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Abstract

Finite difference approximations of the second derivative in space
appearing in, parabolic, incompletely parabolic systems of, and second
order hyperbolic, partial differential equations are considered. If the
solution is pointwise bounded, we prove that finite difference approx-
imations of those classes of equations can be closed with two orders
less accuracy at the boundary without reducing the global order of
accuracy.

This result is generalised to initial-boundary value problems with
an mth order principal part. Then, the boundary accuracy can be
lowered m orders.

Further, it is shown that summation-by-parts operators with ap-
proximating second derivatives are pointwise bounded. Linear and
nonlinear computations corroborates the theoretical results.

1 Introduction

For computations of numerical solutions to an initial-boundary value prob-
lems, it is commonly known that one order less accuracy at the boundary
is allowed. This stems from two articles by Gustafsson, [1, 2], and refers to
the order of accuracy of the numerical boundary conditions. The physical
boundary conditions have to be approximated to the global order of accu-
racy. Also, in [2] it was shown that 2 orders is recovered at the boundary if
Dirichlet boundary conditions are used and a number of algebraic conditions
are satisfied.

Abarbanel et al. showed in [3] that 1.5 orders of accuracy can be re-
covered theoretically at the boundary for parabolic problems with general
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boundary conditions. They present computations where two orders of accu-
racy is recovered, indicating that their theoretical estimate is not sharp.

In [4] Mattsson and Nordström suggested that for parabolic problems as
well as incompletely-parabolic problems, the numerical boundary conditions
(or numerical closure) can be approximated with two orders less accaracy for
parabolic terms. Further, the physical boundary conditions are allowed to
be approximated with one order less accuracy when the boundary conditions
are weakly implemented. These conclusions are supported with extensive
numerical experiments and an analysis giving conditions for the hypothesis
to be true. However, the conditions derived are algebraically difficult to
evaluate for the actual numerical scheme.

In this article we consider parabolic, as well as incompletely parabolic
systems of partial differential equations (PDE:s) with general boundary con-
ditions. We prove that two orders less accuracy is allowed for the approxima-
tion of second derivatives at the boundary, if the scheme yields a pointwise
bounded solution. It is also proven that the results carry over to discretisa-
tions of second order hyperbolic equations, such as the wave equation.

The theory is also taken one step further by considering equations with an
mth order principal part. Then the order of accuracy for numerical boundary
conditions can be lowered m orders if the scheme is pointwise stable.

The article is organised as follows: in Section 2, accuracy theorems are
proven under specific stability assumptions; Section 3 proves that the theo-
rems are applicable to Summation-by-Parts operators (SBP operators) with
the Simultaneous Approximation Term technique (SAT) approximating the
boundary conditions; in Section 4 computations that corroborate the theo-
retical results are presented.

2 Analysis

The focus in this paper will be discretisations near the boundary. To simplify
the notation we consider, without restriction, semi-infinite problems in space.

2.1 The Advection-Diffusion Equation

Consider the parabolic equation,

ut + aux = εuxx + F (x, t), 0 ≤ x ≤ ∞, t ≥ t0,

u(0, t) + αux(0, t) = g(t), (1)

|u| → 0, x →∞
u(x, t0) = f(x),

2



where ε > 0 and ‖ · ‖ denotes some norm; f is the intital data; g is the
boundary data and F is the forcing function. With a > 0, the energy method
applied to (1) leads to an energy estimate if,

−2ε

a
≤ α ≤ 0. (2)

With the above condition satisfied, equation (1) is well posed, i.e. it has a
unique and bounded solution.

A general semidiscretisation of (1), with grid spacing h, would be,

vt = Mhv + Bh, (3)

v(0) = f

where Mh is the discretisation operator and Bh includes the boundary data
and the forcing function. Further, v is the vector function approximating
the solution of (1) and f is the vector function identical to f(x) at the grid
points. Note that, the general formulation (3) covers both weak and strong
implementation of boundary conditions.

Next, we define and discuss a few notions that frequently will be used.
Let ‖ ·‖h denote the l2-norm, i.e. ‖v‖2

h = hvT v. In [5] the following definition
is given.

Definition 2.1 The approximation, v, is strongly stable if, for all h ≤ h0,
the estimate

‖v(t)‖2
h ≤ K(t)(‖f‖2

h + max
0≤τ≤t

‖F (τ)‖2
h + max

0≤τ≤t
g(τ)2) (4)

holds. Here K(t) is a bounded function in any finite time interval and does
not depend on the data.

With the norm ‖v‖∞ = supi vi we modify the previous definition.

Definition 2.2 The approximation, v, is strongly pointwise stable if, for all
h ≤ h0, the estimate

‖v(t)‖2
∞ ≤ K(t)(‖f‖2 + max

0≤τ≤t
‖F (τ)‖2 + max

0≤τ≤t
g(τ)2) (5)

holds. Here K(t) is a bounded function in any finite time interval and does
not depend on the data. (‖ · ‖ denotes some norm.)

We also define the space l∞ as the space of all grid functions f with the
property that ‖f‖∞ is bounded.
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Remark We call a scheme stable or pointwise stable, if the problem with
g(t) = 0 fulfils the estimate (4) or (5).

Lemma 2.3 Assume that F , f and g are smooth such that the solution u of
(1) is smooth. Let v denote the solution to the consistent discretisation (3)
of (1) with grid spacing h. Let uh denote the projection of the exact solution
onto the grid. If v is pointwise stable, for all h ≤ h0, v converges to uh

uniformly.

Proof Insert uh into (3) to obtain,

(uh)t = Mhuh + Bh + Th,

uh(0) = f,

where Th denotes the truncation error vector. Using (3) we obtain,

(uh − v)t = Mh(uh − v) + Th,

(uh − v)(0) = 0.

Since the scheme is pointwise stable we have the estimate,

‖uh − v‖∞ ≤ K(t)( sup
0≤τ≤t

‖Th(τ)‖2
∞). (6)

By consistency and smoothness of u, ‖Th(τ)‖2
∞ → 0 as h → 0. Thus, we

have uniform convergence.

Remark The Lemma is true for any discretisation of a well posed partial
differential equation, if it is pointwise stable and the solution is smooth. Not
just for parabolic partial differential equations.

Lemma 2.4 Assume that v is stable in some norm, i.e. the estimate (4)
holds when g = 0 for a specific norm. Then v is uniquely defined in that
norm.

Proof Assume that there exist two solutions w and v to equation (3). By
linearity we have the error equation, (v−w)t = Mh(v−w), with (v−w)(0) = 0
and the bound ‖v − w‖ < 0 for h ≤ h0 follows.

Remark Note that if the norm is weak, i.e. the continuous norm can be zero
if the function is nonzero on a set of Lebesgue measure zero, then Lemma 2.4
does not imply convergence pointwise. Still, there can only be one solution
to the numerical problem in the sense of that norm. Further, for h > 0 the
numerical solution is pointwise unique, since there can be no set of measure
0.
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Lemma 2.5 If v is bounded in l∞, then v converges uniformly and uniquely
to u, in the sense of ‖uh − v‖∞ → 0 as h → 0.

Proof Lemma 2.3 and Lemma 2.4.

To analyse the order of accuracy we shift our focus to consider the error
equation by subtracting the true solution, u(x, t) from v, i.e. e = v − uh.
Using either a strong or weak approximation of the boundary conditions we
would arrive at,

et = Mhe + Th, (7)

e(0) = 0.

As before, Th denotes the truncation error and generally we have,

T = (O(hr), ...,O(hr),O(h2p), ...,O(h2p),O(hr), ...,O(hr))T , (8)

where h denotes the grid spacing. To describe the size and structure of Th,
we will use Th = O(hr, h2p) for boundary and interior points respectively. If
(3) is stable and r = 2p we immediately obtain the desired order of accuracy
2p of the scheme by applying the energy method (See proof of Lemma 2.3,
where the norm may be different from the supremum norm.). However, we
will consider r < 2p. The first theorem below states that two orders less
accuracy is allowed on the boundary in the purely parabolic case, a = 0.

Theorem 2.6 If v is a pointwise stable discretisation of (3) for h ≤ h0 and
a = 0, then with r = 2p− 2, the global order of accuary of the approximation
(3) is 2p.

Proof We follow a technique presented in [5] and also used in [4], and split
the truncation error into a boundary and internal part,

Ti = [0, ..., 0,O(h2p), ...,O(h2p), 0, ..., 0]T = O(0, h2p), (9)

Tb = [O(hr), ...,O(hr), 0, ..., 0,O(hr), ...,O(hr)]T = O(hr, 0), (10)

such that T = Ti + Tb. Similarly, the error is split into e = ei + eb. Note
that ei and eb are both nonzero everywhere since there is in general a strong
coupling between the boundaries and the interior. By the boundedness in l∞

of v, and since ei is discretised with the same scheme as v, ei satisafies the
same estimate, such that,

‖ei(t)‖∞ ≤ K(t)‖Ti(t)‖∞ ≤ O(h2p). (11)
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Next, we turn to the boundary part. Laplace transform (7) and consider
only errors coming from the discretisation at the boundary,

sêb = Mhêb + T̂b, Re s ≥ 0. (12)

In the purely parabolic case all the entries of M are proportional to 1/h2.
Thus, we multiply by h2 such that M̃ = h2Mh to make every nonzero entry
of M̃ of order O(1). With s̃ = sh2 we obtain,

s̃êb = M̃êb + h2T̂b, Re s̃ ≥ 0. (13)

Note that, the scheme is the same at every point except at points near the
boundary. We consider (13) to be a homogeneous difference equation where
h2T̂b is its initial data. We write the solution to (13) as,

(êb)j =

2p∑

l=1

σlκ
j
l . (14)

Assume without loss of generality that the interior scheme is 2p = k + q + 1
points wide. Since (T̂b)j = 0 at an interior point j we have,

s̃(êb)j =

q∑

i=−k

αi(êb)i+j, (15)

where αi are constants. Inserting the ansatz (14) into (15) yields the char-
acteristic equation,

s̃κj =

q∑

i=−k

αiκ
i+j, (16)

which has solutions κl(s̃) for l = 1..2p. Denote by κ1, .., κm the roots with
|κi| ≤ 1 for i = 1..m. The remaining roots are discarded due to boundedness
of the solution. That is σm+1 = ... = σ2p = 0. Hence, the solution reads,

(êb)j =
m∑

l=1

σlκ
j
l . (17)

We have yet not used the constants σl, l = 1..m. Those constants are deter-
mined by the scheme near the boundary.

Define σ = (σ1, ..., σm)T such that,

κ̄σ = êrb, (18)
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where êrb now denotes the restriction of êb to the ν +1 boundary points and,

κ̄ =




κ0
1 . . . κ0

m
... . . .

...
κν

1 . . . κν
m


 (19)

We will use κ̄ to determine σ which is why we exclude the interior points
since (13) is already fulfilled at the interior points by the κl:s, independent of
σ. Let Ir denote the (ν +1)× (ν +1) identity matrix. At the ν +1 boundary
points where the interior scheme is altered we obtain,

(s̃Ir − M̃r)κ̄σ = h2T̂rb, (20)

where Mr and T̂rb denotes the restrictions to the (ν +1) boundary points. To
estimate σ we note again that M̃r is a matrix with coefficients independent
of h and s̃. We have,

(s̃κ̄− M̃rκ̄)σ = h2T̂rb, (21)

where the coeffiecients of R = (s̃κ̄ − M̃κ̄) are independent of h. Thus if a
unique solution to (21) exists, σ would be of order h2T̂rb, i.e. we would gain
two orders of accuracy at the boundary. Then by Parseval’s relation we can
transform back to e to conclude that the desired order of accuracy is obtained.
However, R is in general non-square and the system seems overdetermined.
(If it is underdetermined, more numerical boundary conditions need to be
supplied.) We need to prove that (21) has a solution for all Re s̃ ≥ 0, i.e.
that the overdetermined system in fact has a number of linearly dependent
equations and that the remaining system is nonsingular for Re s̃ ≥ 0.

By well posedness, the exact continuous solution is unique. From point-
wise stability of the numerical scheme and Lemma 2.5, v converges uniquely
and pointwise to u. The same properties carries over to e and ei and they
will converge uniquely and pointwise to 0. Hence, eb = e− ei is unique.

Suppose σ is not uniquely determined by (21) then êb would not be unique.
However, since e and ei are bounded, êb has to be bounded and the inverse
Laplace transform could be performed and yield a nonunique eb. A contra-
diction.

Remark Note the necessity to split the errors into two parts referring to
boundary points and interior points respectively. If this is not done it is
impossible to determine the κi:s from the interior scheme since the right
hand side is nonzero. We would end up with, (sI −Mh)e = T̂ for the whole
scheme. Although, the uniqueness of e means that (sI −M) is nonsingular
even when multiplied by h2 it does not provide information about the size of
e since the number of entries of M increases as h → 0.
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This was the purely parabolic case, i.e. a = 0 in (1). Next, we want to
add a low order term, that is a 6= 0 in (1), and still recover the same accuracy
result. We need the following Lemma.

Lemma 2.7 If A is an invertible matrix and E a matrix, then A + E will
be invertible if ρ(A−1E) < 1, where ρ(·) denotes the spectral radius, and

(A + E)−1 = A−1 −
∞∑

k=1

(−1)k+1(A−1E)kA−1. (22)

Proof See [6].

The main difference compared to the purely parabolic case is that M̃ will
not be a constant matrix but rather, M̃ = A + Bh, where A,B are constant
matrices. A results from the discretisation of the second derivatives and B
from first derivatives. These perturbations follows through the whole proof
such that the elements of Mr ∼ O(1 + h) and hence κl ∼ O(1 + h), and we
end up with equation (21) where,

(s̃κ̄− M̃rκ) ∼ O(1 + h). (23)

The same reasoning applies and we conclude that also in this case (23) can
be reduced to a square nonsingular matrix. By Lemma 2.7 the inverse would
be of order 1 + h and the desired size of σ is obtained. This result is stated
in the following theorem.

Theorem 2.8 If (3) is a pointwise stable discretisation of (1) for h ≤ h0,
then with the order of accuracy r = 2p− 2 at the boundary, the global order
of accuracy of the approximation (3) is 2p.

Remark The truncation errors, Tb, include errors from all terms in Theorem
2.8. That means that it is allowed for the hyperbolic terms to be 2 orders
less accurate at the boundary as long as parabolic terms are present.

Remark In the case using a weak implementation of the boundary condi-
tions such as the Simultaneous Approximation Term technique (SAT, [7]) to
approximate the boundary conditions a penalty term scaled by h−1 is used.
Thus, when multiplied by h2 we can allow the physical boundary conditions
to be approximated with one order of accuracy less than global accuracy.

Remark If a system of parabolic equations are discretised with a pointwise
stable scheme the same theorem applies also. We omit the proof here. It is
precisely the same though with a more involved notation.
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As a concluding observation, note that equation (13) can be written as,

(s̃I − M̃)êb = h2T̂b, (24)

and that Theorem 2.8 implies that (s̃I − M̃)−1 exists and is of order 1. In
[5] the following definition is introduced which we will need below.

Definition 2.9 If det(s̃I − M̃) 6= 0 for Re s̃ ≥ 0 in, equation (24). Then
(s̃I − M̃)−1 exists and we say that the determinant condition is satisfied.

2.2 Incompletely Parabolic Systems

Consider the discretisation,

vt + a11D11v = B, a11 > 0, (25)

v(0) = f,

of,

ut + a11ux = 0, 0 ≤ x < ∞ (26)

u(0, t) = g(t),

u(x, 0) = f(x),

where B holds the boundary data and forcing function. Suppose that the
determinant condition for (25) holds, such that, for some constant δ > 0,

|(s̃I + a11D̃11)
−1| > δ, Re s̃ ≥ 0. (27)

The tilde denotes the undivided difference such that hD11 = D̃11.
Consider the following incompletely parabolic system,

(
u(1)

u(2)

)

t

+

(
a11 a12

a21 a22

)(
u(1)

u(2)

)

x

=

(
0

εu(2)

)

xx

, x ≥ 0, t ≥ 0,

L0(t)u = g0(t), (28)

u(x, 0) = f(x),

where u = (u(1), u(2))T . Let equation (28) be discretised by,

(
v(1)

v(2)

)

t

+

(
a11D11 a12D12

a21D21 a22D22 − εD2

)(
v(1)

v(2)

)
=

(
B(1)

B(2)

)
, (29)
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where B(1) and B(2) are vectors that introduce the boundary data. Further,
v(1) and v(2) are the discrete solution vectors. With the splitting of the error
e = ei + eb and the truncation error T = Ti + Tb we obtain for eb,

(
e
(1)
b

e
(2)
b

)

t

+

(
a11D11 a12D12

a21D21 a22D22 − εD2

) (
e
(1)
b

e
(2)
b

)
=

(
T

(1)
b

T
(2)
b

)
, (30)

where T
(1)
b = O(hr, 0) and T

(2)
b = O(hq, 0).

Remark Note that D11, D12, D21 and D22 are not necessarily pure first
derivative approximations but can include terms from the boundary treat-
ment. The same is true for D2 wich is mainly an approximation of the second
derivative.

Below, we state and prove a theorem based on the following conditions.

Condition 2.10 Assume that the discretisation (29) of (28) is pointwise
stable.

Condition 2.11 Assume that the discretisation (29) of (28) is stable and,
with a11 = a12 = a21 = a22 = 0, fulfills Theorem 2.8.

Theorem 2.12 Assume that the discretisation (25) of (26) satisfies the de-
terminant condition (27). If either Condition 2.10 or Condition 2.11 is sati-
safied and, D11 and D12 are closed with r = 2p− 1 whereas D21, D22 and D2

are closed with q = 2p− 2, then (29) is of order 2p.

Proof Laplace transform (30) to obtain,

(
sI + a11D11 a12D12

a21D21 sI + a22D22 − εD22

) (
ê
(1)
b

ê
(2)
b

)
=

(
T̂

(1)
b

T̂
(2)
b

)
, (31)

or,

Aê = T̂b, Re s̃ ≥ 0. (32)

Rotate equation (32) using,

R =

(
I α
0 I

)
, B =

(
I 0
β I

)
(33)

such that,

BARR−1ê = BT̂b. (34)
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To make BAR block diagonal we choose α = −h(s̃I + a11D̃11)
−1a12D12 =

−(s̃I + a11D̃11)
−1a12D̃12 and β = −(s̃I + a11D̃11)

−1a21D̃21. By assumption,
(s̃I + a11D̃11)

−1 exists. Thus, α and β are of order 1. The matrices R and B
are both non-singular justifying the transformation. Further,

R−1 =

(
I −α
0 I

)
, BTb =

(
T̂

(1)
b

T̂
(2)′
b

)
(35)

where T̂
(2)′
b = T̂

(2)
b + βT̂

(1)
b . Note that BT̂b is of the same size as Tb. Further-

more,

R−1êb =

(
ê
(1)
b − αê

(2)
b

ê
(2)
b

)
=

(
ê
(1)′
b

ê
(2)
b

)
= ê′b (36)

Finally,

BAR =

(
1
h
(s̃I + a11D̃11) 0

0 D21α + sI + a22D22 − εD2

)
, (37)

Multiply equation (34) by diag(hI, h2I) such that,

(
(s̃I + a11D̃11) 0

0 ha21D̃21α + ˜̃sI + ha22D̃22 − εD̃2

)
ê′b =

(
hT̂

(1)
b

h2T̂
(2)′
b

)
.(38)

The upper left block is invertible by assumption (27), yielding that ê
(1)′
b is

order r + 1.
The lower left is ˜̃sI − εD̃2 +O(h). Two different approaches may be con-

sidered for this term. We can use Assumption 2.11 that the purely parabolic
equation is uniquely determined such that the inverse of (˜̃sI − εD̃2) exists.
Then det((˜̃sI − εD̃2)) ≥ const > 0 for ˜̃s ≥ 0. By Lemma 2.7, if h is small
enough the perturbation does not make the matrix singular. Or, we use As-
sumption 2.10 that the incomplete parabolic system is pointwise stable in
which case the inverse must exist by uniqueness of the numerical as well as
the mathematical solution. Either of the two assumptions leads to a solution
ê
(2)
b of order q + 2. Solving for êb yields,

êb = Rê′b =

(
ê
(1)′
b + αê

(2)
b

ê
(2)
b

)
(39)

We conclude that ê
(1)
b ∼ max(O(hr+1),O(hq+2)) and ê

(2)
b ∼ O(hq+2). Invert-

ing the Laplace transform yield the same order of magnitude to e
(1)
b and e

(2)
b ,

respectivley.
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Finally, we consider ei. With Condition 2.10, (29) is pointwise stable and
with Condition 2.11, (29) is stable, such that an estimate analogous to (11)
is obtained in both cases.

2.3 The Wave Equation

Consider a second order hyperbolic partial differential equation such as the
wave equation.

utt = uxx, 0 ≤ x ≤ ∞, 0 ≤ t ≤ T

L0(t)u = g1(t), at x = 0, (40)

u(x, 0) = f(x)

We assume that (40) is supplied with boundary conditions such that it is
well posed. A semidiscretisation of (40) can be written,

vtt = Mv + B (41)

v(0) = f,

where B includes the boundary data. We assume that the order of accuracy
is 2p for the interior scheme and r at a finite number of boundary points (as
h → 0). Laplace transforming the error equation yields,

(s′)2e = Me + T (42)

where T is the truncation error. We state the following theorem.

Theorem 2.13 If v is a pointwise stable discrete solution to (41), then with
r = 2p− 2 the global order of accuracy is 2p.

Proof With the transformation (s′)2 = s the proof of Theorem 2.6 applies.

Remark A necessary requirement for stability is that M is symmetric and
negative semidefinite.

2.4 A General Statement

Consider the advection-diffusion equation, ut+aux = εuxx. The above theory
shows that pointwise stability of a scheme approximating the equation is
sufficient to gain two orders of accuracy at the boundary. A key part in the
proof is the multiplication of the truncation error by h2 in (13).
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On the other hand, with ε = 0 and the assumption of a pointwise stable
scheme, we could use the same proof but this time only multiplying the
boundary error by h in (13). Then, the components of M̃ are O(1) and
s̃ = sh. That is just proving that we can lower the accuracy at the boundary
by one order for hyperbolic equations, i.e. what is proven in [1, 2]. We
have also shown above, that lower order terms will not affect the resulting
accuracy.

The above reasoning justifies the study of the following equation,

ut =
∂mu

∂xm
, 0 ≤ x < ∞

L0u = g(t), (43)

u(x, 0) = f(x)

since lower order terms will not affect the sufficient order at the boundary.
We assume that (43) is well-posed. A semi-discretisation would be,

vt = Mhv + B, (44)

v(0) = f.

As before, we assume that the discrete scheme is pointwise stable. Again we
study the error equation,

et = Mhe + Th, (45)

e(0) = 0.

and split the error into two parts, internal and boundary. (ei, eb, Ti, Tb) The
internal error directly yields the correct order. The boundary part is Laplace
transformed and viewed as a homogeneous difference equation with initial
data. In order to obtain O(1) coefficients in M we need to multiply the error
equation (corresponding to (13)) by hm. With these observation the proof of
the following theorem is identical to the previous proof of Theorem 2.6.

Theorem 2.14 Assume that (43) is well-posed and its semi-discretisation
(44) is pointwise stable. Then with the order of accuracy p in the interior
and order p−m at the boundary closure, the global order of accuracy is p.

Remark In the proof it follows trivially that the weak SAT implementa-
tion of boundary conditions allow the physical boundary conditions to be
approximated to order p−m + 1 without reducing the global order p.
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3 Analysis of SBP Schemes

The conditions in Theorems 2.8, 2.12 and 2.13 are quite general and we will
devote this chapter to prove that SBP-schemes with SAT implementation
of boundary conditions, do fulfil these requirements. (For theory of SBP-
schemes see [8, 9, 10, 7, 11, 12, 13, 14, 15, 16, 4])

3.1 The Heat Equation

3.1.1 The Continuous Problem

Again, we begin by analysing the simplest time dependent equation including
a second derivative in space,

ut = uxx, 0 ≤ x ≤ 1, 0 ≤ t ≤ T

L1u = g1(t), (46)

L0u = 0,

where L1u = u(1, t)+αux(1, t), α > 0 and L0u = ux(0, t) and (46) is assumed
to have bounded initial data. The energy method applied to (46) leads to,

1

2
‖u‖2

t +

∫
u2

x dx = [uux]
1
0 =≤ −(1− η)

|u(1, t)|2
α

+
1

η

|g1(t)|2
α

. (47)

where ‖u‖2 =
∫ 1

0
u2dx and 0 < η ≤ 1. Integrating in time yields,

1

2
‖u(·, T )‖2 +

∫ T

0

(‖ux(·, t)‖+ (1− η)
|u(1, t)|2

α
)dt ≤ (48)

1

2
‖u(·, 0)‖2 +

∫ T

0

1

η

|g1(t)|2
α

dt,

and well-posedness follows. Note also that ‖ux(·, t)‖ is bounded. Then u can
be pointwise estimated by a Sobolev inequality. For any point x1 ∈ [0, 1] and
every ε > 0 we have,

|u(x1)| ≤ ε‖ux‖2 + (ε−1 + 1)‖u‖2. (49)

3.1.2 The Semidiscrete Problem

In order to discretise (46), an approximation of the second derivative is
needed. Such approximations in the SBP-framework are derived in [4] for dif-
ferent orders of accuracy, see also [11]. For any order, those can be expressed
as,

D2 = P−1(−A + BS). (50)
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In (50), P is an l2-equivalent norm, that is P is symmetric and positive
definite and vT Pv = ‖v‖2

P . Further, A+AT ≥ 0; B = diag(−1, 0..., 0, 1) and
S is a matrix approximating ux at the boundaries. We will also need the
following,

e0 = (1, 0, ..., 0)T , E0 = diag(1, 0, ..., 0), (51)

eN = (0, ..., 0, 1)T , EN = diag(0, ..., 0, 1).

Further, we will frequently use the notation (w)i to denote the ith component
of some vector w. Discretise equation (46) with N +1 grid points and denote
the solution vector v. The operator (50) together with an SAT treatment for
the boundary conditions lead to,

vt = P−1(−A + BS)v + σ1P
−1LD

1 (v, g1) + σ0P
−1LD

0 v. (52)

where LD
1 (v, g1) = (EN(I + αBS)v− eNg1(t)), LD

0 v = E0DSv and I denotes
the identity matrix. The initial data is the vector f , i.e. the function f(x)
projected onto the grid. Next, we multiply (52) by vT P and add the result
to its transpose. We obtain, with σ0 = 1 and σ1 = −1/α,

(‖v‖2
P )t + vT (A + AT )v =

−2

α
vN(vN − g1(t)), (53)

i.e. the discrete counterpart of (47). We omit the integration in time and
conclude directly that the term vT (A + AT )v will be bounded and is the
discrete analogue of ‖ux‖2 in (48).

The following properties of the SBP operators can be shown to hold and
we state those without a proof in an assumption.

Assumption 3.1 The matrix A, in the diagonal norm schemes we consider,
is symmetric and the row sums are zero. Further, if A is an n × n-matrix
then rank(A) = n− 1.

Remark The rank of A in Assumption 3.1 can be checked for some n. Then
A is extended in the interior by the difference stencil which is linearly in-
dependent to the rest of the matrix. Hence, the rank does not change as n
increases.

Lemma 3.2 Let A be defined above and satisfy Assumption 3.1, c a positive
constant and C a function depending only on data (f, g and F , denoting
initial data , boundary data and forcing function respectively). Then, any
scheme with an estimate ‖v‖2

P + cvT (A + AT )v < C(f, g, F ), is pointwise
stable.
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Proof In [5] the following discrete Sobolev inequality is proved,

|vi| ≤ ‖v‖2 + ε‖D+v‖2
2, i = 1..N

where ‖v‖2
2 = h

∑N
1 |vi|2, (D+v)i = (vi − vi−1)/h and ε > 0 is a constant.

The first observation is the following,

0 ≤ vT Âv ≤ ch. (54)

where Â = hA and all Âij are of order 1. We will need a few properties of

Â. For the diagonal norm case Â is symmetric and the row sums are zero.
Then,

ch ≥
n∑

i=1

n∑
j=1

viÂijvj =
n∑

i=1

vi(Âiivi +
∑

j 6=i

Âijvj) =

n∑
i=1

vi((−
∑

j 6=i

Âij)vi +
∑

j 6=i

Âijvj) =
n∑

i=1

vi(
∑

j 6=i

Âij(vj − vi)) ≥ 0.

Since Â is symmetric this can be rewritten as,

n∑
i=1

vi(
∑

j 6=i

Âij(vj − vi)) =
n∑

i=2

∑
i<j

(vi − vj)
2(−Âij).

Next, consider,

(vi − vj)
2 = ((vi − vi−1) + (vi−1 − vi−2) + ... + (vj+1 − vj))

2. (55)

From this observation we conclude that,

vT Âv = vT DT BDv, (56)

where B is an (n− 1× n− 1)-matrix and

D =




−1 1 0 . . .
0 −1 1 0 . . .

. . . . . .

0 −1 1


 , (57)

is an (n − 1) × n matrix. The crucial part is to prove that B is positive
definite. Extend B by a top row and left column of zeros such that it becomes

16



an n× n-matrix denoted by B̃. Further, let

D̃ =




1 0 . . .
−1 1 0 . . .
0 −1 1 0 . . .

. . . . . .

0 −1 1




(58)

such that D̃ becomes a non-singular n×n-matrix. Then vT Av = vT D̃T B̃D̃v.
Since D̃ is non-singular B̃ and A have the same rank, i.e. rank(B̃) =
rank(A) = n − 1. Then, since B was extended by zeros, B itself must be
non-singular, i.e. positive definite. Then 0 < Dv ≤ c′h. Hence, the discrete
Sobolev inequality applies and we conclude that v is pointwise bounded.

Remark In the example above the estimate is bounded by, C(f, g1, F ), i.e.
we have a bound for nonhomogeneous boundary data. Hence, the proof
shows strong pointwise stability. In general, it might be easier to prove an
energy estimate with g1 = 0 in which case the above proof concerns pointwise
stability.

Proposition 3.3 With σ0 = 1 and σ1 = −1/α, the discretisation (52) of
(46) leads to strong pointwise stability and two orders of accuracy are gained
at the boundary.

Proof Equation (52) with σ0 = 1 and σ1 = −1/α leads to boundedness of
vT (A + AT )v. Then by Lemma 3.2, (52) is (strongly) pointwise stable and
two orders are gained by Theorem 2.8.

Remark Note that, applying an SBP first derivative twice yields a noncom-
pact second derivative in the interior. However, this does not affect the proof
since the resulting A matrix has the same properties as those derived in [4]
and stated in Assumption 3.1

3.1.3 Relations between Different Stability Definitions

To conclude this subsection we will discuss the differences of the various
stability notions. To prove pointwise stability of an SBP-SAT scheme with
compact second derivatives we have shown that it suffice to derive an energy
estimate. In Definition 2.1 strong stability is defined. The energy estimate,
(53), implies strong stability since we can obtain an estimate with nonho-
mogeneous boundary data. If we would need to assume that the boundary
data is zero to obtain an energy estimate, the resulting scheme would have
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been described as stable. However, consider the following transformation of
a nonhomogeneous continuous problem,

ut = uxx + F, 0 ≤ x ≤ 1,

u(0, t) = g0(t), (59)

u(1, t) = g1(t),

u(x, 0) = f(x).

Let h(x, t) be a smooth function such that h(0, t) = g0(t), h(1, t) = g1(t) and
h(x, 0) = f(x) and let v = u− h, then,

vt = vxx + F − ht + hxx = vxx + F̃ , (60)

v(0, t) = v(1, t) = v(x, 0) = 0.

Hence, with the assumption of sufficiently smooth boundary data an energy
estimate for v also gives a bound on u. In the same manner we can define a
grid function hi = h(xi, t). The same transformation can be applied for the
discrete problem with nonhomogeneous boundary data and a forcing function
analogous to (59) and (60) using hi. Hence, if the data is smooth, stability
suffice to get an energy estimate and pointwise stability.

3.2 The Advection-Diffusion Equation

Consider,

ut + aux = εuxx + F (x, t), 0 ≤ x ≤ 1, t ≥ t0,

L0u = g0(t), (61)

L1u = g1(t),

u(x, t0) = f(x),

where L0u = u(0, t) + αux(0, t) and L1u = u(1, t) + βux(1, t). Assume that
a > 0, then equation (61) can be proven well-posed with the energy method
if,

−2ε

a
≤ α ≤ 0, β ≤ −2ε

a
, β > 0. (62)

From the previous subsection, we have the tools to prove pointwise stability
by deriving an energy estimate. Equation (61) is discretised as,

vt + aP−1Qv = εP−1(−A + BS)v − P−1σ0L
D
0 v − P−1σ1L

D
1 (63)

v(0) = f.

18



where LD
0 v = (E0(I−αBS)v−e0g0(t)) and LD

1 v = (EN(I+βBS)v−eNg1(t))
and I denotes the identity matrix.

The first derivative approximation operator P−1Q satisfies the following
relation, Q + QT = B, where B = diag(−1, 0, ..., 0, 1). Next, the energy
method is applied by multiplying equation (63) by vT P and adding the result
to its transpose. An energy estimate is obtained if σ0 = ε/α, σ1 = −ε/β and
(62) hold. We have,

d

dt
(vT Pv) + avT Bv = −εvT (A + AT )v (64)

+2
ε

α
v0(v0 − g0(t))− 2

ε

β
vN(vN − g1(t)).

Condition (62) ensures that the boundary terms are bounded such that the
desired estimate of the semidiscrete initial-boundary value problem is ob-
tained. Denoting the boundary terms by BT , (64) becomes,

d

dt
(vT Pv) + BT = −εvT (A + AT )v.

Omitting the integration in time we conclude, using Lemma 3.2, that v is
strongly pointwise bounded. Since the requirement of Theorem 2.8 is fulfilled,
we have proved the following theorem.

Proposition 3.4 With σ0 = −ε/β0 and σ1 = ε/β1 and (62), the discretisa-
tion (63) of (61) with internal order of accuracy 2p and boundary accuracy
r has global accuracy min(2p, r).

We have justified that for these SBP schemes 2 orders less accuracy at the
boundary does not reduce the global accuracy of the scheme Note also that
in the case with parabolic terms we can also reduce the accuracy of the
hyperbolic terms two orders at the boundary.

3.3 An Incompletely Parabolic System

3.3.1 The Continuous Problem

We proceed by considering one example of an incompletely parabolic system
of equations and test the conditions in Theorem 2.12.

(
ũ(1)

ũ(2)

)

t

+ A

(
ũ(1)

ũ(2)

)

x

= εC

(
ũ(1)

ũ(2)

)

xx

(65)

ũ(1)(0) = g(1)(t),

ũ(2)(0) = g(2)(t),

ũ(2)
x (1) = g(3)(t).
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where A is a symmetric positive definite (2×2)-matrix such that [A]ij = aij,

C = diag(0, 1) and ε > 0. We define the norm ‖ũ(i)‖2 =
∫ 1

0
(ũ(i))2 dx and

apply the energy method,

1

2

(‖ũ(1)‖2
t + ‖ũ(2)‖2

t

)
+

1

2
(ũ(1) ũ(2))A(ũ(1) ũ(2))T |10 − ũ(2)ũ(2)

x |10 =

−ε

∫ 1

0

(ũ(2)
x )2 dx.

Imposing the boundary conditions, and for simplicity assuming that g(2) =
g(3) = 0, yields,

1

2

(‖ũ(1)‖2
t + ‖ũ(2)‖2

t

)
+

1

2
(ũ(1)(1) ũ(2)(1))A(ũ(1)(1) ũ(2)(1))T +

ε

∫ 1

0

(ũ(2)
x )2 dx =

1

2
g(1)a11g

(1),

Thus the problem (65) is well posed.

3.3.2 The Semidiscrete Problem

To analyse systems of partial differential equations it is convenient to intro-
duce the Kronecker product,

A⊗B =




a0,0B . . . a0,q−1B
...

...
ap−1,0B . . . ap−1,q−1B


 , (66)

where A is a (p× q) matrix and B an m×n matrix. The Kronecker product
satisfies the following rules: (A⊗B)(C⊗D) = (AC)⊗(BD) and (A⊗B)T =
AT ⊗BT .

We proceed by constructing a semidiscretisation of (65) with N + 1 grid

points. Let v
(1)
i and v

(2)
i denote the approximation of u(1)(xi) and u(2)(xi).

Further, let vi = (v
(1)
i , v

(2)
i )T and v = (v0, v1, ..., vN)T . Finally, we will need,

v
(1)
0 = (v

(1)
0 , 0, ...)T ,v

(2)
0 = (0, v

(2)
0 , 0, ...)T , v

(2)
N = (..., 0, v

(2)
N )T and E

(2)
N such

that E
(2)
N v = v

(2)
N .

The basic scheme approximating (65), without boundary conditions, is,

vt + (P−1Q⊗A)v = (P−1(−A + BS)⊗ εC)v. (67)

To determine the structure of the penalty terms the energy method is applied
to (67) by multiplying vT (P ⊗ I), where I is the (2× 2) identity matrix, and
adding the transpose.

20



The resulting boundary terms determines the form of the penalties and
the full SBP-SAT scheme approximating (65) becomes,

vt + (P−1Q⊗A)v = (P−1(−A + BS)⊗ εC)v +

σ0(P
−1 ⊗A)(v

(1)
0 −G1) + σ1(P

−1(BS)T ⊗ εC)(v
(2)
0 −G2) + (68)

σ2(P
−1 ⊗ εC)(E

(2)
N (BS ⊗ I)v −G3),

where Gi = (g(i), 0, ...)T , i = 1, 1 and G3 = (0, ..., 0, g(3)). For simplicity, we
assume that g(2) = g(3) = 0.

We have used ‖v‖2
M = vT (P ⊗ I)v to denote the norm. With σ0 ≤ −1/2

and σ1 = σ2 = −1/2 we have,

(‖v‖2
M)t + vT

NAvN + vT ((A + AT )⊗ εC)v = (69)

(1 + 2σ0)a11v
2
0 − 2σ0v

(1)
0 a11g

(1)

If σ0 = −1/2 in (69) we obtain exactly the same estimate as in the continuous
case.

In the previous subsection we proved the heat equation to be pointwise
stable, which is a requirement for Theorem 2.12 to apply. It remains to show
that the hyperbolic part satisfies the determinant condition. The hyperbolic
part of the scheme is in general of the form,

vt + P−1Qv = σ0P
−1E0(v0 − g(t)). (70)

(In the specific example above g(t) = 0, but that is not necessary.) For a
hyperbolic equation it is not sufficient that the scheme is strongly stable for
it to be pointwise stable (which is equivalent to the determinant condition).

We begin by considering dissipative schemes and restrict ourselves to
schemes where P is diagonal. Then P−1Q is replaced by,

P−1(Q + R). (71)

In [14] dissipation operators that do not destroy the SBP-property are de-
rived, such that R = γhD̃T

p BD̃p where D̃p/h
p is a first order accurate approx-

imation of the pth space derivative, γ > 0 is a parameter and B a positive
definite matrix. If p is chosen such that 2p is the order of the scheme this
dissipation operator will keep the order of accuracy without widening the
stencil. In order to prove pointwise stability we must choose γ ∼ 1/h. Then
the accuracy is lowered one order or we must choose a larger p, i.e. widening
the stencil. We can prove the following proposition.

Proposition 3.5 The scheme (70), discretised with a dissipative SBP oper-
ator (71), satisfies the determinant condition (27), i.e. it is pointwise stable.
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Proof See Appendix I.

For a central difference scheme we can not use the energy method to prove
pointwise stability. Hence, we have to turn to the Laplace transform tech-
nique. (See [5] for a thorough presentation of the theory.) For this reason we
have to prove that the determinant condition is satisfied for each particular
type of scheme and order of accuracy. However, the Laplace transform tech-
nique becomes increasingly difficult to apply for higher order schemes. We
state the following conjecture and give some justification.

Conjecture 3.6 The scheme (70), discretised using a central difference SBP
scheme, satisfies the determinant condition, i.e. it is pointwise stable.

A proof that the Conjecture is true in the second order case is included in
Appendix II. For an internally fourth order scheme we give in Appendix III
some analysis indicating the truth of the Conjecture although it is strictly not
a proof. For higher order methods than four, we refer to computations where
the measured global order of accuracy can be explained if the Conjecture is
true.

We conclude that the requirements of Theorem 2.12 may be fulfilled and
summarise the results in a proposition.

Proposition 3.7 If either Proposition 3.5 or Conjecture 3.6 holds, then with
σ0 = −1 and σ1 = σ2 = −1/2 the discretisation (68) of (65) with internal
order of accuracy 2p and boundary accuracy r for the parabolic and r + 1 for
the hyperbolic equation has global order of accuracy min(r + 2, 2p).

This is just one example of an incompletely parabolic system that we use
to show the techniques to prove the conditions of Theorem 2.12. However, for
any well posed incompletely parabolic system,discretised with an SBP and
SAT scheme that satisfy a discrete energy estimate, those conditions will be
fulfilled.

3.4 The Wave Equation

Consider (40) with homogeneous Dirichlet boundary conditions. In the SBP-
setting we discretise by,

vtt = P−1(−A + DS)v + σ0P
−1E0S(v − 0) + σ1P

−1ENS(v − 0). (72)

In this case A has to be symmetric which the energy method will reveal
below. Applying the energy method to (72) yields,

(‖vt‖2
P + vT Av)t = −2(1− σ0)(vt)0(Sv)0 + 2(1 + σ1)(vt)N(Sv)N . (73)
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Note that without symmetry of A it would not be possible to obtain the
total derivative (vT Av)t. With σ0 = 1 and σ1 = −1 stability follows. In
this case we do not directly have a bound on ‖v‖ and vT Av. However, with
‖f‖ ≤ ∞ we can solve the ordinary differential equation (73) to bound ‖vt‖
and vT Av. Since the norm of v(0) and ‖vt‖ is bounded it follows that ‖v‖ has
to be bounded. Then we can estimate the solution pointwise using Lemma
3.2 such that the requirement of Theorem 2.13 is fulfilled. We summarise
the results in a proposition.

Proposition 3.8 With σ0 = 1, σ1 = −1, the discretisation (72) of (40) has
global order of accuracy min(2p, r + 2) where r is the boundary and 2p the
internal order of accuracy.

4 Computations

In [4] extensive computations on the advection-diffusion and incompletely
parabolic equations were performed with SBP-schemes. We will not redo
the calculations for the advection-diffusion but only give their results. We
will omit computations for the heat equation, since it is a special case of the
advection–diffusion equation. We present novel results for the wave equation.
We will also test the validity of the linear theory for the nonlinear viscous
Burgers’ equation. Finally, we compute numerical solutions to a simple 4th
order equation.

Throughout this section we will consider approximations of the second
derivatives derived in [4]. Also, first derivative approximations are used.
Those were originally derived in [8, 9] and given as exact expressions in [10].
We distinguish between two types of operators. Those with a diagonal norm,
i.e. P is diagonal, and those with a block norm where P is diagonal except at
the upper-left and lower-right corners where blocks are situated. In [8, 9] it
was proven that diagonal norm schemes can only be closed at the boundary
with half the internal accuracy.

4.1 Equations with First Derivative in Time

The contents of this subsection was originally presented in [4] and we briefly
quote some of their computational results.
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N log(l2 − error) q log(l2v − error) qv

40 -4.25 -2.59
60 -5.02 4.30 -3.13 3.01
100 -5.98 4.25 -3.81 3.01
200 -7.24 4.17 -4.72 3.01
300 -7.97 4.11 -5.25 3.00

Table 1: SBP-scheme with 4th order internal accuracy and 2nd order bound-
ary closure. The two right columns are results for scheme with stability
estimates violated.

4.1.1 The Advection-Diffusion Equation

Consider equation (1) discretised by (63). The Cauchy problem have the
solution,

u = sin(ω(x− ct))e−bx, c > 0, ω =

√
c2 − a2

2ε
, b =

c− a

2ε
, |c| > |a|. (74)

The computional domain is 0 < x < 1 and (74) is used both as initial and
boundary conditions. Further, a = 1, c = 2 and ε = 0.1 have been used. The
convergence rate is calculated as,

q = log

(‖u− vh1‖h

‖u− vh2‖h

)
/log

(
h1

h2

)
, (75)

where u is the analytical solution and vh1 is the corresponding numerical
solution with grid size h1. Further, ‖u− vh1‖h is the l2-error.

In [4] results are presented for schemes with both 4th and 6th order
internal acuracy. The results agree with the theory and we choose only to
quote the results for a 4th order diagonal norm scheme, Table 1. Note that
with a diagonal norm an internally 4th order accurate scheme can be closed
to maximally 2nd order at the boundary. However, two orders are gained at
the boundary and the scheme is globally 4th order.

Two different cases are shown:

1. Theoretically strongly stable scheme. Hence, also pointwise stable.

2. The theoretical estimates are violated by altering the penalty param-
eter. Hence, the scheme is not pointwise stable. However, the compu-
tations are stable in the sense that the eigenvalues are located in the
left half plane. This case is marked with superscript v.
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Notable is that if the penalty parameter is chosen such that the scheme
is not energy stable (though the computations are not unstable), the global
order of accuracy is reduced by 1 indicating that the conditions in Theorem
2.8 are not only necessary but also sufficient. From the present article this
is justified since the scheme is not pointwise stable.

Finally, if ε = 0 in the above computations, i.e. we have a hyperbolic
equation, the accuracy drops to 3rd order in full agreement with the results
in [1, 2].

4.1.2 An Incompletely Parabolic System

The system (65) was considered in [4] with,

u =

(
u(1)

u(2)

)
, C =

(
1 1
1 −1

)
, D =

(
0 0
0 ε

)
. (76)

The system is transformed such that the hyperbolic part is diagonal and
provided with well posed boundary conditions. The system is discretised
using SBP and SAT technique such that the scheme is strongly stable.

We will discuss the results from two test cases:

1. An internally fourth order block norm scheme. The second derivatives
are closed to second order accuracy and the first derivatives to third
order accuracy.

2. An internally fourth order accurate diagonal norm scheme. Both the
first and second derivatives are closed to second order accuracy.

In Table 2 the results of Test Case 1 are displayed. Also in this case, orders
of accuracy to the problem with a non-energy stable choice of the penalty
parameter are presented. This reduces the global order of accuracy by one.
This indicates that the conditions of Theorem (2.12) are both necessary and
sufficient.

Next, we turn to Test Case 2. The results are shown in Table 3. As
expected the scheme is only third order accurate. All the hyperbolic terms
are discretised with second order boundary closure but Theorem 2.12 requires
the hyperbolic equation in the system to have a boundary closure of only
one order less than the internal scheme. Hence, the violation of the energy
estimates does not affect the accuracy either, as long as the scheme remains
stable in the numerical computations.

Note that, since fourth order accuracy is recovered in Table 2, the Con-
jecture 3.6 seems to be true. The hyperbolic part need to be pointwise stable
for Theorem 2.12 to be true.
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N log(l2 − error) q log(l2v − error) qv

30 -3.31 -3.26
60 -4.52 3.91 -4.25 3.24
90 -5.23 4.00 -4.81 3.10
120 -5.74 4.03 -5.19 3.05
150 -6.13 4.03 -5.48 3.03

Table 2: SBP-scheme with 4th order internal accuracy and 2nd order bound-
ary closure for the second derivative and third order for the first derivative.
The two right columns are results for scheme with stability estimates vio-
lated.

N log(l2 − error) q log(l2v − error) qv

30 -2.59 -2.60
60 -3.61 3.33 -3.55 3.10
90 -4.18 3.19 -4.10 3.05
120 -4.58 3.13 -4.48 3.05
150 -4.88 3.11 -4.78 3.04

Table 3: SBP-scheme with 4th order internal accuracy and 2nd order bound-
ary closure for both first and second derivative. The two right columns are
results for scheme with stability estimates violated.
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N log(l2 − error) q
10 -1.09
20 -5.23 5.97
40 -8.59 4.84
80 -11.27 3.87
160 -14.07 4.04

Table 4: SBP-scheme with 4th order internal accuracy and 2nd order bound-
ary closure.

4.2 The Wave Equation

Using the scheme (72) we have computed convergence rates to corroborate
Theorem 2.13. (In (72) it is assumed that the boundary data is zero. This is
sufficient for Theorem 2.13 to hold. However, in the case below, it is possible
to show strong stability which allows less smoothness in the data.)

We have considered the following wave equation,

utt = c2uxx, 0 ≤ x ≤ π, 0 ≤ t ≤ 0.5

ux(0, t) = cos(ct) (77)

ux(π, t) = −cos(ct)

u(x, 0) = sin(x), (78)

ut(x, 0) = 0,

where c = 2. The exact solution is u(x, t) = 1
2
(sin(x − ct) + sin(x + ct)).

The l2-error and convergence rate are computed at t = 0.5. The results are
shown in Table 4. In Table 4 there are no data for the scheme with the energy
estimate violated. This is due to the scheme being unstable for σ0 6= 1 or
σ1 6= −1. Further, we note that 4th order accuracy is achieved in accordance
with the theory.

4.3 The viscous Burgers’ equation

Consider,

ut + uux = εuxx, 0 ≤ x ≤ L, t ≥ t0,

L0u = g0(t), (79)

L1u = g1(t),

u(x, t0) = f(x),

where L0u = u(0, t)+αux(0, t) and L1u = u(L, t)+βux(L, t). If equation (79)
is linearised we obtain (61) and from the linear theory we derive a numerical
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scheme that is similar to (63). For linear well-posedness we have,

− 2ε

u(0)
≤ α ≤ 0, β > 0, β ≤ − 2ε

u(L)
. (80)

Equation (79) is discretised as,

vt + P−1Q(
v2

2
) = εD2v − P−1σ0L

D
0 v − P−1σ1L

D
1 (81)

v(0) = f.

where LD
0 v = (E0(I−αBS)v−e0g0(t)) and LD

1 v = (EN(I−βBS)v−eNg1(t))
and I denotes the identity matrix. We use a standard fourth order Runge-
Kutta scheme to discretise (81) in time. The computations are done with a
constant small time step and 100 iterations. In (79) we choose t0 = 0.16 and
L = 0.5. The exact solution to the viscous Burgers’ equation is,

u(x, t) = −a · tanh(a
x− ct

2ε
) + c −∞ < x < ∞, t ≥ 0. (82)

The solution (82) is used as initial and boundary data with a = 1, c = 2 and
ε = 0.02.

Remark Due to the specific form of the solution the accuracy limit of the
computer is reached very quickly in a large part of the domain destroying the
measurents of the order of accuracy. Hence, the parameters of the problem
have to be chosen with some care to obtain the correct order of accuracy
within the finite precision. With a more complex solution it would be easier
to measure the order of accuracy but then no analytical solution is available.

We test two different cases,

1. D2 = P−1(−A + BS); internally 4th order accurate; 2nd order bound-
ary scheme; Su is 3rd order discretisation of ux at the boundary points.

2. D2 = P−1QP−1Q; internally 4th order accurate; 2nd order boundary
scheme; Su = P−1Qu, i.e. 2nd order accurate.

Table 1 displays fourth order convergence for Test Case 1 just as in the
linear case. Indicating that the linear theory is applicable in this nonlinear
case also. Table 2 displays third order accuracy. This is due to the second
order accuracy of the discretisation of the boundary condition. However, this
also indicates that the linear theory applies. If two orders of accuracy were
not gained at the boundary Test Case 2 would result in globally 2nd order
accuracy.
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N log(l2 − error) q
210 -21.0
230 -21.4 3.98
250 -21.7 3.97
270 -22.0 3.97
290 -22.3 3.97

Table 5: SBP-scheme with second derivative approximation according to Test
Case 1.

N log(l2 − error) q
210 -20.8
230 -21.1 3.47
250 -21.4 3.32
270 -21.6 3.17
290 -21.8 3.02

Table 6: SBP-scheme with second derivative approximation according to Test
Case 2.

4.4 The biharmonic operator

Consider,

ut = −uxxxx, 0 ≤ x ≤ L, t ≥ 0

uxx(0) = g1(t),

uxx(L) = g2(t). (83)

u(0) = g3(t),

u(L) = g4(t),

With the energy method it is easily shown that (83) is well-posed. u =
sin(x)e−t is a solution to the Cauchy problem and by choosing g1,2,3,4 ac-
cordingly we have an exact solution to (83). The equation is discretised
by,

ut = −D4u + penalty, (84)

where D4 = D1 ·D1 ·D1 ·D1 and D1 = P−1Q is an SBP operator with 6th
order internal accuracy and 3rd order boundary accuracy. Hence, D4 is 0th
order at the boundary and 6th order in the interior. Further,

penalty = P−1(σ1D
T
1 E0(D2u− g1) + σ2D

T
1 EN(D2u− g2) +

σ3D
T
3 E0(u− g3) +

σ4D
T
3 EN(u− g4)),
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N log(l2 − error) q
20 -8.93
30 -10.63 4.0295
40 -11.83 4.0391
50 -12.75 4.0362
60 -13.50 4.0321
70 -14.13 4.0285
80 -14.67 4.0255
90 -15.15 4.0230

Table 7: SBP-scheme with second derivative approximation according to Test
Case 2.

where σ1 = 1, σ2 = −1, σ3 = −1 and σ4 = 1 lead to stability. The first
two penalty terms are 1st order implementation of the boundary condition
multiplied by P−1 which leads to 0th order truncation error at the boundary.
The second two terms does not have a truncation error. Altogether, we have
a globally 4th order accurate scheme when Theorem 2.14 has been applied.
(We omit the proof of pointwise stability since it is similar to all the previous.)

The results of computations with the scheme above is shown in Table 7.
As before we use a 4th order Runge-Kutta in time. We choose L = 3π/4 to
obtain non-zero boundary data and the final time is t = 0.01 in order not to
introduce a large temporal error. We see that the convergence is 4th order
as predicted by theory.

5 Summary and Conclusions

The results of this article can be divided into three parts. In the first part
we consider partial differential equations including spatial second derivatives.
We show that finite difference discretisations of such equations can be closed
with 2 orders less accuracy at the boundary without reducing the global
accuracy, if the scheme is pointwise stable. In particular it should be noted
that this result also applies to second order hyperbolic equations such as the
wave equation.

An immediate consequence of this theory is a generalisation to PDE:s with
mth order derivatives. With the same stability assumption on the scheme it
is possible to lower the order of the boundary closure m orders of accuracy.

In the second part, it is shown that summation-by-parts operators with
either compact second derivatives or, with the first derivative applied twice,
fulfil these requirements. For summation-by-parts operators the task of prov-
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ing pointwise boundedness is reduced to derive an energy estimate for the
scheme which is considerably simpler. (See [8, 9, 10, 7, 11, 12, 13, 14, 15, 16])

The third part concerns numerical results. In [4] and [3] the newly devel-
oped theory is verified for different schemes with a first derivative in time. In
[4], stable computations with the energy estimate (and hence, the pointwise
stability), violated, were performed showing that 2 orders of accuracy are not
gained at the boundary. That is in full agreement with the theory developed
in this article and indicates that pointwise stability is a necessary condition.

Further, numerical computations with the wave equation supports the
theoretical results showing that the scheme can be closed with 2 orders of
accuracy less at the boundary. We also test the validity of the linear theory
on the nonlinear viscous Burgers’ equation. Computations show that the
linear theory is applicable. At last, we perform computations for a time-
dependent 4th order equation and show that 4 orders of accuracy are gained
at the boundary.

As a final observation, consider a first derivative approximation with re-
duced order at the boundary. The truncation error at the boundary is in-
creased by one order for each new application of the first derivative operator
to approximate a higher derivative. However, the theory of this article shows
that the decreasing order of accuracy at the boundary is precisely cancelled
resulting in the same global accuracy.
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APPENDIX

I Proof of Proposition 3.5

Throughout this proof, the tilde sign indicates that it is an undivided prop-
erty, i.e. the components have no dependence on h. Furthermore, C always
denotes a constant, not necessary the same in every expression.

Here we will prove that,

vt + P−1(Q + R)v = σ0P
−1(v0 − g(t)), (85)

v(0) = f,

is pointwise stable. In [14] a numerical dissipation of the form P̃−1R =
γP̃−1D̃T

p BD̃p was derived. B is an O(1) positive definite matrix. With
γ ∼ 1/h we can prove the theorem, which corresponds to an upwind scheme,
i.e. the order of accuracy drops by one order.

Apply the energy method (85),

(‖v‖2
P )t + vT Bv + vT (R + RT )v = 2σ0v0(v0 − g(t)),

Using that v0g(t) ≤ ηv2
0 + 1

η
(g(t))2, η > 0, we obtain with η < 1 an estimate

of ‖v‖2
P in g(t). Thus, the scheme (70) is strongly stable. Furthermore,

vT (R + RT )v < C.
First, we consider boundedness of ‖v‖2

P . The norm ‖ · ‖P is l2 equivalent.
Hence,

N∑
i=1

h|vi|2 < C, or
N∑

i=1

|vi|2 <
C

h
. (86)

We see that |vi|may become infinite as the total number of points N = 1/h →
∞. However, the total number of unbounded points n satisfies, n/N → 0 as
N →∞.

Next, since D̃p is an high order undivided difference, vT (R + RT )v < C
implies,

vT (R + RT )v ∼
N−r∑

p

γh(D̃pv)2
i ⇒

N−r∑
p

(D̃pv)2
i < C, (87)

The sum goes between the points closest to the boundary such that the
difference do not pass over the boundary. (Every point will be ’touched’ by
the sum.) Equation (87) yields directly,

(D̃pv)2
i < C. (88)
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Assume that some |vj| tend to infinity without violating (86). Since
only a decreasing fraction of grid points may become unbounded we can
choose vj such that its p closest neighbours are bounded. Consider, (D̃pv)2

j =
(α0vj+α1vj+1+...αpvj+p)

2 →∞ as h → 0 which is a violation of (88). Hence,
|vi| < ∞ for all i as N →∞.

Remark If the direction of convection would be the opposite we would con-
sider the scheme,

vt − P−1(Q−R)v = σ0P
−1(v0 − g(t)),

and be able to prove pointwise stability. This corresponds to upwinding and
downwinding.

II Proof of Conjecture 3.6 for second order

central differences

The first part of this Appendix applies to all central difference SBP operators.
To have the most general case we do not assume homogeneous boundary

data. We restate (70) here for convenience,

vt + P−1Qv = σ0P
−1(v0 − g(t)), (89)

v(0) = f.

First of all we note that σ0 = −1 derived in Subsection 3.3 results in a
strongly stable scheme. Apply the energy method to (89),

(‖v‖2
P )t + vT Bv = 2σ0v0(v0 − g(t)),

or, with σ0 = −1,

(‖v‖2
P )t + v2

N + v2
0 = v0g(t).

Using that v0g(t) ≤ ηv2
0 + 1

η
(g(t))2, η > 0, we obtain with η < 1 an estimate

of ‖v‖2
P in g(t). Thus, the scheme (70) is strongly stable. For σ0 = −1 we

will prove that the scheme also satisfies the determinant condition.
In [5] it is shown that it suffice to study the Laplace transformed quarter

space problem,

s̃ϕ + hP−1Qϕ = hσ0P
−1(ϕ0 − ĝ), ‖ϕ‖P < ∞, (90)

where s̃ = sh and initial data is zero.
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We restrict ourselves to the second order case. The internal scheme in
(95) is,

s̃ϕi − 1

2
ϕi−1 +

1

2
ϕi+1 = 0, (91)

Assume solutions of the form ϕi =
∑2

j=1 τjκ
i
j. From (91) we obtain the roots,

κ1 = −s̃ +
√

s̃2 + 1, (92)

κ2 = −s̃−
√

s̃2 + 1. (93)

For Re s̃ > 0, |κ1| < 1 and |κ2| > 0 (see [5]). The second root is discarded
due to boundedness of ‖ϕ‖P . Hence, the solution is of the form ϕi = τ1κ

i
1

and we need to show that τ1 is bounded.
By inserting ϕi = τ1κ

i
1 into the boundary scheme we obtain from (90) in

the second order case,

s̃ϕ0 + (−ϕ0 + ϕ1) + 2ϕ0 = (s̃ + 1 + κ1)τ1 = 2ĝ (94)

By observing that s̃ + 1 + κ1 = 1 +
√

s̃2 + 1 6= 0 for Res̃ ≥ 0, we conclude
that,

det(s̃ϕ + hP−1Qϕ− hσ0P
−1ϕ0) > δ > 0, (95)

for Re s̃ ≥ 0.
The last part of the proof could be simplified in this case. We know from

strong stability (shown above) that the boundary point is bounded. That is,
ϕ0 = τ1κ

0
1 is bounded, therefore τ1 is bounded. Thus, ϕi is bounded for all i.

III Aspects of Conjecture 3.6 in the fourth

order case

As in Appendix II, we begin with the scheme (89) and conclude that it is
strongly stable by the same derivation.

The internal scheme of (90) is,

s̃ϕi +
1

12
ϕi−2 − 2

3
ϕi−1 +

2

3
ϕi+1 − 1

12
ϕi+2 = 0 (96)

where s̃ = sh. Assume solutions of the form ϕi =
∑4

j=1 τjκ
i
j. In [5] it is

shown that there are 2 positive and 2 negative roots for Res̃ > 0. The
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positive roots can be discarded due to ‖ϕ‖P ≤ ∞. We have solutions of the
form,

ϕj = τ1κ
j
1 + τ2

κj
2 − κj

1

κ2 − κ1

, (97)

for κ1 6= κ2. If κ1 = κ2 the solution becomes,

ϕj = τ1κ
j
1 + τ2jκ

j−1
1 . (98)

In this case it does not suffice that we know that the solution is bounded at
the boundary point since two parameters, τ1 and τ2, need to be determined.
Instead, we substitute the solution (98) into the boundary scheme, i.e the
rows near the boundary that are altered from the the internal scheme. We
will obtain a system of equations,

Aτ̄ = 0̄, (99)

where τ̄ = (τ1, τ2)
T and 0̄ = (0, 0)T . A is deduced from the scheme such

that,

A11 = 24/17 + s̃ + 59/34κ0 − 4/17κ2
0 − 3/34κ3

0,

A12 = 24/17 + s̃ + 59/34κ1 − 4/17κ2
1 − 3/34κ3

1,

A21 = −1/2 + s̃κ0 + 1/2κ2
0,

A22 = −1/2 + sκ1 + 1/2κ2
1,

A31 = 4/43− 59/86κ0 + s̃κ2
0 + 59/86κ3

0 − 4/43κ4
0,

A32 = 4/43− 59/86κ1 + s̃κ2
1 + 59/86κ3

1 − 4/43κ4
1,

A41 = 3/98− 59/98κ2
0 + s̃κ3

0 + 32/49κ4
0 − 4/49κ5

0,

A42 = 3/98− 59/98κ2
1 + s̃κ3

1 + 32/49κ4
1 − 4/49κ5

1.

The (4 × 2) matrix A has rank 2 so 2 rows may be deleted, since they are
linear dependent to the others. We keep the first and third rows since they
are linearly independent, and denote the resulting submatrix,

B =

(
A11 A12

A21 A22

)
. (100)

If the determinant of B is nonzero for all Re s̃ ≥ 0 (in this case this the
determinant condition), (90) has no eigenvalues or generalised eigenvalues.
In [5] the roots are derived for s̃ close to 0. The negative roots are,

κ1 = −1 + s̃ +O(|s̃|2), κ2 = 4−
√

15 + s̃ +O(|s̃|) (101)
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We have with (101) inserted,

det(B) = −648

833

√
15 +

2280

833
+O(|s̃|) (102)

Hence, for small Re s̃ ≥ the determinant condition is satisfied. With numer-
ical approximations to the fractions we have the series,

det(B) ≈ −0.27− 4.48s̃..., (103)

which clearly is nonzero for small |s̃|.
This was the case for small |s̃|. In [5] it is shown that for |s̃| sufficiently

large, there are no eigenvalues to (90). As mentioned before this is not a
proof since there still might be eigenvalues for intermediate |s̃|. However, all
experience from computations indicate that the scheme is pointwise stable.
This also applies to schemes of higher order than four, where the analysis
becomes even more algebraically complicated.
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