
Theory and Practice of Tertiary Science and

Engineering Education

Arnold Pears,
Uppsala University, Sweden

Arnold.Pears@it.uu.se

Stephen B. Seidman,
Texas State University, TX, USA

seidman@txstate.edu

October 16, 2017

2

Contents

I Theory and Methods 5

1 The Tertiary Teaching and Learning Landscape 7

2 The Nature of Learning in Science and Engineering 9
2.1 Approaches to Learning . 10

3 Practical Scholarship of Teaching and Learning 15
3.1 Improving Practice . 17
3.2 Understanding learning . 18

II Case Study 21

4 An Evidence-based Approach to Teaching Programming 23
4.1 Introduction . 23
4.2 Related Research . 24

4.2.1 Difficulties with learning programming 24
4.2.2 Developing holistic system development skills 25
4.2.3 Student conceptions of correctness and quality 26

4.3 Discussion . 26
4.3.1 Can’t see the wood for the trees 27
4.3.2 Student conceptions of correctness 28
4.3.3 Making processes explicit 29

4.4 Recommendations . 30
4.5 Applying Theory to Practice . 30

4.5.1 Instructional Design . 30
4.5.2 Learning Approach . 31
4.5.3 Constructive Alignment of Assessment 32

4.6 Conclusion . 34

5 Using Action Research to Evolve a Service Learning Course 37

3

4 CONTENTS

Part I

Theory and Methods

5

Chapter 1

The Tertiary Teaching and
Learning Landscape

This handbook is written for university teachers of science, technology engi-
neering and mathematics (STEM) disciplines who are seeking to place their
teaching within a context of pedagogical research. Even after decades of re-
search on tertiary-level teaching and learning in many disciplines, the results of
this work have only just begun to have a broad impact on university teaching
practice as part of an holistic effort to enhance Scholarship of Teaching and
Learning. The purpose of this book is to bring aspects of this research tradi-
tion to STEM educators in universities, and to present practical examples of its
application in the university classroom. The book provides an overview of the
teaching and learning research that fuels this change in the working environ-
ment. We also discuss the characteristics of a scholarly approach to academic
leadership at levels ranging from individual courses to degree programmes and
curriculum design.

In this chapter we provide an overview of the changing priorities in modern
higher education, helping to contextualise scholarly teaching practice in the
broader context of the development of the academy, and the associated academic
traditions, roles and responsibilities, as they are reflected in the higher education
of the 21st century.

Traditionally, access to tertiary education has defined and served a privileged
segment of a nation’s population. Holders of university degrees have enjoyed
higher salaries as well as status and influence in government and industry, es-
tablishing an intellectual elite that has blossomed in many countries in the years
following the Second World War. Policy makers, observing the higher salaries
and adaptability of university graduates, have enacted legislation to increase
participation in higher education for their citizens in the belief that this will
result in increased prosperity for individuals and nations.

This is only true if nations can use their citizens’ education and skills to
establish themselves as knowledge economies. This can be done by creating high-

7

8CHAPTER 1. THE TERTIARY TEACHING AND LEARNING LANDSCAPE

quality educational systems that can produce the knowledge workers required
by a knowledge economy. The value of education therefore lies in its quality
and the availability of jobs that require high level education.

Several specific challenges for higher education arise in the context of es-
tablishing a knowledge society. First there is a shift away from providing a
research education to a minority, to providing broader education in the service
of industry, government and society. Second, issues of diversity and equity of
access to higher education become increasingly important [1]. To some extent
these initiatives have been criticised as leading to inflation of qualifications and
establishment of a plethora of tertiary qualifications in areas that are not tra-
ditionally academic. We can conclude that, together with an expansion of the
academic sector through the establishment of new universities, these factors
have created significant challenges for higher education institutions of the 21st
century.

The teaching and learning challenges inherent in the expansion of the higher
education sector and concomitant increase in access to tertiary education for
citizens has been addressed in several studies of higher education [2,3]. Learners
have increasingly disparate backgrounds with the associated variations in prior
knowledge and experience, not to mention issues of age, language, learning
culture and family expectations [4].

Increasing awareness of these challenges during the decades since the pub-
lication of Boyer’s book ”The Priorities of the Professoriate” and works which
developed that position in regard to the practice of higher education [5, 6] in
1990 have seen a greatly increased realisation of the critical importance of edu-
cational aspects of academic life. As a result, there has been increased attention
paid to the need to enhance capacity for scholarship in teaching and learning
among academics. Boyer’s description of a scholarship specifically dealing with
teaching and inspiring learners to engage in the discipline sparked a world- wide
interest in enhancing higher education quality through staff development, and
staff involvement in applied education theory across all disciplines.

The higher education research literature has engaged vigorously with this
situation from a pedagogical perspective [7–9], providing a range of models and
approaches. There is also a considerable literature in disciplinary education
research which explores the implications of the broader scholarly findings for
teaching and learning in Physics, Chemistry, Computer Science and Engineer-
ing.

What does this mean for us as teachers? Faced with expectations to engage
learners and to practice scholarship of teaching and learning it can be hard
to know what is expected, or how to engage meaningfully in scholarly based
teaching practice in higher education.

The aim of the remainder of this book is to familiarise readers with salient
aspects of the Scholarship of Teaching and Learning literature. Building on this
we develop a hands-on framework for research informed instructional design.
Finally, different applications of the framework are described using case studies
in different disciplines.

Chapter 2

The Nature of Learning in
Science and Engineering

Education at research universities is characterized by teaching that is informed
by disciplinary research activities. At such universities, the content of faculty
research permeates the educational environment. In this context, high-quality
learning depends on research in both the scientific subject matter itself and in
the learning of advanced disciplinary concepts.

The motivation to change the teaching and learning climate of the academy
builds on a broad body of work on teaching and learning theory, quality man-
agement of organisations, and arguments regarding the nature of academic ex-
cellence.

However, educational research is very often both unfamiliar and relatively
inaccessible to researchers in STEM disciplines. This presents challenges in
terms of bringing new educational models to bear on teaching in these disci-
plines. This chapter will attempt to bridge the gap between STEM researchers
and education researchers.

Several different approaches to learning with implications for knowledge re-
tention can be traced to the infliuential research of Swedish educationalists
on surface and deep learning [10]. Building on this early work of Marton,
Säljö, Booth and others, Prosser and Trigwell address how the instructional
environment can facilitate acquisition of knowledge in an increasingly diverse
educational ecology. They argue [11, page 408] that there is a fundamental
qualitative difference between a student-centric and teacher-centric view of the
learning process. Specifically, they claim that a student-centered approach to
facilitating learning focuses on the nature of the learning itself, placing the main
emphasis on changing student conceptions of the subject matter. In contrast,
a teacher-centric approach may be characterised by a focus on issues related to
subject matter content and delivery. These claims are supported by [12,13]. In
a more specific disciplinary context, the existence of these qualitative differences
in teacher perceptions in the general population of computer science academics

9

10CHAPTER 2. THE NATURE OF LEARNING IN SCIENCE AND ENGINEERING

is supported by data collected by Pears et al. [14]
As part of this discourse on the nature of higher education, the goals of higher

education have come to be defined by many researchers as developmental and
student-centric [15–18].

Figure 2.1: Factors influencing educational excellence

2.1 Approaches to Learning

How students approach learning is dependent on the learning environment. In
particular, there is a relationship between what teachers do and how students
learn; this relationship has explored by a number of researchers [8, 19]. This
implies that teaching would be improved if teachers were more aware of what
actions they can take to structure the learning environment in order to achieve
the learning outcomes they desire.

But, if empowerment in, and commitment to, scholarly teaching and learning
practices is vital for the renewal of higher education, how is this to be achieved?

2.1. APPROACHES TO LEARNING 11

As we have noted, educational research results are often not easily accessible
to many science researchers. Educational theories are often abstract and re-
sults couched in general terms, which presents challenges in terms of adapting
new educational models to teaching in specific STEM disciplines. Likewise, ed-
ucational researchers often have little exposure to advanced research concepts
in STEM disciplines, which affects their ability to discern and study learning
phenomena related to tertiary STEM teaching and

Figure 2.2: Role of educational research in the disciplines

It is useful to relate the goals of learning activity to to models of learner
development and of the learning process. Figure2.3 drawn from Entwistle [20]
integrates two perspectives on the learning process and relates them to the
development of understanding and identity.

In this context, teachers’ ability to facilitate student development is en-
hanced by a student-centric approach that incorporates conceptual change. This
viewpoint is supported by research of Kember [21], who studies the impact of
student attitudes and expectations on the nature and outcomes of the teaching
and learning process.

Figure 2.2 illustrates the role of disciplinary education research in the com-
plex relationship between research in the discipline, teaching of the discipline,
and research in education and higher education. Disciplinary education research

12CHAPTER 2. THE NATURE OF LEARNING IN SCIENCE AND ENGINEERING

Figure 2.3: Entwistle’s integrative model of learner development

in higher education necessarily draws upon both knowledge of the discipline it-
self as well as relevant theory from research in higher education.

Research that informs higher education practice can be broadly characterised
based on the particular point of departure. In much higher education research,
the point of departure is a philosophy of education or a research paradigm.
Taking a philosophical standpoint from the outset leads to the development of
schools of educational research; studies in these traditions tend to have a com-
mon underlying epistemology. This implies that the methodology and results
are rather similar in character and follow well established traditions.

In contrast, the point of departure for disciplinary education research is usu-
ally situated in the instructional context. It addresses perceived shortcomings
in the instructional design, achieved learning outcomes, or student capabilities
and competencies. Such research focuses on pragmatic disciplinary goals, where
subject knowledge provides crucial insights as to the relative value of types of
student understanding and conceptual development. In this type of research a
single investigator might draw on methods from either qualitative or quantita-
tive research, or both, in the search for enlightenment.

The eclectic nature of research practice is partially illustrated in figure 2.4

2.1. APPROACHES TO LEARNING 13

Figure 2.4: Role of educational research in the disciplines

14CHAPTER 2. THE NATURE OF LEARNING IN SCIENCE AND ENGINEERING

Chapter 3

Practical Scholarship of
Teaching and Learning

What is scholarly teaching practice? Boyer defined the scholarship of teaching
as activity which,

“educates and entices future scholars by communicating the beauty
and enlightenment at the heart of significant knowledge.”

Trigwell et al. [22, page 156] cite Ramsden’s definition of teaching “The aim of
teaching is simple: it is to make student learning possible.” and then define
the purpose of scholarly teaching as “making transparent how we have made
learning possible.”.

However, these definitions are abstract and the nature of scholarly teaching
in higher education remains diverse and hard to capture since it can be practiced
in a variety of different ways. For instance, there is a difference between im-
plementing curricula and teaching methods based on prior research, evaluating
curricula and teaching methods in the local educational context, and conduct-
ing research which aims to extend the bounds of what is known about how to
teach in a discipline. In this chapter the main focus is on what Shulman [23]
termed “what we know about learning, scholarly inquiry into how students ’make
meaning’ out of what the teacher says and does.”

To provide a framework for the context of scholarly engagement in teaching
and learning in higher education we focus on how academics can contribute
to an enhanced learning environment in their discipline. Trigwell [22] in his
interviews with hugher education academics identifies several intentions and
strategies associated with scholarship of teaching and learning. Broadly stated
one can collapse these categories into the three classes shown in figure 3.1.

Improve practice: through awareness and application of relevant scholarship
in their educational practice. The aim is to maintain awareness of relevant
disciplinary research literature in order to stay abreast of best practice in
the area of the discipline where one is engaged in research and teaching.

15

16CHAPTER 3. PRACTICAL SCHOLARSHIP OF TEACHING AND LEARNING

Figure 3.1: Approaches to Scholarly Teaching and Learning Practice

Understand learning: by investigating learning with the intent to understand
the implications of educational innovation. This implies taking a step be-
yond the intention to improve practice by also collecting data and con-
ducting systematic analysis to evaluate the effects of changes to curricula
and methods of instruction.

Contribute insight: through pursuing a research vision that contributes to
establishing theory and contributing evidence to a wider discourse on
teaching and learning of the discipline. This involves combining a deep ud-
nerstanding of the discipline with research in theory and practice of higher
education in order to improve understanding of how students develop and
become experts in the discipline.

The first two levels deal with the application of research to practice. The aim
is not to do original research in teaching and learning theory. Activity focuses
on applying known results and evaluating the impact of established promising
practices. It seems likely that engagement at this first level will become essential
for all academics in the near future1.

Research into the nature of learning in the discipline is the focus of people
who fall into the final category. This will naturally be the province of those
who choose to pursue a research career in teaching and learning theory in their
discipline. Research of this type is needed in order to address new educational
challenges at undergraduate and postgraduate level, but cannot be expected of
everyone.

On the other hand, the demands of accreditation and quality assurance
agencies on higher education are best met when academic staff are operating at
the second level or above. At level two instructional design is well informed and

1This is already implicit in the quality assurance schemes of many european countries.
Look at policies formulated by the European Quality Agency for Higher Education to support
this statement

3.1. IMPROVING PRACTICE 17

motivated by research, and the outcomes are well documented through collection
and analysis of appropriate data collected in the learning environment during
the course. These data can take many forms and be analysed using a large
number of methods in order to reason about the advantages and disadvantages
of that approach to supporting student learning.

3.1 Improving Practice

Educational quality assurance in higher education is based on a continuous
improvement model. Figure 3.3 provides an overview of the major activities
each improvement cycle contains. Implementing quality assurance in a higher
education setting is challenging. The context of learning is a complex one, and
highly dependent on context and the participants. Background knowledge and
experience among staff and students vary from group to group and year to year,
educational content changes, the priorities of the research discipline shift and
the availability of teaching resources and technologies changes.

The upper triangle in figure 3.3 is a depiction of the activities and relation-
ships that inform instructional design and implementation. The center of the
diagram describes how students and staff, instructional design and other factors
combine in an educational experience and the resulting learning outcomes. The
bottom part of the figure visualises the assessment processes designed to provide
input to the next design and implementation cycle.

Scaffolding learning becomes increasingly complex as the level of education
becomes higher. At the tertiary level learning outcomes, skills and competencies
need to be defined and methods for acquiring them debated in the discipline.
Debate occurs at several levels. International discussion can result in agreed
curriculum standards, such as those defined by the ACM and IEEE for computer
science, software engineering and related areas. In other areas curricula and
learning outcomes for degree programmes are specified by legislation, or by
accreditation bodies such as ABET, and EUR-ACE. These curricula provide
high level guidance that is usually supplemented by local decisions within the
department.

Curricula define a body of knowlege and the expected outcomes of the edu-
cation, not the methods by which those outcomes are to be achieved. Realising
learning outcomes becomes a much less intimidating process when prior research
is available upon which to base instruction. We advocate following a cycle of
identifying outcomes, reflecting on how these relate to the discipline and dis-
ciplinary knowledge, identifying relevant disciplinary education research, and
revisiting the desired outcomes. Following this process leads to instructional
designs that are explicit and based on evidence rather than personal opinion.

18CHAPTER 3. PRACTICAL SCHOLARSHIP OF TEACHING AND LEARNING

Figure 3.2: Emergence of Uncertainty in Scholarly Teaching Practice

3.2 Understanding learning

Following the informed design process outlined in the previous section makes
much more about the conduct of tertiary STEM education explicit. While this
offers many advantages contextualising disciplinary education research results
also requires thought and reflection. Issues of culture, administrative structure
and regulation within the university have an impact that cannot be ignored.

As a result it is not uncomon for teaching and learning issues to arise, even
in courses that are based on research that has previously been highly successful.
In some cases the issues that arise can be addressed directly using data that
has already been collected. However, if questions emerge which the data col-
lected not capture it is natural for teachers to take a step towards disciplinary
education research to obtain answers.

The approach that we take to evaluating the impact of innovation in the
classroom depends to a large extend on the stakeholder group we wish to con-
vince. As disciplinary experts and higher education professionals, classroom
observation of learners may provide sufficient evidence that new approaches
produce the desired effects. On the other hand, if one wishes to convince scepti-
cal colleagues, or external accreditation committees of the efficacy and validity
of new approaches to instruction more rigorous methods might be required.

3.2. UNDERSTANDING LEARNING 19

The model for scholarly instructional design presented in the previous section
may provide useful background material, but in itself may not convince an
external observer. Anecdotal evidence and observations may also not hold much
weight. The approach taken to collection and analysis of data that support new
methods depend on the type of questions that need to be answered. What
aspects of learning do we need to collect evidence about?

Figure 3.3: Developing and assessing instructional design

20CHAPTER 3. PRACTICAL SCHOLARSHIP OF TEACHING AND LEARNING

Part II

Case Study

21

Chapter 4

An Evidence-based
Approach to Teaching
Programming

4.1 Introduction

What criteria are used to determine whether or not a computer program or other
software product is of ”high quality” and meets the ”requirements” defined for
it? The software engineering community has engaged with questions of quality
since the development of early computer systems. There has been considerable
focus on elicitation of requirements, rigorous specification approaches, ensuring
congruence between the specification and implementation, and demonstrating
that the final product fulfills all the requirements of the specification.

Peter Denning addressed this topic in an editorial in Communications of the
ACM in 1992 [24], where he criticises the tight technical focus in the criteria of
prevalent software quality approaches of the time. He advocated an approach
based on customer satisfaction and defined three levels: all basic promises were
met; no negative consequences were produced; and the customer is delighted.

Based on wide ranging research and industry experience processes and method-
ologies for developing and testing software have been specified and evaluated,
and now form the basis of project development approaches and tools. In the
1980’s and ’90’s design and specification activity was often highly prioritised,
and software engineering courses focused on the waterfall software development
approach at many universities. More recently extensions, refinements and al-
ternative approaches have emerged. Examples include the Rational Method,
UML, and Agile Development, to name but a few.

But, what priorities emerge at University in situations where students are
taught software development skills? How do students go about learning to write
reliable and dependable software systems? What challenges to they encounter?

23

24CHAPTER 4. AN EVIDENCE-BASED APPROACH TO TEACHING PROGRAMMING

What do they perceive as defining program correctness? It could be argued that
despite Denning’s admonitions, much of the university education in software
development is technical. The outcomes of this focus are evident in the way in
which we teach and assess software development activities.

In this paper we examine this issue in the context of early development of
conceptions of program and software quality. We use the terms ”software” and
”program” interchangeably in the paper, following the belief that programs are
small, simple software systems. We believe that these early conceptions are
highly influential in the formation of individual beliefs about software quality
and that these tacit values persist beyond the tertiary education context into
professional life.

4.2 Related Research

Incorporating notions of quality into undergraduate education in the comput-
ing disciplines is a complex undertaking. Software quality assessment is a so-
phisticated and complex activity. Defining and assessing software quality is a
research area in itself, and addresses both technical and non-technical criteria.
Many definitions of quality have been proposed. However, a complete assess-
ment of the state of research in software quality, and how software development
principles is well beyond the scope of a single conference paper. This paper
examines, in the light of computer science education research, the manner in
which early programming courses set the scene for later development of con-
ceptions of quality. Advanced conceptions of software quality go far beyond
mere program construction, however, for many software developers their first
experiences of quality criteria in relation to software development are obtained
in the introductory programming course early in their degree.

Learning to program means different things to different segments of the
computing community, so it can be hard to agree on what aspects of quality
are paramount. An analysis of the scholarly literature on teaching and learning
of programming identifies several schools of thought. Programming, and simple
software development can be seen as problem solving, about learning the syntax
of the language, about describing data transformations, to name just a few. For
a more in depth discussion of some aspects of this issue see Pears et al. [14].

The three bodies of research literature appear to be relevant to developing
recommendations for developing learner awareness of, and proficiency with, soft-
ware quality concepts and practices for bachelors level students. We review each
of these and then discuss the implications for university computing education.

4.2.1 Difficulties with learning programming

A significant body of research supports the view that it is hard to learn to pro-
gram. A good overview of the literature and issues can be found in Robins et
al. [25]. After taking programming courses many students have very rudimen-
tary programming, software design, testing and debugging skills [26, 27].

4.2. RELATED RESEARCH 25

Eckerdal has investigated novice students’ conceptions and misconceptions
of the notion of object and class [28]. She identifies three types of understanding
of each of these concepts based on interview data collected from undergraduate
students. The rudimentary conception ”class” and ”object” is as code struc-
tures, the intermediate conceptions distinguish between the role of the object as
a program entity and the class as a description of the properties and function-
ality of objects. The most sophisticated category of understanding is related to
modelling physical and conceptual entities.

Another recent US study of programming misconceptions [29] concludes that
students do not have a good understanding of the relationship between mem-
ory allocation and the notional machine and programming language constructs.
They also conclude that most students have no conception of what an object is.

Incorrect understandings of the concept of an object variable in object ori-
ented programming has been studied by Sorva [30] He identifies four categories
of understanding, two of which (NamedValue and PlaceForValue) are consistent
with the definitions accepted by the object oriented programming community.
The other two categories of understanding (MathVariable and PlaceForRef) are
”overextensions” or overgeneralisations of the other two. The MathVariable
understanding is probably arrived at by attempting to integrate a computing
specific concept with a, syntactically very similar, one in mathematics.

4.2.2 Developing holistic system development skills

Learning to program clearly involves more than mastering the language syntax
and semantics, it appears to also require ability to relate goals to coding activity
and move between a holistic and low level view of software functionality during
software development. Studies dealing of the fragile nature of novice under-
standing of programming language syntax and semantics have been conducted
for both traditional imperative programming and object oriented programming
paradigms.

Novice inability to attack programming problems holistically and systemat-
ically has been investigated quite early by Soloway [31], who theorised that this
was related to inability to articulate goals and devise coding plans to achieve
these goals.

De Raadt et al. [32], building upon the idea of goal/plan analysis, argued
that code development strategies need to be more explicitly taught. They as-
sessed student’s ability to apply ”plans” when solving a previously published
and analysed averaging problem [31]. Their work culminated in a new approach
to teaching, in which strategy is an explicit part of the curriculum [33,34].

Bennedsen and Caspersen argue that an important part of learning to pro-
gram in a structured manner is understanding the expert processes involved.
They note that textbooks do not address the need to make tacit expert process
explicit for learners and propose process recordings (narrated recordings of pro-
gramming sessions) to fill this gap. They identify seven areas where such process
information has significant value to learners. Five of these areas are related to
developing quality software, incremental development, testing, refactoring, de-

26CHAPTER 4. AN EVIDENCE-BASED APPROACH TO TEACHING PROGRAMMING

bugging and model development. Two deal with programming support, learning
the IDE and using online documentation.

Defining what ”programming thinking” involves is discussed by Eckerdal
et al. They concluded that students need to develop a conception of software
development and programming as “... a way of thinking, which enables problem
solving, and which is experienced as a ‘method’ of thinking” [35, p.7]

T.R.G. Green [36] discusses the cognitive complexity of programming lan-
guages and how this can predispose less experienced programmers to focus on
syntactic details instead of the broader functional goals of the software devel-
opment activity. He notes that much of the activity in program development is
about incremental improvement, and that most integrated development environ-
ments (IDE’s) provide good support for this development approach. In contrast
to structured software development, learners tend to develop their software as
an integral aspect of exploring the functionality of the programming language
and compilation and debugging tools. This type of programming approach is
not well supported by most commercial IDE’s, which raises interesting questions
about what tools might be more appropriate.

4.2.3 Student conceptions of correctness and quality

Definitions and perceptions of the nature of program correctness and quality
among students have been the subject of several recent studies.

Kolikant and Mussai’s [37, 38] 2008 investigation of student conceptions of
software/code correctness [38] is based on data collected from 159 students who
were asked to analyse error-free and erroneous algorithms. Followup interviews
were also conducted with seven students. They concluded that students viewed
programs as collections of lines of code and programming operations, each of
which could be correct or partially correct.

Stamouli and Huggard [39] conducted a year long study in which they fol-
lowed sixteen students developing understanding of programming and program
correctness. Each student was interviewed on four occasions throughout the year
and the interviews subjected to a Phenomenographic analysis. Their categories
of understanding are very similar to those of Eckerdal et al. and demonstrate a
strong student preoccupation with language syntax.

4.3 Discussion

Quality exists at many levels, readable and structured code, logical decomposi-
tion, emphasis on interfaces and interface specification and use of appropriate
processes and tools to name but a few. We are focusing on incorporating some
of the lower level quality attributes into education for novice and intermediate
programmers.

Understanding how learners go about learning to program and what miscon-
ceptions and difficulties they encounter provides insight into what they perceive
and what they experience when they develop software.

4.3. DISCUSSION 27

4.3.1 Can’t see the wood for the trees

We conclude from the literature reviewed in the previous section that many
of the difficulties students encounter, and the (mis)conceptions they develop,
indicate that early learning in programming is dominated by syntactic concerns
and that most students lack an holistic view of program function. A student
quote from Stamouli and Huggard serves to highlight this.

“Liam3: It’s about getting a couple of books, really... Well it is the
language that you are interested in anyway and the syntax of the
language is what you learn from the book. Then you have to mess
around with the syntax and the features of the language and having
fun you learn more, really [. . .]. So what you can do depends really
on the language and this is, really, what you learn from a book, the
syntax of the language, that’s all you need anyway.” [39, p.111]

Bennedsen and Caspersen report that “.. students do not know when it is
advantageous to re-factor a program; they consider the job done when the pro-
gram can compile and run.” [40, p.3]. Studies of misconceptions and problems
learning to program have also identified a strong student focus on syntax in their
understanding of object and class [28, 39]. While Sorva [30] demonstrates that
there is significant confusion about fundamental concepts such as the nature of
variables, perhaps in part due to an overlap in terminology with mathematics.
All of these factors, combined with the fact that current textbooks also focus
on language features rather than process, contribute to an environment where
students find to difficult to learn the skills and processes needed to write good
quality software.

Readable clearly structured code is widely accepted as being easier to debug
and extend, but there is much anecdotal evidence to suggest that students do
not share this perception. Rather than dividing programs into logical units, an
approach which has the added advantage of reducing the cognitive load of the
task, students have a demonstrated tendency to focus on code at the operation
or line level, showing little understanding of the program as a whole.

“Novices are more likely to give line by line explanations of code
than to describe the overall purpose of a piece of code, suggesting
that they do not possess the strategies used in the generation of the
code.” [38, p.1]

This view is also supported by the research of McCracken et al. and Lister et al.
and many others who have continued this work [26, 27]. The conclusion to be
drawn from this body of research is that many students at the conclusion of an
introductory programming course when given a functional description are unable
to write a piece of software that meets the requirements. Indeed many students
are not able to explain what a piece of code does in a more advanced manner
than the line by line approach described above. An interesting discussion of how
students react to being asked to ”explain” code in English can also be found in
Simon [41]

28CHAPTER 4. AN EVIDENCE-BASED APPROACH TO TEACHING PROGRAMMING

One could propose, drawing on the work of Soloway, de Raadt et al., Benned-
sen and Caspersen, and Hilburn and Towhidnejad (and probably others the
author is not aware of), that we should refocus the curriculum to emphasise
process and quality issues from the start. This is certainly something to be
considered, as the new demands of the software industry and increasing avail-
ability of code fragments and examples through the internet appear (at least
anecdotally) to be changing the way in which students develop code.

The author has personal experience of students cutting and pasting in sec-
tions of code from the web and not realising that they need to change the
variable names to make them consistent with the rest of the code. When the
issue was discussed the students explained that they had assumed the code they
pasted in was ”generic” and would not require any changes in order to function.

4.3.2 Student conceptions of correctness

Another conclusion we can draw from the literature is that program behaviour
is poorly understood and taught, and that notional machine concepts seem to
be important in this regard [29].

Research surrounding the visualisation tool Jeliot [42,43] deals with using a
detailed notional machine visualisation in teaching and programming activities.
Some of their results imply that good conceptualisations of memory allocation
and stack operations assist students in developing a more sophisticated under-
standing of program operation.

There are also indications that alignment of software quality attributes with
assessment practices in early phases of programming and software development
education at university may be poor.

A quote from Kolikant and Mussar serves to reinforce the conclusion that
students often perceive programs at the syntactic (line by line command) level.

“We found that students conceptualized program correctness as the
sum of the correctness of its constituent operations and, therefore,
they rarely considered programs as incorrect. Instead, as long as
they had any operations written correctly students considered the
program ‘partially correct’.” [38, p.1]

Their conclusion is important for the teaching of software/program quality at
all levels, but especially for novice programmers. It appears that misalignment
of assessment with programming behaviours and practices that enhance software
quality create a destructive programming culture early in degree programmes.

“We suggest that this conception is a faulty extension of the con-
cept of a program’s grade, which is usually calculated as the sum of
points awarded for separate aspects of a program. Thus school [Uni-
versity] (unintentionally) nurtures students’ misconception of cor-
rectness. This misconception is aligned with students’ tendency to
employ a line by line verification method – examining whether each
operation is translated as a sub-requirement of the algorithm – which

4.3. DISCUSSION 29

is inconsistent with the method of testing that they formally stud-
ied.” [38, p.1]

Other definitions of correctness can also be identified in the literature. A
common theme, connected to student preoccupation with syntax, is that a pro-
gram is correct when it compiles. Evidence of this view includes the earlier
quote in this section from Bennedsen and Caspersen. This view is clearly more
widespread than a single study however. Stamouli and

“The findings also show that more than half of the population of
the study does not develop a complete and mature understanding
of learning to program such as the ones described in categories 5
and 6. A similar relationship holds for the understanding of pro-
gram correctness. The interviews were held almost at the end of
the academic year, so there were some students who completed the
programming course and who still believed that learning to program
in the object oriented paradigm is purely about learning the syntax
of the language and that a program is correct when it is free from
syntactical errors.” [39, p.114]

This should prompt us to revisit some of our approaches to assessment. A
precondition for being assessed in many programming assignments in courses at
university is that the program compiles and runs. Instructors then start to test
the code for functional compliance with the specification. However, this sends a
clear message that educators place high value on the fact that the code compiles
and runs. Is this really what we want to convey?

Applying principles from constructive alignment [4] suggests that more em-
phasis in grading should probably be placed on quality attributes and students
demonstrating code development based on desirable work practices. This har-
monises with the approach suggested by Hilburn and Towhidnejad where quality
processes are an explicit element of the curicculum and assessment.

4.3.3 Making processes explicit

Testing is accorded little importance by students despite the professional em-
phasis on this, is there misalignment here in terms of how we assess student
work?

Hilburn and Townhidnejad [44] discussed how to improve the visibility of
quality issues in the undergraduate curriculum. They propose a quality model,
and show how it can be applied in undergraduate education. Aspects of this
model may well be of value in other contexts where the teaching of quality as
an integral part of the course is desirable.

Patton and McGill [45] advocate longitudinal portfolios of programming
work and artifacts in combination with the use of automated software qual-
ity metrics as a way to evaluate student progress in developing quality software
throughout their university career. This approach also allows both student and
educators to assess development of professional skills and appreciation of the
role of quality and process in developing software systems.

30CHAPTER 4. AN EVIDENCE-BASED APPROACH TO TEACHING PROGRAMMING

4.4 Recommendations

Drawing on the discussion in the previous section we propose three fundamental
recommendations for improving conceptions of software quality among under-
graduate students. It is important to emphasise that these recommendations
emerge from our analysis of the existing computing education research liter-
ature, rather than arising from personal opinions about how programming or
software development should be taught.

Based on our synthesis of prior research we recommend that in order to
enhance the opportunity for students to learn how to develop quality software
at university educators should.

• Adopt an explicit holistic goal/plan based approach to code development
that commences in the introductory programming course and continues
throughout the software development courses in the degree programme.

• Design in introduce formative assessment strategies which improved the
alignment of key aspects of quality with high grade achievement, and break
the current assessment trends that can be demonstrated to establish beliefs
about ”partial correctness” of code.

• Include testing and debugging as explicit parts of the curriculum.

4.5 Applying Theory to Practice

Building on this theory a course in introductory object oriented programming
was designed and run at Uppsala University, Sweden. The design is presented
and related to the earlier discussion on conceptions of quality, as a concrete ex-
ample of how our research and analysis can be used in evidence based curriculum
development.

4.5.1 Instructional Design

The curriculum and instruction approach described here follows the explicit
constructivist approach prevalent in much of computer science education [46].
We hypothesise that experiences related to the practice of programming helps
to build familiarity with language structures and concepts. The importance
of this for the construction of programming knowledge in computing has been
previously emphasised by Eckerdal [47]

There is a huge debate in computing about how to teach object oriented
programming skills, and when to do this in a university programming course
sequence [48–50]. Our conclusion from a detailed examination of the literature is
that there is no approach which research demonstrates to be more effective [14],
so a procedural and control structures approach was taken.

The material was presented in the following order.

1. Sequence

4.5. APPLYING THEORY TO PRACTICE 31

2. Alternation

3. Repetition

4. Modularity

5. Parameterization of modules, functions and procedures.

We then relate these understandings to the syntax of other imperative languages.
This is done by interspersing lecture and discussion presentations with hands-on
implementation and code exploration exercises. A ten week introductory phase
consisted of one 90 minute full class interactive programming demonstration
by the instructor, followed by a 90 minute coding laboratory and additional
homework exercises.

A further ten weeks were devoted to group projects. Project proposals were
prepared by the programming groups based on instructions given in the lecture.
Each group had a week to prepare the proposal, and then presented it to the
rest of the class and the lecturer in a 10 minute presentation. If the project
was sufficiently complex, involved at least two classes, and stored and retrieved
complex information in a primitive database 1, it was approved, and the group
began implementation. During the ten project weeks the 90 minute laboratory
sessions were used by the lecturer to interact with the groups and observe their
progress. Groups were required to attend and demonstrate their code regularly
to enable the lecturer to take notes on the learning progress of individuals.
These notes, together with a final group and individual interview of 30 minutes
and 10 minutes respectively provided the data used to determine the final grade
of each student.

4.5.2 Learning Approach

Dialogue and continuous explicit reinforcement of tacit quality attributes are
the main focus of the course. However, student motivation plays a vital role.
Students must perceive the value and rewards associated with practices that lead
to quality outcomes in a direct and tangible manner if we follow a constructive
alignment approach [4].

Students are asked right at the beginning of the course about what they
want to achieve and we relate this to the content and structure of the program-
ming to be undertaken. Malmi in Bennedsen, Caspersen and Kölling [51] has
investigated student perceptions of programming assignments. While offering
recommendations for areas that are motivating, he also notes that allowing stu-
dents to define their own projects, within the constraints of what is required in
order to achieve appropriate learning outcomes, produces higher overall moti-
vation.

Definition of individual programming goals (through a reflective exercise)
helps individuals to enunciate personal goals, and reflect on their learning. Re-
flection and engagement are strongly linked to predisposing students to adopt

1The database was to be implemented as a separate class, and encapsulate a simple data
structure such as an array or linked list.

32CHAPTER 4. AN EVIDENCE-BASED APPROACH TO TEACHING PROGRAMMING

deep learning tendencies [8, 52]. We also adopt practices based on the research
of Barker et al. [53] designed to promote an open and constructive class com-
munication culture, which has also been linked to improved learning outcomes
for CS students. Specific topics that are regularly revisited in all programming
contexts are, modularity, code readability, the need for redesign and refactoring.
We also discuss coupling and cohesion in informal terms.

We hypothesised that if we could encourage students to articulate the rea-
soning behind their programming activities that this would help students to gain
a more holistic view of software construction. Peer programming, governed by
strict instructions to reason aloud, and reminders to swap driver/navigator roles
regularly, was used to strengthen self perception of competence. and has also
been demonstrated to encourage peer learning and promote improved outcomes
in programming student cohorts [54–56].

Lectures were designed to address the student learning needs and questions
that arose in the hands on programming sessions. Lecture presentation was
designed to help students to discern key facets of the ”expert tacit knowledge”
associated with programming and software development. Opportunities to ob-
serve the manner in which code is written and debugged by experts are few in
most programming courses. Like experts in many other areas the techniques
expert programmers use to develop code and correct errors are often tacit [57].
The relevant techniques and skills are certainly not visible in the normal lec-
ture environment where pre-tested code is presented in a sequential manner, or
in whole blocks on an overhead slide. Providing learners with an opportunity
to observe expert practice is an important part of assisting them in quickly
acquiring a sophisticated approach to code development and debugging.

Students were also provided with a large body of code examples, both our
own and via online tutorials and repositories. This rich resource pool provides
good ”exemplars”, creating a context for discerning what constitutes ”good
code” and providing resources and support for exploring program behaviour in
a visualisation environment. To support student’s developing an intuitive under-
standing of the von Neumann machine model that underlies much of sequential
computer programming2 we used Jeliot [43].

4.5.3 Constructive Alignment of Assessment

The alignment of assessment should reward students for demonstrating an ap-
preciation of aspects of software quality. We have structured the assessment
to directly reward behaviour and code development practices that are widely
accepted to improve software quality. The grades we give are designed to reflect
the value we place on understanding that quality is a valued and appreciated
part of the course activities. As a result of this philosophy we formulated the
course learning outcomes as follows.

After having passed the course a student will have demonstrated that they
are consistently capable of doing the following.

2As distinct from parallel and multi-core programming, which requires significantly differ-
ent types of machine model and abstractions in order to reason about program behaviour

4.5. APPLYING THEORY TO PRACTICE 33

Goal Practical sessions Assignment 1 Assignment 2 Programming project

1 Analysis Analysis Design and req. spec.

2 Apply OO or decomposition

3 arrays lists more complex data structures, Java lib.

4 exposure intro to testing develop testing independent testing

5 exposure/practice simple control functions and param use of OO and imperative constructs

6 exposure guided develop. independent develop. group develop.

7 discuss - - apps in other domains

8 exposure - may choose alt. lang -

9 exposure Java lib. Java lib. Open source code use encouraged

10 discussion pair coding pair coding group coding (4 students)

11 homework exercises

Table 4.1: Association of Learning outcome with Assessment Instrument

1. Analyse fairly simple problems, formulate an appropriate algorithmic so-
lution, and express it as a simple program specification.

2. Formulate and articulate strategies for solving larger programming tasks.

3. Write functioning programs that use basic data-structures, for instance
arrays, different sorts of lists and binary trees.

4. Collect information on, and reason about, the cause of syntactic, logical
and runtime errors in a systematic manner.

5. Explain the execution and purpose of programs consisting of common
imperative programming constructs (sequences, choices, loops, functions)
in an object oriented language, such as Java.

6. Demonstrate and understanding of the basics of good program construc-
tion and familiarity with the object oriented programming style.

7. Discuss and give examples of how programming is used to solve problems
in other disciplines.

8. Demonstrate ability to apply their programming knowledge to program-
ming in another closely related imperative language (for instance, Python,
C or C++).

9. Re-use code developed by others in their own programming.

10. Explain the different roles/activities associated with developing programs.

11. Explain in high level terms the structure and operation of a von Neumann
style computer.

Measuring some of these outcomes requires a continuous assessment ap-
proach that is integrated into the day to day teaching activities. To achieve this

34CHAPTER 4. AN EVIDENCE-BASED APPROACH TO TEACHING PROGRAMMING

we replaced the assignment and examination assessment model with a contin-
uous feedback and assessment scheme based on a programming portfolio eval-
uated by observing students activity in three major course areas, the weekly
90 minute sessions, in person demonstration and explanation of homework pro-
gramming exercises, and the design, implementation and verbal explanation
of the larger software system developed by groups of 4-6 students. The link-
ing between the course goals and the assessment instruments is summarised in
Table 4.1.

The outcomes of this approach were encouraging. Students who completed
the course successfully produced well documented and structured code, far above
the quality often produced by a first year student. The teams worked success-
fully in teams, decomposed the system functionality and were able to program
independently and integrate object oriented components of the final system to
produce a working suite of software at the conclusion of the 10 week project.
Over 80 percent of students who took the course were considered to have met
the specified learning goals and received a pass mark or better.

Many students in their final reflective exercises mentioned that they valued
the project aspects of the approach.

”The examination as a project was a successful idea, I learned a lot more
during those weeks than studying to a written examination.”

However, there were also students who were quite critical of the approach
and would have preferred a more traditional structure. The following quote
(translated into English from Swedish) illustrates one concern.

”Det kändes som att betygssättningen var lite godtycklig d̊a vi inte hade
haft [läraren] p̊a v̊ara lektioner, och sv̊arighetsgraden p̊a projektet verkade
bestämma det mesta. Det är det sv̊art att kompromissa om det i en grupp
d̊a alla ligger p̊a olika niv̊a och ambitionsniv̊a.”

”It felt like the grading was a little arbitrary given that we had not had
[the lecturer] in our laboratory session much, and where it seemed that the
level of difficulty of the final project code was the major factor influencing
the final grade. This is difficult when group members have different ability
levels and aspirations in terms of final grade.”

In fact the grades were arrived at after a detailed interview with both the
project groups and each individual who took the course. This interview asked
students to identify and reason about the function of code that they had written
for the system, and also to reason aloud about design tradeoffs and concepts
that are important for object oriented programming. Final grades were awarded
based on the outcomes of these interviews and an inspection of the project source
code.

4.6 Conclusion

Better approaches to educating software engineering professionals are needed.
To achieve this we need to consider how to align professional and community
values more clearly with our curriculum.

4.6. CONCLUSION 35

The aim of this paper has been to discuss what is needed to enhance appreci-
ation of quality, and how is that to be conveyed to young aspiring professionals
during their education? The result of our survey and analysis of relevant re-
search is three major recommendations for curriculum changes. We encourage
educators to consider these recommendations seriously when designing future
courses in programming and software development at university.

Taking these recommendations into account we presented an overview of a
teaching approach developed for an introductory course in computer program-
ming at Uppsala University. This example shows more clearly how we believe
our principles can be used in practice, and how curriculum and instructional
design can be informed by teaching and learning research in computer science.

More research is clearly needed to identify a greater range of alternative as-
sessment approaches that align grading outcomes with engagement in practices
that promote the development of quality software. One avenue to investigate,
is how grading schemes can capture a more holistic view of the system being
graded. It also seems important to develop grading/assessment schemes that
reward learners for using quality assurance processes and rigorous testing during
software development.

36CHAPTER 4. AN EVIDENCE-BASED APPROACH TO TEACHING PROGRAMMING

Chapter 5

Using Action Research to
Evolve a Service Learning
Course

37

38CHAPTER 5. USING ACTION RESEARCH TO EVOLVE A SERVICE LEARNING COURSE

Bibliography

[1] L. I. Brown, “Diversity: The challenge for higher education,”
Race Ethnicity and Education, vol. 7, no. 1, pp. 21–34, 03
2004. [Online]. Available: http://www.eric.ed.gov/ERICWebPortal/
detail?accno=EJ681255

[2] J. Biggs, Teaching for Quality Learning at University (2nd edition). So-
ciety for Research into Higher Education, Open University Press, 2003.

[3] E. Schofer and J. W. Meyer, “The worldwide expansion of higher
education in the twentieth century,” American Sociological Review,
vol. 70, no. 6, pp. 898–920, 12 2005. [Online]. Available: http:
//www.jstor.org/stable/4145399

[4] J. Biggs, “Enhancing teaching through constructive alignment,” Higher
Education, vol. 32, no. 3, pp. 347–364, 1996.

[5] E. Boyer, Scholarship Reconsidered: Priorities of the Professoriate. Hills-
dale, NJ: Carnegie Foundation for the Advancement of Teaching and Josey-
Bass, 1990, 1997.

[6] C. E. Glassick, M. T. Huber, G. I. Maeroff, and E. L. Boyer, Scholarship
assessed: evaluation of the professoriate. San Francisco: Jossey-Bass,
1997.

[7] M. Prosser and K. Trigwell, Understanding Learning and Teaching: The
experience in higher education. Buckingham: Open University Press, 1999.

[8] G. Gibbs and M. Coffey, “The Impact Of Training Of University
Teachers on their Teaching Skills, their Approach to Teaching and
the Approach to Learning of their Students,” Active Learning in
Higher Education, vol. 5, no. 1, pp. 87–100, 2004. [Online]. Available:
http://alh.sagepub.com/cgi/content/abstract/5/1/87

[9] K. Trigwell and S. Shale, “Student learning and the scholarship of
university teaching,” Studies in Higher Education, vol. 29, no. 4, pp.
523–536, 2004. [Online]. Available: http://www.ingentaconnect.com/
content/routledg/cshe/2004/00000029/00000004/art00007

39

http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ681255
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ681255
http://www.jstor.org/stable/4145399
http://www.jstor.org/stable/4145399
http://alh.sagepub.com/cgi/content/abstract/5/1/87
http://www.ingentaconnect.com/content/routledg/cshe/2004/00000029/00000004/art00007
http://www.ingentaconnect.com/content/routledg/cshe/2004/00000029/00000004/art00007

40 BIBLIOGRAPHY

[10] F. Marton and R. Säljö, “On qualitative differences in learning,” British
Journal of Educational Psychology, vol. 46, pp. 4–11, 115–127, 1976.

[11] M. Prosser and K. Trigwell, “Confirmatory factor analysis of the approaches
to teaching inventory,” British Journal of Educational Psychology, vol. 76,
pp. 405–419, 2006.

[12] E. Martin, M. Prosser, K. Trigwell, P. Ramsden, and J. Benjamin, “What
university teachers teach and how they teach it.” Intructional Science. Spe-
cial issue: Teacher Thinking, Beliefs and Knowledge in Higher Education,
vol. 28, no. (5-6), pp. 387–412, 2000.

[13] D. Kember and K.-P. Kwan, “Lecturers’ approaches to teaching and
their relationship to conceptions of good teaching,” Instructional Science,
vol. 28, pp. 469–490, 2000, 10.1023/A:1026569608656. [Online]. Available:
http://dx.doi.org/10.1023/A:1026569608656

[14] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen,
M. Devlin, and J. Paterson, “A survey of literature on the teaching of
introductory programming,” SIGCSE Bull., vol. 39, no. 4, pp. 204–223,
2007.

[15] M. M. Waldrop, “Why we are teaching science wrong, and how to make it
right.” Nature, vol. 523, no. 7560, p. 272, 2015.

[16] S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor,
H. Jordt, and M. P. Wenderoth, “Active learning increases student
performance in science, engineering, and mathematics,” Proceedings of the
National Academy of Sciences, vol. 111, no. 23, pp. 8410–8415, 2014.
[Online]. Available: http://www.pnas.org/content/111/23/8410.abstract

[17] M. Guzdial. (2015, August) Be it resolved: Teaching
statements must embrace active learning and eschew lec-
ture. [Online]. Available: http://cacm.acm.org/blogs/blog-cacm/
190767-be-it-resolved-teaching-statements-must-embrace-active-learning-and-eschew-lecture/
fulltext

[18] S. Scott. (2017, March) Should we lose the lec-
ture? [Online]. Available: https://medium.com/stanford-magazine/
should-we-lose-the-lecture-76a186797573

[19] K. Trigwell, M. Prosser, and F. Waterhouse, “Relations between teach-
ers’ approaches to teaching and students’ approaches to learning,” Higher
Education, vol. 37, pp. 57–70, 1999.

[20] N. Entwistle, “Conceptions of Learning and the Experience of Understand-
ing: Thresholds, Contextual Influences, and Knowledge Objects,” in Re-
framing the conceptual change approach in learning and instruction, S. Vos-
niadou, A. Baltas, and X. Vamvakoussi, Eds. Amsterdam, The Nether-
lands: Elsevier, 2007, ch. 11.

http://dx.doi.org/10.1023/A:1026569608656
http://www.pnas.org/content/111/23/8410.abstract
http://cacm.acm.org/blogs/blog-cacm/190767-be-it-resolved-teaching-statements-must-embrace-active-learning-and-eschew-lecture/fulltext
http://cacm.acm.org/blogs/blog-cacm/190767-be-it-resolved-teaching-statements-must-embrace-active-learning-and-eschew-lecture/fulltext
http://cacm.acm.org/blogs/blog-cacm/190767-be-it-resolved-teaching-statements-must-embrace-active-learning-and-eschew-lecture/fulltext
https://medium.com/stanford-magazine/should-we-lose-the-lecture-76a186797573
https://medium.com/stanford-magazine/should-we-lose-the-lecture-76a186797573

BIBLIOGRAPHY 41

[21] D. Kember, “Beliefs about knowledge and the process of teaching
and learning as a factor in adjusting to study in higher education,”
Studies in Higher Education, vol. 26, no. 2, pp. 205–221, February
2001. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/
03075070120052116

[22] K. Trigwell, E. Martin, J. Benjamin, and M. Prosser, “Scholarship of teach-
ing: A model,” Higher Education Research & Development, vol. 19, no. 2,
pp. 155 – 168, 2000.

[23] L. S. Shulman, “Taking learning seriously,” Change: The Magazine of
Higher Learning, vol. 31, no. 4, pp. 10–17, 1999.

[24] P. J. Denning, “Editorial: what is software quality?” Commun. ACM,
vol. 35, no. 1, pp. 13–15, 1992.

[25] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching pro-
gramming: a review and discussion,” Computer Science Education, vol. 13,
no. 2, pp. 137–172, 2003.

[26] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D.
Kolikant, C. Laxer, L. Thomas, I. Utting, and T. Wilusz, “A multi-national,
multi-institutional study of assessment of programming skills of first-year
cs students,” SIGCSE Bull., vol. 33, no. 4, pp. 125–180, 2001.

[27] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lindholm,
R. McCartney, J. E. Moström, K. Sanders, O. Seppälä, B. Simon, and
L. Thomas, “A multi-national study of reading and tracing skills in novice
programmers,” in ITiCSE-WGR ’04: Working group reports from ITiCSE
on Innovation and technology in computer science education. New York,
NY, USA: ACM, 2004, pp. 119–150.

[28] A. Eckerdal and M. Thuné, “Novice java programmers’ conceptions of ”ob-
ject” and ”class”, and variation theory.” in Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer Science
Education,, J. J. Dougherty, Ed. Lisbon, Portugal. New York: ACM Press,
2005, pp. 89 – 93.

[29] L. C. Kaczmarczyk, E. R. Petrick, J. P. East, and G. L. Herman,
“Identifying student misconceptions of programming,” in Proceedings of
the 41st ACM technical symposium on Computer science education, ser.
SIGCSE ’10. New York, NY, USA: ACM, 2010, pp. 107–111. [Online].
Available: http://doi.acm.org/10.1145/1734263.1734299

[30] J. Sorva, “Investigating incorrect understandings of a CS concept,” in Sec-
ond Nordic Workshop on Phenomenography in Computing Education Re-
search. Uppsala University, 2008.

http://www.tandfonline.com/doi/abs/10.1080/03075070120052116
http://www.tandfonline.com/doi/abs/10.1080/03075070120052116
http://doi.acm.org/10.1145/1734263.1734299

42 BIBLIOGRAPHY

[31] E. Soloway, “Learning to program = learning to construct mechanisms and
explanations,” Communications of the ACM, vol. 29, no. 9, pp. 850–858,
1986.

[32] M. de Raadt, M. Toleman, and R. Watson, “Training strategic problem
solvers,” SIGCSE Bull., vol. 36, no. 2, pp. 48–51, 2004.

[33] M. de Raadt, “A review of australasian investigations into problem
solving and the novice programmer,” Computer Science Education,
vol. 17, no. 3, pp. 201–213, 2007. [Online]. Available: http:
//www.informaworld.com/10.1080/08993400701538104

[34] ——, Teaching Programming Strategies Explicitly to Novice Programmers:
Can the way we teach strategies improve novice outcomes? Saarbrücken,
Germany, Germany: VDM Verlag, 2009.

[35] A. Eckerdal and A. Berglund, “What does it take to learn ‘programming
thinking’?” in Proceedings of The First International Computing Education
Research Workshop. ACM Press, 2005, pp. 135–143.

[36] T. R. G. Green, “Instructions and descriptions: some cognitive aspects
of programming and similar activities,” in AVI ’00: Proceedings of the
working conference on advanced visual interfaces. New York, NY, USA:
ACM Press, 2000, pp. 21–28.

[37] Y. B.-D. Kolikant, “Students’ alternative standards for correctness,” in
The Proceedings of the First International Computing Education Research
Workshop. ACM Press New York, NY, USA, 2005, pp. 37–43.

[38] Y. B.-D. Kolikant and M. Mussai, ““So my program doesn’t run!”definition,
origins, and practical expressions of students’ (mis)conceptions of
correctness,” Computer Science Education, vol. 18, no. 2, pp. 135–
151, 2008. [Online]. Available: http://www.informaworld.com/10.1080/
08993400802156400

[39] I. Stamouli and M. Huggard, “Object oriented programming and program
correctness: The students’ perspective,” in Proceedings of the Second Inter-
national Computing Education Research Workshop (ICER), R. Anderson,
S. Fincher, and M. Guzdial, Eds. Canterbury, U.K. New York: ACM
Press, 2006, pp. 109 – 118.

[40] J. Bennedsen and M. E. Caspersen, “Revealing the programming process,”
in SIGCSE ’05: Proceedings of the 36th SIGCSE technical symposium on
Computer science education. New York, NY, USA: ACM, 2005, pp. 186–
190.

[41] Simon, “A note on code-explaining examination questions,” in Koli ’09:
Proceedings of the 9th International Conference on Computing Education
Research, A. Pears and C. Schulte, Eds., 2009.

http://www.informaworld.com/10.1080/08993400701538104
http://www.informaworld.com/10.1080/08993400701538104
http://www.informaworld.com/10.1080/08993400802156400
http://www.informaworld.com/10.1080/08993400802156400

BIBLIOGRAPHY 43

[42] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, “Visualizing programs
with Jeliot 3,” in AVI ’04: Proceedings of the working conference on Ad-
vanced visual interfaces. New York, NY, USA: ACM Press, 2004, pp.
373–376.

[43] N. Ragonis and M. Ben-Ari, “On understanding the statics and dynam-
ics of object-oriented programs,” in SIGCSE ’05: Proceedings of the 36th
SIGCSE technical symposium on Computer science education. New York,
NY, USA: ACM Press, 2005, pp. 226–230.

[44] T. B. Hilburn and M. Townhidnejad, “Software quality: a curriculum
postscript?” SIGCSE Bull., vol. 32, no. 1, pp. 167–171, 2000.

[45] A. L. Patton and M. McGill, “Student portfolios and software quality met-
rics in computer science education,” J. Comput. Small Coll., vol. 21, no. 4,
pp. 42–48, 2006.

[46] M. Ben-Ari, “Constructivism in computer science education,” Journal of
Computers in Mathematics and Science Teaching, vol. 20, no. 1, pp. 45–73,
2001.

[47] A. Eckerdal, “Novice programming students’ learning of concepts and prac-
tise,” Ph.D. dissertation, Uppsala UniversityUppsala University, Division
of Scientific Computing, Numerical Analysis, 2009.

[48] R. E. Pattis, “The “procedures early” approach in cs 1: a heresy,” in
SIGCSE ’93: Proceedings of the 24th SIGCSE technical symposium on
Computer science education. New York, NY, USA: ACM Press, 1993,
pp. 122–126.

[49] E. Howe, M. Thornton, and B. W. Weide, “Components-first approaches
to CS1/CS2: principles and practice,” in SIGCSE ’04: Proceedings of the
35th SIGCSE technical symposium on Computer science education. New
York, NY, USA: ACM Press, 2004, pp. 291–295.

[50] R. Lister, A. Berglund, T. Clear, J. Bergin, K. Garvin-Doxas, B. Hanks,
L. Hitchner, A. Luxton-Reilly, K. Sanders, C. Schulte, and J. L. Whal-
ley, “Research perspectives on the objects-early debate,” in ITiCSE-WGR
’06: Working group reports on ITiCSE on Innovation and technology in
computer science education. New York, NY, USA: ACM Press, 2006, pp.
146–165.

[51] J. Bennedsen, M. Caspersen, and M. Kölling, Reflections on the Teaching
of Programming. Springer-Verlag, 2008, vol. 4821.

[52] S. E. George, “Learning and the reflective journal in computer science,” in
ACSC ’02: Proceedings of the twenty-fifth Australasian conference on Com-
puter science. Darlinghurst, Australia, Australia: Australian Computer
Society, Inc., 2002, pp. 77–86.

44 BIBLIOGRAPHY

[53] K. Garvin-Doxas and L. J. Barker, “Communication in computer science
classrooms: understanding defensive climates as a means of creating sup-
portive behaviors,” J. Educ. Resour. Comput., vol. 4, no. 1, p. 2, 2004.

[54] L. Williams and R. L. Upchurch, “In support of student pair-
programming,” SIGCSE Bull., vol. 33, no. 1, pp. 327–331, 2001.

[55] C. McDowell, B. Hanks, and L. Werner, “Experimenting with pair
programming in the classroom,” in Proceedings of the 8th Annual
Conference on Innovation and Technology in Computer Science Education
(ITiCSE 2003), June 30 - July 2 2003. [Online]. Available: http://www2.
umassd.edu/SWPI/xp/pairprogramming/private/iticse03final.pdf

[56] N. Jacobson and S. K. Schaefer, “Pair programming in cs1: overcoming
objections to its adoption,” SIGCSE Bull., vol. 40, no. 2, pp. 93–96, 2008.

[57] R. Mancy and N. Reid, “Using interviews to investigate implicit knowledge
in computer programming,” in ICLS ’06: Proceedings of the 7th inter-
national conference on Learning sciences. International Society of the
Learning Sciences, 2006, pp. 460–466.

http://www2.umassd.edu/SWPI/xp/pairprogramming/private/iticse03final.pdf
http://www2.umassd.edu/SWPI/xp/pairprogramming/private/iticse03final.pdf

	I Theory and Methods
	The Tertiary Teaching and Learning Landscape
	The Nature of Learning in Science and Engineering
	Approaches to Learning

	Practical Scholarship of Teaching and Learning
	Improving Practice
	Understanding learning

	II Case Study
	An Evidence-based Approach to Teaching Programming
	Introduction
	Related Research
	Difficulties with learning programming
	Developing holistic system development skills
	Student conceptions of correctness and quality

	Discussion
	Can't see the wood for the trees
	Student conceptions of correctness
	Making processes explicit

	Recommendations
	Applying Theory to Practice
	Instructional Design
	Learning Approach
	Constructive Alignment of Assessment

	Conclusion

	Using Action Research to Evolve a Service Learning Course

