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(a) Example network graph.
Arrows: Aggregation tree.
R: Base station. Q: Querier.

G0 = ⟨1,aG,r−aG,G⟩

F1 = ⟨2,vF1 ,vF1 ,H [N||2||vF1 ||vF1 ||F0||G0]⟩

C1 = ⟨4,vC1 ,vC1 ,H [N||4||vC1 ||vC1 ||C0||E0||F1]⟩

A1 = ⟨9,vA1 ,vA1 ,H [N||9||vA1 ||vA1 ||A0||B1||C1||D0]⟩

R= ⟨12,vR,vR,H [N||12||vR||vR||H0||A1||I0]⟩

(b) Naive commitment tree, showing derivations of some of the vertices. For each sensor
node X , X0 is its leaf vertex, while X1 is the internal vertex representing the aggregate
computation at X (if any). On the right we list the labels of the vertices on the path of
node G to the root.

Figure 1: Aggregation and naive commitment tree in network context

4.1 Query Dissemination
First, an aggregation tree is established if one is not already

present. Various algorithms for selecting the structure of an ag-
gregation tree may be used. For completeness, we describe one
such process, while noting that our algorithm is directly applicable
to any aggregation tree structure. The Tiny Aggregation Service
(TaG) [11] uses a broadcast from the base station where each node
chooses as its parent in the aggregation tree, the node from which
it first heard the tree-formation message.
To initiate a query in the aggregation tree, the base station orig-

inates a query request message which is distributed following the
aggregation tree. The query request message contains an attached
nonce N to prevent replay of messages belonging to a prior query,
and the entire request message is sent using an authenticated broad-
cast.

4.2 Aggregation-Commit Phase
The goal of the aggregation-commit phase is to iteratively con-

struct a series of cryptographic commitments to data values and to
intermediate in-network aggregation operations. This commitment
is then passed on to the querier. The querier then rebroadcasts the
commitment to the sensor network using an authenticated broad-
cast so that the rest of the sensor network is able to verify that their
respective data values have been incorporated into the aggregate.

4.2.1 Aggregation-Commit: Naive Approach
We first describe a naive approach that yields the desired secu-

rity properties but has suboptimal congestion overhead when sensor
nodes perform their respective verifications. In the naive approach,
when each sensor node performs an aggregation operation, it com-
putes a cryptographic hash of all its inputs (including its own data
value). The hash value is then passed on to the parent in the aggre-
gation tree along with the aggregation result. Figure 1(b) shows a
commitment tree which consists of a series of hashes of data values
and intermediate results, culminating in a set of final commitment
values which is passed on by the base station to the querier along
with the aggregation results. Conceptually, a commitment tree is
a hash tree with some additional aggregate accounting information
attached to the nodes. A definition follows. Recall that N is the
query nonce that is disseminated with each query.

Definition 3 A commitment tree is a tree where each vertex has
an associated label representing the data that is passed on to its
parent. The labels have the following format:

⟨count, value, complement, commitment⟩

Where count is the number of leaf vertices in the subtree rooted
at this vertex; value is the SUM aggregate computed over all
the leaves in the subtree; complement is the aggregate over the
COMPLEMENT of the data values; and commitment is a crypto-
graphic commitment. The labels are defined inductively as follows:
There is one leaf vertex us for each sensor node s, which we

call the leaf vertex of s. The label of us consists of count=1,
value=as where as is the data value of s, complement=r− as
where r is the upper bound on allowable data values, and
commitment is the node’s unique ID.
Internal vertices represent aggregation operations, and have la-

bels that are defined based on their children. Suppose an internal
vertex has child vertices with the following labels: u1,u2, . . . ,uq,
where ui = ⟨ci,vi,vi,hi⟩. Then the vertex has label ⟨c,v,v,h⟩, with
c= ∑ci, v= ∑vi, v= ∑vi and h= H [N||c||v||v||u1||u2|| · · · ||uq].

For brevity, in the remainder of the paper we will often omit ref-
erences to labels and instead refer directly to the count, value,
complement or commitment of a vertex.
While there exists a natural mapping between vertices in a com-

mitment tree and sensor nodes in the aggregation tree, a vertex is
a logical element in a graph while a sensor node is a physical de-
vice. To prevent confusion, we will always refer to the vertices in
the commitment tree; the term nodes always refers to the physical
sensor node device.
Since we assume that our hash function provides collision resis-

tance, it is computationally infeasible for an adversary to change
any of the contents of the commitment tree once the final commit-
ment values have reached the root.
With knowledge of the root commitment value, a node s may

verify the aggregation steps between its leaf vertex us and the root
of the commitment tree. To do so, s needs the labels of all its off-
path vertices.

Definition 4 The set of off-path vertices for a vertex u in a tree is
the set of all the siblings of each of the vertices on the path from u
to the root of the tree that u is in (the path is inclusive of u).
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A0 = ⟨1,aA,r−aA,A⟩

D0 = ⟨1,aD,r−aD,D⟩

K0 = ⟨1,aK ,r−aK ,K⟩

C2 = ⟨4,vC2 ,vC2 ,H [N||4||vC2 ||vC2 ||F1||C1]⟩

B1 = ⟨2,vB1 ,vB1 ,H [N||2||vB1 ||vB1 ||B0||J0]⟩

(a) Inputs: A generates A0, and receives D0 from D, C2 from C, and (B1,K0) from B. Each dashed-line box shows the commitment
forest received from a given sensor node. The solid-line box shows the vertex labels, each solid-line box below shows the labels of the
new vertices.

vA1 = aA+aD

vA1 = r−aA+ r−aD

A1 = ⟨2,vA1 ,vA1 ,H [N||2||vA1 ||vA1 ||A0||D0]⟩

(b) First merge: Vertex A1 created

vA2 = vA1 + vB1

vA2 = vA1 + vB1

A2 = ⟨4,vA2 ,vA2 ,H [N||4||vA2 ||vA2 ||A1||B1]⟩

(c) Second merge: Vertex A2 created

vA3 = vA2 + vC2

vA3 = vA2 + vC2

A3 = ⟨8,vA3 ,vA3 ,H [N||8||vA3 ||vA3 ||A2||C2]⟩

(d) Final merge: Vertex A3 created. A3 and K0 are sent to the parent of A in the aggregation tree.

Figure 3: Process of node A (from Figure 1) deriving its commitment forest from the commitment forests received from its children.

any aggregates are negative, the querier rejects the result and raises
an alarm: a negative aggregate is a sure sign of tampering since
all the data values (and their complements) are non-negative. Oth-
erwise, the querier then computes the final pair of aggregates SUM
and COMPLEMENT. The querier verifies that SUM + COMPLEMENT
= nr where r is the upper bound on the range of allowable data val-
ues on each node. If this verifies correctly, the querier then initiates
the result-checking phase.

4.3 Result-checking phase
The purpose of the result-checking phase is to enable each sensor

node s to independently verify that its data value as was added into
the SUM aggregate, and the complement (r− as) of its data value
was added into the COMPLEMENT aggregate. The verification is
performed by inspecting the inputs and aggregation operations in
the commitment forest on the path from the leaf vertex of s to the
root of its tree; if all the operations are consistent, then the root

aggregate value must have increased by as due to the incorporation
of the data value. If each legitimate node performs this verification,
then it ensures that the SUM aggregate is at least the sum of all the
data values of the legitimate nodes. Similarly, the COMPLEMENT
aggregate is at least the sum of all the complements of the data
values of the legitimate nodes. Since the querier enforces SUM +
COMPLEMENT = nr, these two inequalities form lower and upper
bounds on an adversary’s ability to manipulate the final result. In
Section 5 we shall show that they are in fact the tightest bounds
possible.
A high level overview of the process is as follows. First, the

aggregation results from the aggregation-commit phase are sent us-
ing authenticated broadcast to every sensor node in the network.
Each sensor node then individually verifies that its contributions
to the respective SUM and COMPLEMENT aggregates were indeed
counted. If so, it sends an authentication code to the base station.
The authentication code is also aggregated for communication effi-
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Figure 2: Off-path vertices for u are highlighted in bold. The
path from u to the root of its tree is shaded grey.

Figure 2 shows a pictorial depiction of the off-path vertices for a
vertex u in a tree. For a more concrete example, the set of off-path
commitment tree vertices for G0 in Figure 1 is {F0, E0, C0, B1,
A0, D0, H0, I0}. To allow sensor node G to verify its contribution
to the aggregate, the sensor network delivers labels of each off-
path vertex to G0. Sensor node G then recomputes the sequence of
computations and hashes and verifies that they lead to the correct
root commitment value.
Consider the congestion on the naive scheme. Let h be the height

of the aggregation tree and ∆ be the maximum degree of any node
inside the tree. Each leaf vertex has O(h∆) off-path vertices, and it
needs to receive all their labels to verify its contribution to the ag-
gregate, thus leading to O(h∆) congestion at the leaves of the com-
mitment tree. For an aggregation tree constructed with TaG, the
height h of the aggregation tree depends on the diameter (in number
of hops) of the network, which in turn depends on the node density
and total number of nodes n in the network. In a 2-dimensional
deployment area with a constant node density, the best bound on
the diameter of the network is O(

√
n) if the network is regularly

shaped. In irregular topologies the diameter of the network may be
Ω(n).

4.2.2 Aggregation-Commit: Improved Approach
We present an optimization to improve the congestion cost. The

main observation is that, since the aggregation trees are a sub-
graph of the network topology, they may be arbitrarily unbalanced.
Hence, if we decouple the structure of the commitment tree from
the structure of the aggregation tree, then the commitment tree
could be perfectly balanced.
In the naive commitment tree, each sensor node always com-

putes the aggregate sum of all its inputs. This can be considered
a strategy of greedy aggregation. Consider instead the benefit of
delayed aggregation at node C1 in Figure 1(b). Suppose that C,
instead of greedily computing the aggregate sum over its own read-
ing (C0) and both its child nodes E0 and F1, instead computes the
sum only over C0 and E0, and passes F1 directly to A along with
C1 = C0+E0. In such a commitment tree, F1 becomes a child of
A1 (instead of C1), thus reducing the depth of the commitment tree
by 1. Delayed aggregation thus trades off increased communica-
tion during the aggregation phase in return for a more balanced
commitment tree, which results in lower verification overhead in
the result-checking phase. Greenwald and Khanna [6] used a form
of delayed aggregation in their quantile summary algorithm.
Our strategy for delayed aggregation is as follows: we perform

an aggregation operation (along with the associated commit oper-
ation) if and only if it results in a complete, binary commitment
tree.
We now describe our delayed aggregation algorithm for produc-

ing balanced commitment trees. In the naive commitment tree,
each sensor node passes to its parent a single message contain-
ing the label of the root vertex of its commitment subtree Ts. In

the delayed aggregation algorithm, each sensor node now passes
on the labels of the root vertices of a set of commitment subtrees
F = {T1, . . . ,Tq}. We call this set a commitment forest, and we
enforce the condition that the trees in the forest must be complete
binary trees, and no two trees have the same height. These con-
straints are enforced by continually combining equal-height trees
into complete binary trees of greater height.

Definition 5 A commitment forest is a set of complete binary com-
mitment trees such that there is at most one commitment tree of any
given height.

A commitment forest has at most n leaf vertices (one for each
sensor node included in the forest, up to a maximum of n). Since
all the trees are complete binary trees, the tallest tree in any com-
mitment forest has height at most logn. Since there are no two trees
of the same height, any commitment forest has at most logn trees.
In the following discussion, we will for brevity make reference

to “communicating a vertex” to another sensor node, or “commu-
nicating a commitment forest” to another sensor node. The actual
data communicated is the label of the vertex and the labels of the
roots of the trees in the commitment forest, respectively.
The commitment forest is built as follows. Leaf sensor nodes in

the aggregation tree originate a single-vertex commitment forest,
which they then communicate to their parent sensor nodes. Each
internal sensor node s originates a similar single-vertex commit-
ment forest. In addition, s also receives commitment forests from
each of its children. Sensor node s keeps track of which root ver-
tices were received from which of its children. It then combines all
the forests to form a new forest as follows.
Suppose s wishes to combine q commitment forests F1, . . . ,Fq.

Note that since all commitment trees are complete binary trees, tree
heights can be determined by inspecting the count field of the
root vertex. We let the intermediate result be F = F1∪ · · ·∪Fq, and
repeat the following until no two trees are the same height in F:
Let h be the smallest height such that more than one tree in F has
height h. Find two commitment trees T1 and T2 of height h in F ,
and merge them into a tree of height h+1 by creating a new vertex
that is the parent of both the roots of T1 and T2 according to the
inductive rule in Definition 3. Figure 3 shows an example of the
process for node A based on the topology in Figure 1.
The algorithm terminates in O(q logn) steps since each step re-

duces the number of trees in the forest by one, and there are at most
q logn+ 1 trees in the forest. Hence, each sensor node creates at
most q logn+1= O(∆ logn) vertices in the commitment forest.
When F is a valid commitment forest, s sends the root vertices of

each tree in F to its parent sensor node in the aggregation tree. The
sensor node s also keeps track of every vertex that it created, as well
as all the inputs that it received (i.e., the labels of the root vertices
of the commitment forests that were sent to s by its children). This
takes O(d logn) memory per sensor node.
Consider the communication costs of the entire process of creat-

ing the final commitment forest. Since there are at most logn com-
mitment trees in each of the forests presented by any sensor node to
its parent, the per-node communication cost for constructing the fi-
nal forest is O(logn). This is greater than the O(1) congestion cost
of constructing the naive commitment tree. However, no path in the
forest is longer than logn hops. This will eventually enable us to
prove a bound of O(log2 n) edge congestion for the result-checking
phase in Section 5.2.
Once the querier has received the final commitment forest from

the base station, it checks that none of the SUM or COMPLEMENT
aggregates of the roots of the trees in the forest are negative. If

5
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The Goal

Formally verify that the security property of 
SHIA indeed holds



Progress
1.Extract the algorithm from the paper

2.Take the algorithm to Psi-calculus specification

• Focus on process communication

• Abstract away from the details (helper functions 
and computations)

3.Define the terms, the conditions and the assertions 

• Revise several times to simplify

4.Write the rules for parsing and printing the 
specification



Some examples

Terms Conditions

Other functions



Some examples



Next step

1. Implement abstracted details (helper 
functions and computations)

2. Implement constraint solver to handle the 
specification

1. the properties that we need to check

1. off-path labels

2. boundaries



WSN

Gateway
Internet Central 

System

Add node

Remove node



Encryption & Authentication

•Node: Zolertia Z1

•OS: Contiki

•Chip: CC2420 (2.4 GHz IEEE 802.15.4 Compliant and ZigBee™ Ready RF Transceiver)

•AES-CCM (Counter with CBC-MAC) 128 bits

•Link layer software solution from 
Thingsquare Mist



Setting
1.Data Aggregation in a tree-based WSN

2.A node has to know at most 3 neighbours

• Parent

• Left child

• Right child

3.Problem: Securely introduce a new node to the 
aggregation tree as a 

• Leaf (sensing) node 

• Aggregating node



Introduce a new node
1.Bring initialized node to the network. (known 

UID, net address and cryptographic keys)

2.Scan RFID/NFC tag with smartphone. (the tag 
has new node's UID)

3.Securely transmit the scanned value to the 
central system from the smartphone.

4.Central system validates the value and if it 
is valid, locate the associated network 
address in the network.



Introduce a new node
5.When the node receives message from the 

central system, it has instructions to update 
neighbour data.

6.The new node confirms that the neighbour 
data is applied 

7.Central system sends update requests to 
affected neighbours

8.Central system collects replies from 
neighbour nodes that the update is done!



Introduce a new node

9.If successful, the role of the new node can 
be selected from the central system so that 
the necessary code is sent to the new node 
securely via the WSN.

10.Otherwise, the existing nodes neglect 
the new node.



Key Management
1.Base to node

2.Features:

• Backward secrecy - new member should not be 
able to decrypt old messages.

• Forward secrecy - old member should not be able 
to decrypt new messages.

• Group re-keying - group keys have to be re-
arranged so that previous two features are 
supported.



DEMO!



Next step

1.Implementing µTesla in Contiki

2.Dynamic addition of a new node and/or re-
location of an existing node

3.Different key management techniques

• asymmetric

• zero-knowledge


