strings ‘secretary’ and
‘salesman’. In that case, the DM extern l schema should
have one relation for each distinct value that occurred in the
jobtype column. In other words, the number of relations in
the external schema would depend on the state of the un-
derlying database. Such views cannot be created in current
relational database systems. More general view mechanisms
for relational databases are discussed in Krishnamurthy et
al. (1991) and Litwin et al. (1991).

4.2 Representing relational database access in query plans

In most cases, it is advantageous to translate AMOSQL que-
ries to as few and as large SQL queries as possible. A naive
translation method that leads to a large number of small
queries against the relational database would result in un-
necessary communication between the Translator and the
relational database.

For example, consider the following AMOSQL query:

select name(e) (Q2)
for each employee e
where salary(e)=15000

14 The pivot relation plays a similar role in PENGUIN (Barsalou et al.
1991), which basically is a system where views can contain nested relations.

A straightforward, but naive, OO-to-relational mapping
would be to view the name and salary functions as one
atomic unit each, and implement them as foreign functions
which made calls to the relational database. This would re-
sult in a query plan which would start with the salary func-
tion, which would execute the following SQL query:

select enr from employee
where salary=15000

For each of the results (say X) of this query, the name func-
tion would be called, resulting in SQL queries of the fol-
lowing kind:

select name from employee where enr=X

It is obvious that an optimal translation should result in a
single query against the relational database:

select name from employee
where salary=15000

The problem with the simple approach taken above is that
access to the relational database is embedded in the code of
the salary and name functions. For the optimizer to be
able to reason about and optimize access to the relational
database, it is essential that all relational database access is
represented explicitly in query plans.

A general requirement on all kinds of Translators should
be that atomic units of access to the foreign data source
are represented in Translator query plans in some way. The
query processor of the Translator must be extended with
knowledge about the foreign data source, so that it can de-
cide in which cases it is possible and advantageous to com-
bine multiple atomic units of access into a single call to the
foreign data source.

In our case, where the foreign data source is a relational
database, we can take advantage of the fact that on a syntac-
tic level, predicates in the DRC are a subset of the predicates
allowed in the object calculus used here. Access to the re-
lational database is therefore represented in the Translator
query plan with DRC predicates. The calculus optimizer of
the Translator treats these predicates just like any other ob-
ject calculus predicates, whereas the algebra generator is ex-
tended with knowledge of how to combine DRC predicates
to replace them with SQL calls to the relational database.

4.2.1 DRC predicates

The object calculus representation of a query to the Trans-
lator will contain specially marked predicates representing
access to the relational database. The semantics of these
DRC predicates is defined as follows:

a DRC predicate∗r(x1, . . . , xn) is true if and only if there
is a tuple< x1, . . . , xn > in the relation namedr in the
relational database.

(End of definition)

All functions in the object view which require access to
the relational database are defined in terms of one or more
DRC predicates. During object view resolution, predicates
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using such a function are replaced by their definitions. For
example15:

salaryemployee→integer(e) = sal ⇔
. . . ∧ ∗employee(enr, , sal, )

We now return to example query (Q2). The object cal-
culus representation of this query will contain two DRC
predicates16:

{ n | . . . ∧ ∗employee(enr, n, , ) ∧
. . . ∧ ∗employee(enr, , 15000, ) ∧ . . . } ,

which in the executable query plan will have been replaced
with the desired, single, SQL query:

select name from employee
where salary=15000

4.3 Object identity

A major difference between relational and OO databases
is that relational databases arevalue based, whereas OO
databases areidentity based. The reason for calling OO
databases ‘identity based’ is that objects have an existence
independent of the values of their attributes. Each object is
uniquely identified by an OID which can always be used
to refer to it. In contrast, if two tuples in a relational data-
base have identical values for all attributes, the tuples are
considered identical. This is usually handled by having a
set of attributes (the primary key) whose values are always
different for different real-world objects17.

In an object view of a relational database, there will be a
correspondence between primary key values in the relational
database and OIDs in the view. The Translator must generate
OIDs which correspond to the different primary key values
and guarantee that a primary key value is mapped to the
same OID each time it is accessed. This is a general problem
for object views (Abiteboul and Bonner 1991). Suppose, for
example, that an application issues a query which returns
an OID (let us call this:obj). The application disconnects
from the Translator but maintains the reference to :obj. The
next time the application connects to the Translator, it issues
a query which retrieves some property of :obj. Now, the
Translator must map :obj to the same primary key value as
when it was retrieved18.

Two approaches to generation and maintenance of OIDs
in object views can be distinguished;algorithmic generation
of OIDs, and the use of OIDmapping tables.

15 The complete definition of this function is given in Sect. 4.3.1.
The variable ‘’ can be read as ”don’t care”. For readability, we use this
notation for variables that only occur once in the query plan.

16 A complete description of the query processing steps for this query is
given in appendix D.

17 Most commercial relational databases do not enforce tuple uniqueness.
See Sect. 4.1.

18 In Kemp et al. (1994), OIDs are stored in the relational database. Extra
‘OID columns’ are added for this purpose. We want to avoid this approach,
since it assumes permission to modify the relational database.

Fig. 15. The Translator works in parallel with existing applications

Algorithmic generation of OIDs means that the OID is
somehow calculated based on the value of the primary key.
One way to guarantee that different values always generate
different OIDs is to represent OIDs by a concatenation of the
relation name and the primary key value. This is proposed as
a plausible implementation in the Pegasus project (Ahmed
et al. 1993).

In the mapping tables approach (Fahl 1994), which is
used in AMOS, there is no mathematical correspondence be-
tween the OID and the primary key value. OIDs for mapped
objects are generated dynamically the first time they are
needed and are thereafter maintained by the Translator. The
mapping between OIDs and primary key values is stored in
internal tables in the Translator.

The approach to OID management described in this pa-
per does not depend on whether the algorithmic or mapping
tables approach is used.

The mapping between OIDs and primary key values is
modelled with system-generated functions calledoid map
functions.

Since the Translator provides an object view of anex-
isting relational database, it may have to coexist with other
applications of that database. This is illustrated in Fig. 15.
This makes it not feasible for the Translator to keep locks
on all relations from which OIDs have been generated, since
that would soon end up locking large parts of the data-
base from other applications. Transactions in the relational
database started by the Translator can therefore be charac-
terized as ‘access and commit immediately’19. This means
that oid map functions must access the relational database
to check that the primary key value is still there, since it
may have been deleted by another application.

The oid map functions are defined in terms of DRC pred-
icates and another kind of system-generated functions called
oid translatefunctions. This avoids that relational database
access is embedded within the code of the oidmap functions.
The oid translate functions translate between OIDs and pri-
mary keys but do not access the relational database.

Section 4.3.1 describes oidmap functions and Sect. 4.3.2
describes oidtranslate functions. Section 4.3.3 discusses the
semantics when primary key values for which OIDs have
been generated are deleted from the relational database.

For ease of presentation, we will only consider primary
keys consisting of a single attribute. This can easily be ex-
tended to primary keys consisting of multiple attributes.

19 We assume that the relational databaseschemaused when defining the
mapping to the object view is not changed.
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4.3.1 oidmap functions

The oid map function is overloaded and there is one resol-
vent function for each mapped type. An oidmap function
takes a mapped object as argument and returns the primary
key value that the object is mapped to. LetMT be a mapped
type, REL be the relation that MT is mapped to, andLT be
the literal type corresponding to the domain of the primary
key attribute of REL. For each MT, the system generates the
function

oid mapMT→LT

For example:

oid mapemployee→integer

oid mapsalesman→integer

All functions in the object view that reference a mapped
type in their signature are implemented as derived functions
which make a call to the oidmap function. For example, the
salaryemployee→integer function is defined in terms of the
oid mapemployee→integer function and a DRC predicate:

salaryemployee→integer(e) = sal ⇔
oid mapemployee→integer(e) = enr ∧
∗employee(enr, , sal, )

We assume that the semantics for oidmap functions implies
that a result value must be present in the relational database
in order to be returned. This means that apart from trans-
lating between OIDs and primary key values, an oidmap
function must access the relational database. This is true re-
gardless of whether it is used in the forward or backward
(inverse) direction.

As was discussed in Sect. 4.2, good optimization requires
that all relational database access is represented explicitly in
query plans. We therefore define all oidmap functions as
derived functions:

oid mapMT→LT (OBJ) = V AL ⇔
oid translatemgmt(MT )→LT (OBJ) = V AL ∧
∗REL(. . . , V AL, . . .)

For example:

oid mapemployee→integer(e) = enr ⇔
oid translateemployee→integer(e) = enr ∧
∗employee(enr, , , )

oid mapsalesman→integer(s) = enr ⇔
oid translateemployee→integer(s) = enr ∧
∗salesman(enr, , )

The DRC predicate ensures that the result value is a primary
key in the relation that MT is mapped to. The oidtranslate
function handles the translation between OIDs and primary
key values.

4.3.2 oidtranslate functions

Just like the oidmap functions, an oidtranslate function
takes a mapped object as argument and returns the primary
key value that the object is translated to. However, unlike
oid map functions, oidtranslate functions do not involve ac-
cess to the relational database. They are only concerned with
the translation between OIDs and primary key values. The
oid translate function is overloaded and there is one resol-
vent function for each mgmt:

oid translateMGMT→LT

For example:

oid translateemployee→integer

Oid translate functions are only defined for mgmts. Subtypes
to these types inherit the oidtranslate function.

4.3.3 Deletion semantics

Since the Translator does not keep locks on relations from
which OIDs have been generated, primary key values in
these relations may be deleted by other applications. This
section discusses possible semantics for the object view
when this happens. In the following discussion,:obj is a
mapped object andMT is the mapped type of which :obj is
a direct instance.

Let us first consider the case when the primary key value
is deleted from a relation which is mapped to a type which
is not an mgmt. This causes no problems – the only thing
that happens is that the type membership for :obj changes.
Instead of being a direct instance of MT, it will be a direct
instance of the supertype of MT. For example, if the tuple
where enr=314 is deleted from the salesman relation, the
object :e1 will no longer be an instance of the type salesman,
but it will still be an instance of the type employee.

The problems start when (1) MT is an mgmt, and (2)
some application has a handle to :obj. Suppose, for example,
that some application has issued a query against the object
view which returned the object :e1, that the application keeps
a reference to this object, and that later the tuple where
enr=314 is deleted from the employee relation. The question
is what should happen when the application issues a new
query which involves the object :e1, for example:

select salary(:e1)

In the current prototype, a query like this will simply return
an empty result. The Translator will first execute

oid translateemployee→integer(:e1)

to get the primary key value (314) that :e1 is mapped to.
It will then send the following SQL query to the relational
database:

select salary where enr=314

Since there is no tuple where enr=314, the initial query will
not return anything.

Other semantics are conceivable for a situation like this.
The Translator could notify the application that the reference
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to :obj is obsolete, rather than just return an empty result for
queries like the one above. The notification could either be
performed the first time the application uses :obj in a query,
or as soon as the primary key value is deleted. The latter
case would require an active database mechanism (Hanson
and Widom 1993; Sk̈old and Risch 1996) or some kind of
monitoring (Risch 1989) of the relational database.

A related question is what should happen if the primary
key value is added to the relational database again. In the
current prototype, the primary key value is mapped to the
same OID and applications are unaffected by the fact the
value was deleted for a period of time (unless they tried to
use it while it was absent). This may be fine for some do-
mains, but would be dangerous if primary key values could
be re-used for different real-world objects. Employee num-
bers may, in fact, be an example of this if they are re-used
when employees quit.

4.4 Type membership tests

Query plans in OO databases often contain tests of the
instance-of relationship, i.e., which objects are instances of
which types. We will refer to these tests astype membership
tests. They may, for example, be used to retrieve all in-
stances of a type or to test whether an object is an instance
of a particular type.

Consider, for example, query (Q1) from Sect. 3.4. The
Employee(m) predicate in the object calculus representation
of this query constrains the type membership of the variable
m. In the object algebra translation to the left in Fig. 12, the
Employee(m) predicate from the calculus has resulted in
the Employee node at the bottom, generating the set of all
employee objects.

In an OO database, the relationship between objects and
types (which objects are instances of which types) can be
specially represented directly in the database, for example,
by encoding the type information directly in the OID. This
makes it possible to implement type membership tests very
efficiently.

In an object view of a relational database, the relation-
ship between objects and types depends on the state of the
relational database20. Definition:

A mapped objectOBJ is an instance of a mapped typeTP
if:

(a) OBJ is mapped to a primary key value that occurs in
the relation thatTP is mapped to, and

(b) mgmt(TP ) = mgmt(direct instance of (OBJ)).

(End of definition)

Condition (b) is necessary to handle cases where a pri-
mary key value occurs in two relations which are mapped
to types with different mgmts. For example, an employee
object which is mapped to the primary key value enr=314

20 Unless the extent of mapped types is assumed to be stable, i.e., no
tuples are added or removed from relations corresponding to mapped types.
In that case, the extent of a mapped type can be materialized, once and for
all, in the Translator. This assumption is made in Kemp et al. (1994).

is not an instance of the type department, even if there is a
department with the primary key value dnr=314.

Type membership tests require access to the relational
database. This makes these tests very expensive, and it is
essential that they are handled in an efficient way by the
optimizer. The relational database access required by type
membership tests should be combined with the other rela-
tional database access in the query plan. For example, con-
sider the following AMOSQL query:

select salary(s) for each (Q3)
salesman s

A normal OO query plan would start by retrieving all sales-
man objects and then applying the salary function to these
objects. If this strategy was followed for an object view of a
relational database, this would imply execution of the query

select enr from salesman

to retrieve the primary key values for all salesman objects
and then for each of these values (say X) executing queries
of the form

select salary from employee where enr=X

Clearly, this is a non-optimal execution strategy. An optimal
execution strategy results in a single SQL query:

select salary
from employee, salesman
where employee.enr=salesman.enr

The problem is that type membership tests require access to
the relational database, and that this access is embedded in
the code implementing these tests.

To resolve this problem, observe that the definition of the
instance-of relationship for mapped objects and types can be
expressed as follows:

TP (OBJ) ⇔
oid translatemgmt(TP )→LT (OBJ) = V AL ∧
∗REL(. . . , V AL, . . .)

For example:

Employee(e) ⇔
oid translateemployee→integer(e) = enr ∧
∗Employee(enr, , , )

Salesman(s) ⇔
oid translateemployee→integer(s) = enr ∧
∗Salesman(enr, , )

This assumes that condition (b) in the definition above is
guaranteed by theoid translate predicate. For example, as-
sume that :d is a department object which is mapped to the
primary key value 314. Then the function calloid trans-
lateemployee→integer(d) should return an empty result, and
the function call oid translate−1

integer→employee(314)
should return the employee object :e1 but not the depart-
ment object :d.



274

Substitution ofTP (OBJ) predicates according to the
above rule is a part of the object view resolution phase.
Again, consider AMOSQL query (Q3). The final calculus
representation of this query after object view resolution and
calculus optimization is as follows21:

{ sal |
∗salesman(enr, , ) ∧
∗employee(enr, , sal, ) }

Which results in a single SQL query against the relational
database:

select salary
from employee, salesman
where employee.enr=salesman.enr

4.4.1 Remaining problems with type membership tests

A more general way to describe type membership tests is
with the instance oftype→object function. It takes a type
object as argument and returns the objects that are instances
of that type (direct or by generalization). Using this notation,
a predicate of the formTP (OBJ) would be written

OBJ = instance oftype→object(TP )

For example:

e = instance oftype→object(: typeEmployee)

When the type is known at compile-time, the instanceof
function will be used in the forward direction. This was the
case in all examples in the previous section, and can be seen
as the normal case. However, some unusual queries require
the instanceof function to be used in the backward direction
(i.e., the inverse).

One example of this is a metadata query like the follow-
ing:

select t (Q4)
for each type t
where :e1 = instance_of(t)

Other examples are queries that require late binding. For
example, suppose the salary function is overridden for the
salesman type. Then, a query like

select salary(e) for each (Q5)
employee e

requires late binding of the salary function. For each em-
ployee object (E), the inverse of theinstance of func-
tion must be used to retrieve the types that E is an in-
stance of. This decides whether thesalaryemployee→integer

or salarysalesman→integer resolvent should be applied to E.
Recall the substitution rule for TP(OBJ) predicates:

TP (OBJ) ⇔
oid translatemgmt(TP )→LT (OBJ) = V AL ∧
∗REL(. . . , V AL, . . .)

21 The query processing details for this query are given in appendix E.

Using the instanceof function, this can be written as:

OBJ = instance oftype→object(TP ) ⇔
oid translatemgmt(TP )→lt(OBJ) = V AL ∧
∗REL(. . . , V AL, . . .)

This substitution rule can only be applied when TP is
known at compile-time. For queries (Q4) and (Q5) above,
TP is bound at run-time, which means that the execution
plan contains calls to the inverse of instanceof.

The instance of−1
object→type function takes an object

as argument and returns the types that the object is an in-
stance of. The semantics for aninstance of−1

object→type

(OBJ) function call is as follows: Calculate the primary key
value (v) that corresponds to OBJ. Let TREE be the subtree
of the type tree that hasmgmt(direct instance of (OBJ))
as its root. Traverse TREE top-down and for each type TP
that is a node of TREE do the following: let rel be the rela-
tion that TP is mapped to. Check if v is a primary key value
in rel. If it is, TP is one of the types that should be returned.
If it is not, do not traverse the subtree having TP as its root
any further.

For example, query (Q4) will result in the following SQL
queries22:

select ’T’ from employee where enr=314
select ’T’ from secretary where enr=314
select ’T’ from salesman where enr=314

As this example shows, queries that require the instanceof
function to be used in the backward direction are very expen-
sive. Furthermore, global optimization is impossible since
relational database access is embedded within the code of
the instanceof function.

Our approach is based on full query translation and no
view materialization. Clearly, queries like the ones in this
section would benefit greatly if the instance-of relationship
was materialized. However, view materialization introduces
new problems such as keeping the materialization up-to-date
(Gupta and Mumick 1995). Which approach to take should
be based on the nature of data (update frequency) and ap-
plications (query types).

5 Query optimization

Query optimization is performed in two steps (see Fig. 4):
calculus optimizationand algebra optimization. Calculus
optimization (Sect. 5.1) concerns rewrite rules to simplify
the declarative calculus representation of the query. Sec-
tion 5.1.1 describes the technique of simplification using key
information. Section 5.1.2 presents a rewrite rule which takes
advantage of the semantics of the oidtranslate function. Al-
gebra optimization is the process of finding the cheapest
algebraic representation of the query. This is discussed in
Sect. 5.2.

22 The queries are used to test whether a certain value is in the database
or not. It does not matterwhat is returned, only thatsomethingis returned.
Hence “select ’T’. . . ”
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5.1 Calculus optimization

5.1.1 Simplification using key information

Information about keys23 can be used to simplify calculus
expressions. This is the case when two predicates have the
same predicate symbols, have the same constants/variables
in the key attributes, and there are no conflicts between con-
stants in the non-key attributes. For example, consider the
following calculus expression:

{ sal1 |
salaryemployee→integer(e) = sal1 ∧
salaryemployee→integer(e) = sal2 ∧
foo(sal2) }

The argument to the salary function is a key since employ-
ees can only have one salary (the function is single-valued).
Since the two salary predicates have the same variable (e) as
argument, they can be unified and replaced by a single pred-
icate, provided that the resulting substitution (sal2 should be
replaced bysal1) is applied to the rest of the predicates:

{ sal1 |
salaryemployee→integer(e) = sal1 ∧
foo(sal1) }

These simplifications are often needed during query pro-
cessing due to the definition of the object view. Consider
for example the following query:

select name(e), salary(e) (Q6)
for each employee e

This is translated to the following calculus expression:

{ n, sal |
Employee(e) ∧
sal = salaryemployee→integer(e) ∧
n = nameemployee→integer(e) }

Object view resolution gives the following, which is the
input to the calculus optimizer:

{ n, sal |
oid translateemployee→integer(e) = enr1 ∧
∗employee(enr1, , , ) ∧
oid translateemployee→integer(e) = enr2 ∧
∗employee(enr2, , sal, ) ∧
oid translateemployee→integer(e) = enr3 ∧
∗employee(enr3, n, , ) }

Since all three oidtranslate function calls take the same vari-
able (e) as argument, and since the oidtranslate function is
single-valued, they can be unified. Each occurrence of vari-
ablesenr2 andenr3 are replaced byenr1:

23 Or more generally, information about functional dependencies (Qian
and Raschid 1995).

{ n, sal |
oid translateemployee→integer(e) = enr1 ∧
∗employee(enr1, , , ) ∧
∗employee(enr1, , sal, ) ∧
∗employee(enr1, n, , ) }

Now, the ∗employee predicates have the same variable
(enr1) in the key position24. Unification gives:

{ n, sal |
oid translateemployee→integer(e) = enr1 ∧
∗employee(enr1, n, sal, ) }

5.1.2 Removal of unnecessary OID translations

It is sometimes possible to remove predicates on the form
oid translateMGMT→LT (OBJ) = V AL from the query
plan without affecting the semantics of the query. We define
the rule for this as follows:

If: The argument (i.e., the OID) to theoid translate func-
tion is a variable which does not occur in any other predicate
of the calculus expression and is not one of the result vari-
ables of the query.

Then: The predicate containing theoid translate function
call can be removed from the calculus expression.

Before we motivate why the removal rule can be applied,
observe that the only case we need to discuss is when the
function is used in the backward direction (i.e., the inverse).
If the function is used in the forward direction, the argument
variable has been bound by some other predicate and the
precondition of the rule is not satisfied.

A predicate of the formoid translateMGMT→LT (OBJ)
= V AL for which the precondition holds can be removed
from the query plan, sinceoid translate−1 is a single-
valued function that never fails. Its only purpose is to com-
pute the OID which corresponds to a certain primary key
value. Thus, if the computed OID is never used, then the
whole translation can be omitted.

We return to the example query from the previous section
(5.1.1). Since the argument to theoid translate function
(e) does not occur elsewhere in the calculus expression, the
predicate can be removed:

{ n, sal |
∗employee(enr1, n, sal, ) }

5.2 Algebra optimization

The object calculus that is the input to the algebra gen-
erator contains DRC predicates that represent access to the
relational database. During algebra generation the query pro-
cessor creates temporary functions which replace the DRC

24 Information about keys in the relational database is collected during
schema translation.
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Fig. 16. Query tree nodes where zero, one, and two of the variablesn and
sal are bound

predicates. These temporary functions send SQL queries to
the relational database.

The temporary functions are calledsql execq where q is
an SQL query. The query q may be parametrized with vari-
ables on the form !vx, where x=1, 2, 3 etc. A parametrized
query is instantiated at execution time. The first argument to
the sql execq function replaces the variable !v1, the second
replaces !v2 etc. Thesql execq function call returns the bag
of tuples that is the result of the SQL query. An example
will help to illustrate this. Consider the following calculus
expression:

{ n, sal |
foo(17) =n ∧
fie(42) = sal ∧
∗employee( , n, sal, ) }
The DRC predicate∗employee is replaced with different

sql execq function calls depending on which, if any, of the
variablesn andsal are bound, i.e., depending on the position
of the sql execq function call in the query tree. Figure 16
shows the resulting query tree nodes when zero, one, and
two of the variables are bound. If both variables are bound,
the SQL query works as a boolean test. In that case, the
node is a select (σ) node and not a generate (γ) node.

When the calculus expression contains more than one
DRC predicate, different combinations of these predicates
may be grouped together to be replaced by a singlesql execq

function call. The algebra optimizer must be extended with
knowledge of how to find the optimal grouping of DRC
predicates.

When two DRC predicates have a common variable, this
represents a join between two relations. For example, con-
sider the following query:

Fig. 17. Two DRC predicates are replaced by a singlesql execq function
call

select district(s), salary(s) (Q7)
for each salesman s

This is translated to the following optimized calculus ex-
pression:

{ d, sal |
∗salesman(enr, d, ) ∧
∗employee(enr, , sal, ) }

Figure 17 shows how the two DRC predicates can be re-
placed by a singlesql execq function call.

When two DRC predicatesdo not have any common
variables, replacing them with a singlesql execq function
call would result in a ‘cartesian product query’ to the rela-
tional database.

To illustrate this, we will assume that the Translator for
the company example contains the following local function25:

recreationcharstring→charstring

The function takes a district as argument and returns the
recreational activities that are possible in that district. We
will assume the following extension for the function:

recreation(’charlotte’)=’squash’
recreation(’charlotte’)=’fishing’
recreation(’charlotte’)=’skiing’
recreation(’raleigh’)=’golf’

Now suppose that the following query is given to the Trans-
lator (‘what salesmen work in a district where the hobby of
some employee earning 25000 can be practiced’)26:

select s (Q8)
for each salesman s, employee e
where recreation(district(s))=hobby(e)
and salary(e)=25000

The input to the algebra generator will be the following
calculus expression:

{ s |
oid translateemployee→integer(s) = snr ∧
recreationcharstring→charstring(d) = a ∧
∗salesman(snr, d, ) ∧
∗emp hobbies(enr, a) ∧
∗employee(enr, , 25000, ) }

Figure 18 shows one of the possible execution plans where
the three DRC predicates are replaced by a singlesql execq

25 I.e., a function for which the extent is stored directly in the Translator.
26 The query processing details for this query are given in appendix C.
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Fig. 18. Execution plan for query (Q8) withonesql execq function call

Fig. 19. Execution plan for query (Q8) withtwo sql execq function calls

function call. A single query will be sent to the relational
database. The query will join the employee and emphobbies
relations and then create the cartesian product of this and the
salesman relation.

Figure 19 shows one of the possible execution plans
where the DRC predicates are replaced by twosql execq

function calls.
The first sql execq function will be executed once and

produce three output tuples:<’tennis’>, <’fishing’>, and
<’golf’ >. ‘fishing’ is a recreational activity in ‘charlotte’,
and ‘golf’ is a recreational activity in ‘raleigh’, which means
that the secondsql execq function will be executed two
times:

select enr from salesman
where district=’charlotte’

select enr from salesman
where district=’raleigh’

The cost of an execution plan in the Translator depends
on the relative costs of computations in the Translator, trans-
mission costs, and the costs of processing the queries in the
relational database. Ideally, the query optimizer of the Trans-
lator should estimate the cost of all possible execution plans
and select the cheapest. This optimization problem is even
more computationally intractable than regular query opti-
mization, since DRC predicates may or may not be grouped
together to be replaced by a singlesql execq function. To
achieve an accurate estimation of the costs of the relational
queries, the cost model of the relational database system will
have to be simulated in the Translator. Note that the statistics
and cost model parameters of the relational database system
may not be available. In that case, they could be estimated
by running a well-chosen set of test queries (Du et al. 1992).

In the current prototype implementation we use the
heuristic rule to generate as few SQL queries as possible,
but never cartesian product queries. This reduces the search
space significantly and avoids the worst cases. The costs
of the remaining query plans are then estimated and the
cheapest is selected for execution. The estimated cost of an
algebra operation involving ansql execq function call is set
to a fixed, very high value. The cardinality of the result of
an algebra operation involving ansql execq function call is
estimated based on the number of bound and free variables.
For example, algebra node (a) in Fig. 16 can be expected to
greatly increase the cardinality since both variables (n and
sal) are free. Algebra node (c) can be expected to decrease
the cardinality, since both variables are bound.

6 Summary and future work

We have presented an approach to object view manage-
ment for relational databases. The software component im-
plementing the object view can store its own data and meth-
ods. This means that queries can combine local data resid-
ing in the object view with data retrieved from the relational
database.

To simplify the mapping between the relational database
and the object view, we assume that subtype/supertype rela-
tionships are represented in a particular way in the relational
database. Relational databases represented in this way are
said to be DM to a particular object view. When a relational
databaseis not DM to a desired object view, the first step is
to define an external relational schema thatis.

Global optimization requires that all relational database
access is represented explicitly in object view query plans.
We use DRC predicates for this. The object calculus rep-
resentation of a query may contain DRC predicates. All
functions in the object view which require access to the
relational database are defined as derived functions. During
object view resolution, they are replaced by their definitions,
which include one or more DRC predicates.

The mapping between OIDs and primary key values is
modelled with system-generatedoid mapfunctions. To avoid
that relational database access is hidden within the code of
oid map functions, they are defined as derived in terms of
DRC predicates andoid translatefunctions. DRC predicates
handle the relational database access and oidtranslate func-
tions handle the ‘pure’ OID translation functionality.
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The relationship between objects and types is modelled
by the instanceof function. When the argument to an in-
stanceof function call is a mapped type that is known at
compile-time, the function call can be replaced by a DRC
predicate and an oidtranslate function call. This avoids that
relational database access is hidden within the code of the
instanceof function.

The calculus optimization techniques ofsimplification
using key informationandremoval of unnecessary oidtrans-
late predicatesare used to simplify query plans and avoid un-
necessary OID translations. The query optimizer must then
decide how to replace DRC predicates with actual calls to
the relational database. DRC predicates may be combined
in many different ways which increases the complexity of
query optimization. Ideally, the optimizer should estimate
the cost of all possible execution plans and select the cheap-
est. The cost depends on the relative costs of computations
in the object view, transmission costs, and the costs of pro-
cessing the queries in the relational database. We currently
use the heuristic rule to generate as few SQL queries as pos-
sible, but never cartesian product queries. This reduces the
search space and avoids the worst cases.

6.1 Future work

As discussed in Sect. 4.1, the first step of the mapping pro-
cedure is to define an external relational schema that is DM
(DM) with respect to a particular object view. Unfortunately,
current relational view definition languages are not general
enough to allow all types of mappings (for an example, see
Sect. 4.1). Two different solutions are possible. (a) Extend
relational view definition languages, so that a DM external
schema can be defined for all types of relational schemas,
or (b) add constructs to the object view definition language,
so that all relational schemas can be directly mapped to the
desired object view, including those for which the relational
view mechanism is not powerful enough to define the DM
external schema.

The heuristic rules used for algebra optimization are not
adequate in the general case. The selection of execution strat-
egy should be based on real cost estimates. To estimate the
costs of relational queries, the cost model of the relational
database system has to be simulated in the object view.

The approach should be tested on existing relational
databases. Scalability regarding database and schema size
is not a problem, since our approach is based on non-
materialized views and query translation. But realistically
sized databases raise the demands on query optimization
techniques, and our heuristics may prove inadequate. It is
also essential to study the effects that bad or unusual data
design has on the usability of our approach. For example,
how frequent it is that DM views cannot be defined.

The approach should also be generalized for complex
queries involving, for example, aggregation and grouping.
Queries requiring late binding are currently very expensive,
as discussed in Sect. 4.4.1. Materialization of the instance-
of relationship may be necessary in order to achieve good
performance for late binding queries. This introduces new
problems such as view maintenance.
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Appendix A

The semantics of theγ operator is defined as follows. Let
Y be the input bag of tuples of objects:

Y = {| < y11, . . . , y1n >, . . . , < ym1, . . . , ymn
> |}

Then,

γλ(x1,...,xn).<x1,...,xn,Θ(x1,...,xn)>(Y ) =⋃
i=1...m

bag ({| < yi1, . . . , yin > |} ×Θ(yi1, . . . , yin ))

The semantics of theσ operator is defined as follows (where
σrel is the relational algebra selection operator with bag se-
mantics):

σλ(x1,...,xn).Θ(x1,...,xn)=z(A) =

πλ(x1,...,xn,y).<x1,...,xn>(C)

where

C = σrel
λ(x1,...,xn,y).y=z(B)

and

B = γλ(x1,...,xn).<x1,...,xn,Θ(x1,...,xn)>(A)

Appendix B

Object view resolution rules in the company example:

Employee(e) ⇔
oid translateemployee→integer(e) = enr ∧
∗employee(enr, , , )

Salesman(s) ⇔
oid translateemployee→integer(s) = enr ∧
∗salesman(enr, , )

Secretary(s) ⇔
oid translateemployee→integer(s) = enr ∧
∗secretary(enr, )

enremployee→integer(e) = enr ⇔
oid translateemployee→integer(e) = enr ∧
∗employee(enr, , , )

nameemployee→charstring(e) = n ⇔
oid translateemployee→integer(e) = enr ∧
∗employee(enr, n, , )

salaryemployee→integer(e) = sal ⇔
oid translateemployee→integer(e) = enr ∧
∗employee(enr, , sal, )
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Fig. 20. Algebraic translations of the example query in Appendix C

manageremployee→employee(e) = m ⇔
oid translateemployee→integer(e) = enr ∧
oid translateemployee→integer(m) = mnr ∧
∗employee(enr, , ,mnr)

hobbyemployee→charstring(e) = h ⇔
oid translateemployee→integer(e) = enr ∧
∗emp hobbies(enr, h)

typingspeedsecretary→integer(s) = ts ⇔
oid translateemployee→integer(s) = enr ∧
∗secretary(enr, ts)

districtsalesman→charstring(s) = d ⇔
oid translateemployee→integer(s) = enr ∧
∗salesman(enr, d, )

salessalesman→integer(s) = sls ⇔
oid translateemployee→integer(s) = enr ∧
∗salesman(enr, , sls)

Appendix C

AMOSQL query:

select s
for each salesman s, employee e
where recreation(district(s))=hobby(e)
and salary(e)=25000

Object calculus:

{ s |
Salesman(s) ∧
Employee(e) ∧

recreationcharstring→charstring(d) = a ∧
districtsalesman→charstring(s) = d ∧
hobbyemployee→charstring(e) = a ∧
salaryemployee→integer(e) = 25000}

Object calculus after object view resolution (see Appen-
dix B):

{ s |
oid translateemployee→integer(s) = snr ∧
∗salesman(snr, , ) ∧
oid translateemployee→integer(e) = enr ∧
∗employee(enr, , , ) ∧
recreationcharstring→charstring(d) = a ∧
oid translateemployee→integer(s) = snr2 ∧
∗salesman(snr2, d, ) ∧
oid translateemployee→integer(e) = enr2 ∧
∗emp hobbies(enr2, a) ∧
oid translateemployee→integer(e) = enr3 ∧
∗employee(enr3, , 25000, ) }

Object calculus after simplification using key information
(calculus optimization phase 1):

{ s |
oid translateemployee→integer(s) = snr ∧
oid translateemployee→integer(e) = enr ∧
recreationcharstring→charstring(d) = a ∧
∗salesman(snr, d, ) ∧
∗emp hobbies(enr, a) ∧
∗employee(enr, , 25000, ) }

Object calculus after removal of unnecessary oidtranslate
predicates (calculus optimization phase 2):
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{ s |
oid translateemployee→integer(s) = snr ∧
recreationcharstring→charstring(d) = a ∧
∗salesman(snr, d, ) ∧
∗emp hobbies(enr, a) ∧
∗employee(enr, , 25000, ) }

Algebraic translations of the calculus expression are gener-
ated27. See Fig. 20.

The cheapest is selected for execution. See the rightmost
query plan in Fig. 20.

Appendix D

AMOSQL query:

select name(e)
for each employee e
where salary(e)=15000

Object calculus:

{ n |
Employee(e) ∧
nameemployee→charstring(e) = n ∧
salaryemployee→integer(e) = 15000}

Object calculus after object view resolution (see Appen-
dix B):

{ n |
oid translateemployee→integer(e) = enr ∧
∗employee(enr, , , ) ∧
oid translateemployee→integer(e) = enr2 ∧
∗employee(enr2, n, , ) ∧
oid translateemployee→integer(e) = enr3 ∧
∗employee(enr3, , 15000, ) }

Object calculus after simplification using key information
(calculus optimization phase 1):

{ n |
oid translateemployee→integer(e) = enr ∧
∗employee(enr, n, 15000, ) }

Object calculus after removal of unnecessary oidtranslate
predicates (calculus optimization phase 2)

{ n |
∗employee( , n, 15000, ) }

The algebraic translation of the calculus expression is gen-
erated (there is only one translation). See Fig. 21.

27 In the current prototype implementation, we use the heuristic rule
to generate as few SQL queries as possible, but never cartesian product
queries.

Fig. 21. Algebraic translation of the example query in Appendix D

Fig. 22. Algebraic translation of the example query in Appendix E

Appendix E

AMOSQL query:

select salary(s) for each salesman s

Object calculus:

{ sal |
Salesman(s) ∧
salaryemployee→integer(s) = sal }

Object calculus after object view resolution (see Appendix
B):

{ sal |
oid translateemployee→integer(s) = enr ∧
∗salesman(enr, , ) ∧
oid translateemployee→integer(s) = enr2 ∧
∗employee(enr2, , sal, ) }

Object calculus after simplification using key information
(calculus optimization phase 1):

{ sal |
oid translateemployee→integer(s) = enr ∧
∗salesman(enr, , ) ∧
∗employee(enr, , sal, ) }

Object calculus after removal of unnecessary oidtranslate
predicates (calculus optimization phase 2):

{ sal |
∗salesman(enr, , ) ∧
∗employee(enr, , sal, ) }

Algebraic translations of the calculus expression are gener-
ated and the cheapest is selected for execution. See Fig. 22.
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