Wireless Sensor

Network Security
in ProFulN

Volkan Cambazoglu

Wireless Sensor Networks

.Formal verification of a
secure aggregation protocol

. Irust establishment for
secure communication in
the demonstrator

1Yo o 0 0 o

Secure Hierarchical In-Network
Aggregation in Sensor Networks

Spanning tree

Secure Hierarchical In-Network

Aggregation in Sensor Networks
Aggregation

Label = <count, value, complement, hash-value>

(R)«—() R = (12,vg, Vg, H[N||12[|vg|[Vr||Ho||A1|[lo])

L

A1 = (9,va,, v, HINI[9l[va, [[va, [|Ao][B1]|C1[[Do])

= (A, To, HINJAIIvG 7 [CollEol i)
I FI'=(2,ve, v H NI |21 vR, 7 || Fo | Go)

Secure Hierarchical In-Network
Aggregation in Sensor Networks

A

AN

1

& %

Secure Hierarchical In-Network
Aggregation in Sensor Networks

O

Off-path vertices of u

Secure Hierarchical In-Network
Aggregation in Sensor Networks

Authentication

MACku(Nonce,OK)

The Goal

Formally verify that the security property of
SHIA indeed holds

Definition 1 A direct datainjection attack occurs when an attacker
modifies the data readings reported by the nodes under its direct
control, under the constraint that only legal readings in |0,r| are
reported.

Definition 2 An aggregation algorithm is optimally secure if, by
tampering with the aggregation process, an adversary is unable to
induce the querier to accept any aggregation result which is not
already achievable by direct data injection.

Progress

| . Extract the algorithm from the paper
2. Take the algorithm to Psi-calculus specification
® Focus on process communication

® Abstract away from the details (helper functions
and computations)

3. Define the terms, the conditions and the assertions
® Revise several times to simplify

4.Write the rules for parsing and printing the
specification

Terms

val sgnSpecification =

n

"n

n

"n

n

Sorts

ch, tch,

L,

nonce, key, hash, mac,

1bl, 1list,
dir

ome examples

> > > > > > > >

Conditions

LT : (1,1) => bool,

and : (bool,bool) => bool,

not : (bool) => bool,

1Eq : (1,1) => bool,
dEq : (dir,dir) => bool

Other functions

XOR : (mac,mac) => mac,

Log2 : (1) => 1,

Dec : (1) => 1,

Add : (1,1) => 1,

Sub : (1i,1) => 1,

Sort : (llist) => llist,
dLeft : (O => dir,
dRight : () => dir,

> > > > >

> > > > > > > >

Some examples

NodeVerify(chParent, chlLeft, chRight, chFail, iMinVal, nonceQ, iKey,
iLeftID, 1iRightID,
1CountLeft, 1VallLeft, iComplLeft, hashlLeft,
1CountRight, iValRight, iCompRight, hashRight,
1CountInHere,
1CountOwn, 1ValOwn, 1CompOwn, hashOwn) <=
"Verify(chParent)"(iCountRoot, iValRoot, iCompRoot, hashRoot).
case "not(and(iEq(ileftID, @), iEq(iRightID, @)))" :
""Verify(chLeft)"<iCountRoot, 1ValRoot, 1iCompRoot, hashRoot>.
""Verify(chRight)"<iCountRoot, iValRoot, iCompRoot, hashRoot>.
""Offpath(chLeft)"<iCountRight, 1ValRight, iCompRight, hashRight, "dRight()">.
""Offpath(chRight)"<1CountLeft, 1Valleft, iComplLeft, hashLeft, "dLeft()">.
ForwardOffpathLabels<chParent, chLeft, chRight, nonceQ, iKey,
ileftID, 1iRightID, "Sub(Log2(iCountRoot), Log2(iCountInHere))">
[] "and(iEq(iLeftID, @), iEq(iRightID, @))" :
ReceiveOffpathLabels<chParent, chLeft, chRight, chFail,
iMinVal, nonceQ, iKey, ileftID, iRightID,
1CountOwn, 1ValOwn, iCompOwn, hashOwn,
1CountRoot, 1ValRoot, iCompRoot, hashRoot,
"Log2(1CountRoot)”, "LNi1()">;

Next step

|. Implement abstracted details (helper
functions and computations)

2. Implement constraint solver to handle the
specification

|. the properties that we need to check
|. off-path labels

2. boundaries

S

Encryption & Authentication

* Node: Zolertia Z|I

* OS: Contiki

* Chip: CC2420 (4 6Hz tese 802154 Compiiant and Zigee™ Ready R Transceiver)
* AES-CCM (Counter with CBC-MAC) 128 bits

*Link layer software solution from
Thingsquare Mist

Setting

| .Data Aggregation in a tree-based WSN
2.A node has to know at most 3 neighbours
® Parent
® |eft child
® Right child

3.Prob|em: Securely introduce a new node to the
aggregation tree as a

® | eaf (sensing) node

® Aggregating node

Introduce a hew node

| .Bring initialized node to the network. (known
UID, net address and cryptographic keys)

2.Scan RFID/NFC tag with smartphone. (the tag
has new node's UID)

3 .Securely transmit the scanned value to the
central system from the smartphone.

4.Centra| system validates the value and if it
is valid, locate the associated network
address in the network.

Introduce a hew node

5.When the node receives message from the
central system, it has instructions to update
neighbour data.

6.The new node confirms that the neighbour
data is applied

7.Centra| system sends update requests to
affected neighbours

8.Centra| system collects replies from
neighbour nodes that the update is done!

Introduce a hew node

9.If successful, the role of the new node can
be selected from the central system so that
the necessary code is sent to the new node
securely via the WSN.

| 0.0therwise, the existing nodes neglect
the new node.

Key Management

I .Base to node

2. Features:

® Backward secrecy - new member should not be
able to decrypt old messages.

® Forward secrecy - old member should not be able
to decrypt new messages.

® Group re-keying - group keys have to be re-
arranged so that previous two features are
supported.

DEMO!

Next step

| .Implementing pTesla in Contiki

2.Dynamic addition of a new node and/or re-
location of an existing node

3.Different key management techniques
® asymmetric

® zero-knowledge

