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Abstract

A new recursive prediction error algorithm (RPEM) based on a non-

linear ordinary differential equation (ODE) model of black-box state space

form is presented. The selected model is discretised by a midpoint inte-

gration algorithm and compared to an Euler forward algorithm. When

the algorithm is applied, scaling of the sampling time is used to improve

performance further. This affects the state vector, the parameter vector

and the Hessian. This impact is analysed and described in three Theo-

rems. Numerical examples are provided to verify the theoretical results

obtained.
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1 Introduction

The interest in techniques for non-linear system identification has increased due

to its relevance in engineering applications. A few examples include solar heating

systems [4], power system components [1] and pH-control systems [10]. The non-

linearities of these applications present challenges in both modelling and control

design. There are several modelling methods available. Physical modelling

aims to describe the entire system based on its physical principles, but requires

complete knowledge of the system. On the other hand gray-box modelling

combines some available knowledge about the physical principles with the use

of system identification. Physical modelling is applied to create a differential

equation and the unknown parameters are then estimated using measured data.

Hence each model is created for a specific application and therefore cannot be

used in general cases. However, the complexity of the problem is reduced due to

the reduction of number of unknown parameters, which also results in a higher

accuracy [3].

In cases where the knowledge of the system is limited a more flexible black-

box model is a useful tool. The main advantage is the wide variety of appli-

cations that can be modelled. Some of the commonly used black-box identifi-

cation methods include neural networks [7], block-oriented algorithms [2] and

non-linear models based on difference equations such as NARMAX [6], NARX

and NFIR. For an overview of non-linear black-box modelling see [11].

In [14] and [12] a recursive prediction error method (RPEM) based on a

MIMO black-box non-linear model in state space form is described. The algo-

rithm uses a continuous time state space model with a restricted parameterisa-

tion, in that only one component of the right hand side of the ODE is used to

model the function of the ODE. An Euler forward method is used for discreti-

sation. A drawback is that the Euler method requires fast sampling to achieve
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improved accuracy.

Given the above background, the purpose and first contribution of this paper

is to modify the RPEM of [14] and [12] by the use of a more accurate integration

algorithm. Even though the Euler method is simple and fast, it only uses a one-

sided estimate of the derivative meaning that the estimation of the derivative

is valid between each sample. The midpoint integration method applied here

uses the point in between each sample to obtain a more correct alignment, [5].

With a more accurate derivative, a more precise parameter estimation can be

expected.

The papers [14] and [13] also use scaling of the sampling period to improve

the numerical properties of the RPEM based on the Euler method. A main con-

sequence of the use of the midpoint method is that the state vector, parameter

vector and the Hessian will be affected differently by scaling than in [14] and

[13]. The second contribution of this paper is hence the analysis of the scaling

of the sampling period for the RPEM based on the midpoint method.

This paper is organised as follows. Section II presents the model for which

the RPEM is defined. In section III the analysis of the effects of the new

integration method is presented. In section IV a simulation study is discussed

and finally the conclusions are presented in section V.

2 The non-linear state space model and the al-

gorithm

2.1 The model

The algorithm developed in this paper is based on a non-linear continuous time

state space model. To describe the general model the input vector u(t) is
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introduced

u(t) =
(
u1(t) . . . u

(n1)
1 (t) . . . uk(t) . . . u

(nk)
k (t)

)T

, (1)

together with the output vector y(t)

y(t) =

(
y1(t) . . . yp(t)

)T

. (2)

Here, the superscript ni denotes differentiation ni times. The model can be

described as

x(1) =



x
(1)
1

...

x
(1)
n−1

x
(1)
n


=



x2
...

xn

f(x,u,θ)


≡ f̄ (x,u,θ)


y1
...

yp

 =


c11 . . . c1n
...

. . .
...

cp1 . . . cpn


︸ ︷︷ ︸

C


x1
...

xn

 . (3)

where x =

(
x1 x2 . . . xn−1 xn

)T

is the state vector and θ is the un-

known parameter vector. As is shown in Theorem 1 in [14] the model described

in (3) can be used to model also ODEs with general right-hand sides, locally

in the state space. The model in (3) concentrates the non-linearity to one

component of the equation, minimising the risk for overparametrisation. The
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right-hand side function, f(x,u,θ), is chosen to be a polynomial

f(x1, . . . , xn, u1, . . . , u
(n1)
1 , . . . , uk, . . . , u

(nk)
k ,θ)

=

Ix1∑
ix1=0

· · ·
Ixn∑

ixn=0

Iu1∑
iu1=0

· · ·
Iu1

(n1)∑
iu1

(n1)=0

· · ·
Iuk∑

iuk
=0

· · ·
Iuk

(nk)∑
iuk

(nk)=0

θix1 ...ixn iu1 ...iu1
(u1) ...iuk

...i
uk

(uk)
(x1)

ix1 . . . (xn)
ixn

(u1)
iu1 . . .

(
u1

(n1)
)i

u
(n1)
1 . . . (uk)

iuk . . .
(
uk

(nk)
)i

uk
(nk)

.

This polynomial can be written as a regressor vector generated from the state

vector and the input vector multiplied by an unknown parameter vector as

follows

f(x,u,θ) = φT (x(t,θ),u(t))θ. (4)

The details of θ and φ(x (t,θ) ,u(t)) appear in (5) and (6)

θ =

(
θ0...0 . . . θ0...I

uk
(nk)

θ0...010 . . .

θ0...01I
uk

(nk)
. . . θ0...0I

uk
(nk−1)

. . .

θ0...0I
uk

(nk−1)Iuk
(nk)

. . . θIx1 ...Iuk
(nk)

)
T
. (5)

φ =

(
1 . . .

((
uk

(nk)
)I

uk
(nk)

)
uk

(nk−1) . . .(
uk

(nk−1)
(
uk

(nk)
)I

uk
(nk)

)
. . .

(
uk

(nk−1)
)I

uk
(nk−1)

. . .
((
uk

(nk−1)
)I

uk
(nk−1)

(
uk

(nk)
)I

uk
(nk)

)
. . .(

(x1)
Ix1 . . . (xn)

Ixn (u1)
Iu1 . . .

(
u
(nk)
k

)I
uk

(nk)

))T

. (6)
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Here, Ixi
and I

u
(nj)

j

denote the polynomial degree of each variable. Since output

error identification is used the state vector x needs to be estimated.

2.2 Numerical integration, gradient and algorithm

The algorithm is based on the minimisation of the prediction errors, ε(t,θ) =

ym(t,θ)− y(t,θ), using the criterion

V (θ) =
1

2
E
[
εT (t,θ)Λ−1(t,θ)ε (t,θ) + det (Λ (t,θ))

]
, (7)

where ym(t) is the measured output and where Λ(t,θ) is the unknown covari-

ance matrix.

In order to continue, the continuous time model in (3) needs to be discretised.

In this paper the midpoint integration method, also known as the second order

Runge-Kutta method is applied as dicretisation algorithm [5]. This integration

method is a refinement of the Euler method. Contrary to the Euler method, the

midpoint method is not linear in the sampling period. On the other hand, the

midpoint method is not as sensitive to the sampling period and does not require

the same fast sampling that is necessary for the original Euler based RPEM.

This way a possibility to use the RPEM for wider applications and with a better

accuracy is created. The discretised model, using the sampling period T and
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the midpoint integration scheme, can be represented as



x1 (t+ T,θ)

...

xn−1 (t+ T,θ)

xn (t+ T,θ)


=



x1 (t,θ)

...

xn−1 (t,θ)

xn (t,θ)



+ T



x2 (t,θ) +
T
2 x2 (t,θ)

...

xn (t,θ) +
T
2 xn (t,θ)

f
(
x (t,θ) + T

2 f̄ (x (t,θ) ,u(t),θ) ,u(t+
T
2 ),θ

)


y(t) = Cx(t,θ). (8)

where f̄ (.) is defined by (3).

The gradient ψ(t) = Cdx(t,θ)
dθ plays an important role in the development of

the RPEM. It is constructed from the derivative of the state, the latter being

given by the equations

dx(t+ T,θ)

dθ
=
dx(t,θ)

dθ
+ T



(
1 + T

2

) dx2(t+T,θ)
dθ

...(
1 + T

2

) dxn(t+T,θ)
dθ

df(x̄,u,θ)
dθ


ψ(t+ T ) = C

dx(t+ T,θ)

dθ
. (9)

where

x̄ = x (t,θ) +
T

2
f̄ (x,u,θ) (10)

df(x̄,u,θ)

dθ
=
∂f

∂x̄
|t+T

2

dx̄

dθ
+
∂f

∂θ
|t+T

2
(11)
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dx̄

dθ
=

d

dθ

(
x(t,θ) +

T

2
f̄(x,u,θ)

)
=
dx(t,θ)

dθ
+
∂f

∂θ
|t

+
T

2



0 1 0 . . . 0

0 0 1
. . .

...

...
...

. . .
. . . 0

0 0 . . . 0 1

∂f
∂x |t


dx(t,θ)

dθ
. (12)

Using the notation in (4) as a substitution of the function f(x,u,θ), it

follows that

∂f

∂θ
= φ(x(t,θ),u(t)) (13)

∂f

∂x
= θT

dφ(x(t,θ))

dx

dx(t,θ)

dθ
. (14)

The derivative of the state vector can then be expressed as a function of the

regressor and the parameter vector solely. Inserting (13) and (14) into equation

(9) using (10) and (12) generates a description of the derivative of the state

vector. See [15] for more details.

The development of the RPEM follows the standard approach of [9] and is

described in detail in [14]. The gradient of the output prediction ψ (t,θ) is used

in the updating of the unknown parameters. The RPEM is formulated using

the Gauss Newton minimisation algorithm of [9], as

Λ(t) = Λ(t− T ) +
µ(t)

t

(
ε(t)εT (t)−Λ (t− T )

)
,

R(t) = R(t− T ) +
µ(t)

t
(t)

(
ψ(t)Λ−1(t)ψT (t)−R(t− T )

)
,

θ̂(t) =

[
θ̂(t− T ) +

µ(t)

t
R−1(t)ψ(t)Λ−1(t)ε(t)

]
DM. (15)
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where µ(t)
t is the gain sequence and R(t) is the estimate of the Hessian. DM

is the model set defining the allowed values of the estimated parameters. To

ensure stability, the model set is restricting the linearised model from becoming

unstable. The updating is stopped if the parameter values are outside the model

set. The resulting algorithm parallels (21) of [14]. The difference is limited to

the use of (8) and (14) instead of the corresponding quantities of the Euler

algorithm.

3 Analysis

To analyse the effect of the scaling of the sampling period on the new discreti-

sation algorithm two models are defined, the original midpoint model and the

scaled midpoint model. A new state vector xs (t,θs) is defined for the scaled

model with the corresponding parameter vector θs, where the superscript s

denotes the scaled quantity. The scaled model is



xs1 (t+ T,θs)

...

xsn−1 (t+ T,θs)

xsn (t+ T,θs)


=



xs1 (t,θ
s)

...

xsn−1 (t,θ
s)

xsn (t,θ
s)



+ T s



xs2 (t,θ
s) + T s

2 x
s
2 (t,θ

s)

...

xsn (t,θ
s) + T s

2 x
s
n (t,θ

s)

φT
(
x̄s,u

(
t+ T

2

))
θs


. (16)
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The model (16) is to be compared with the original model



x1 (t+ T,θ)

...

xn−1 (t+ T,θ)

xn (t+ T,θ)


=



x1 (t,θ)

...

xn−1 (t,θ)

xn (t,θ)



+ T



x2 (t,θ) +
T
2 x2 (t,θ)

...

xn (t,θ) +
T
2 xn (t,θ)

φT
(
x̄,u

(
t+ T

2

))
θ


. (17)

Here x̄s, x̄ and the scaled sampling period T s are defined as

x̄s = xs (t,θs) +
T s

2

(
φT (xs (t,θs) ,u(t))θs

)
(18)

x̄ = x (t,θ) +
T

2

(
φT (x (t,θ) ,u(t))θ

)
(19)

T s = αT. (20)

Remark 1: As discussed in [14] and [13], the idea is to apply the algorithm

with a scaled value of the sampling period. The effects include improved nu-

merical properties as shown in [13], and the present paper.

3.1 States

In order to analyse the scaling of the states, the assumptions (C1) and (C2) are

introduced, for a detailed motivation of these assumptions, see [14].

(C1) The measured output ym(t) is assumed to be equal to the states x1 (t,θ)

and xs1 (t,θ
s).

(C2) The algorithm converges to an exact description of the input-output
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properties of the system for (16) and (17). Hence

ym (t) = x1 (t,θ) = xs1 (t,θ
s) . (21)

C =

(
1 0 . . . 0

)
. (22)

From the equations (16), (17) and (20), (C1) and (C2) it directly follows

that

x2 (t,θ) = α

1 +
αT

2

1 +
T

2

xs2 (t,θ
s) ≡ αγxs2 (t,θ

s) . (23)

Equation (23) implies that the relation between x2 (t,θ) and xs2 (t,θ
s) is

dependent on the sampling period T and the scaling factor α. This relation can

be extended up to the nth state, repeating the argumentation above, the result

is

Theorem 1 Consider the two models (16) and (17) and assume that (C1) and

(C2) holds. It then follows that

x (t,θ) = A(α, T )xs (t,θs)

A(α, T ) =



1 0 . . . 0

0 αγ 0
...

... 0
. . . 0

0 . . . 0 αn−1γn−1


,

Remark 2: The scaled updated state vector discretised by the Euler inte-

gration method, see [14], differs from the scaled state vector obtained with the

midpoint method. This result implies that the resulting parameters are also

affected by this change in the algorithm.
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3.2 Parameters

To perform an analysis of the effect on the parameters, the last components of

(16) and (17) are compared. Let

φ̄ (x(t,θ),u,θ) ≡



x2(t,θ)

...

xn(t,θ)

φT (x(t,θ),u(t))θ


. (24)

It then follows from (18) and (19) that

1

αnγn−1
φT

(
x(t,θ) +

T

2
φ̄ (x(t,θ),u(t))θ

)
θ

=φT

(
xs(t,θs) +

T s

2
φ̄ (xs(t,θs),u(t))θs

)
θs. (25)

Inserting the result of Theorem 1 into (25) then leads to the final non-trivial

equation, relating θ and θs.

φ

(
x(t,θ) +

T

2
φ̄T (x(t,θ),u(t))θ

)
θ =

αnγn−1φ
(
A−1(α)x(t,θ)

+
αT

2



α−1γ−1x2(t,θ)

...

α−(n−1)γ−(n−1)xn(t,θ)

φT
(
A−1(α)x(t,θ),u(t)

)
θs




θs (26)

To find the relation between θ and θs, each component of φ (xs (t,θs) ,u) must

be compared to the corresponding component in φ (x (t,θ) ,u). Contrary to

[14] and [13], this results in more equations than the number of parameters.

Additional terms of high degree appear and since the integration method is
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only an approximation, it results in an inconsistent set of equations.

Theorem 2 Consider the two models (16) and (17). Provided that (C1) and

(C2) hold, θ can be estimated from the scaled parameter vector θs using

θ = g(α, T,θs),

where g(α, T,θs) denotes the least square solution obtained from (26).

This solution is obtained using the minimisation criterion, [8]

ϕ(θ) =
1

2
r(θ)Tr(θ) (27)

where ri(θ) is defined as

ri(θ) = hsi (θ
s)− hi(θ), i = 1, . . . ,m,

and hi(.) and hsi (.) are specific functions that follow from (26), cf. Example 3

below. Since the scaled parameters are given, hs(θs) is known. The solution

can then be obtained using a non-linear search algorithm applied to (27).

3.3 Hessian

To analyse the effect of the new discretisation algorithm on the Hessian of the

identification algorithm, the steps of the method proposed in [13] is followed.

First the state vector x(t,θs) is differentiated with respect to the parameter

vector θs. Using Theorem 1, it follows that
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dxs(t,θs)

dθs
= A−1(α)

dx(t,θ)

dθs

= A−1(α)
dx(t,θ)

dθ

dθ

dθs

= A−1(α)
dx(t,θ)

dθ

dg(α, T,θs)

dθs
. (28)

Introduce the assumption

(C3) Assume that the identification algorithm is based on the simplified

criterion

V (θ) =
1

2
E
[
εT (t,θ)ε(t,θ)

]
.

The Hessian of the identification algorithm is defined as the second derivative

of the minimisation criterion and with the simplification of (C3) it can be cal-

culated as follows

R(θ) =
d2

dθ dθ T
V (θ) = E

[
ψ(t,θ)ψT (t,θ)

]
+E

[(
d2

dθ dθ T
ε(t,θ)

)
ε(t,θ)

]
. (29)

Provided that the system is in the model set and assuming that the assump-

tion (C4) below holds, the last term of (29) can be neglected.

(C4) The measurement noise e(t) is zero mean, and the regressor vector φ

is generated only from the input signal.

This leads to the following simplification of the Hessian

R(θ) = E
[
ψ(t,θ)ψT (t,θ)

]
.

The effect of the scaling can now be analysed by using the gradient of the
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measurement. The scaled Hessian then becomes

R(θs) = E

[(
dxs(t,θs)

dθs

)T

CTC
dxs(t,θs)

dθs

]
(30)

and together with (28) and Theorem 1 it can be concluded that

R(θs) = E

(dg(α, T,θs)
dθs

)T (
dx(t,θ)

dθ

)T

A−TCTCA−1︸ ︷︷ ︸
I

× dx(t,θ)

dθ

dg(α, T,θs)

dθs

]

where the last step follows from the fact that the (1, 1) element of A−1 = 1 and

that C is given by (22). This proves

Theorem 3 Consider the two models (16) and (17) where T s is the scaled

sampling period and assume that the conditions (C1)-(C4) apply. The Hessian

is then given by

R(θs) =

(
dg(α, T,θs)

dθs

)T

R(θ)
dg(α, T,θs)

dθs
.

where g(α, T,θs) is defined by Theorem 2.

Note that also for Theorem 3, numerical solution is required to relate the

scaled Hessian to the unscaled one.

4 Simulated results

To study the results obtained in section III, a simulation study based on a

system described in [14] was performed. The system is given by a second order
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state space model.

ẋ(t) =

 −x1(t)− x2(t)

x1(t) (2 + u(t))− u(t)



y(t) =

(
1 0

)
x(t) + e(t). (31)

This model can easily be rewritten to correspond to the model structure (3)

using following the calculations

x2 = x1(t)− ẋ1(t),

ẋ2(t) = ẋ1(t)− ẍ1(t)

if ẋ1(t) = x2(t), then the system can be written as

ẋ(t) =

 x2

u(t)− (2 + u(t))x1(t)− x2(t)



y(t) =

(
1 0

)
x(t) + e(t). (32)

For the simulation two different sets of data were generated, one generated

using the unscaled midpoint algorithm, i.e. α = 1, and the other generated by

the scaled midpoint method. In both cases, the data length was 10000 samples

with a sampling period of 0.1 seconds, i.e. T = 0.1. The input signal was chosen

as a uniform PRBS-like signal with zero mean in the range of [−1, 1], cf. [13].

Example 1 Identification was then perfomed with the corresponding algo-

rithm. The algorithm was initialised with the following parameter vector

θ̂
s
(0) =

(
0 1 −1 0 −1 0 0 0

)T
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and Λ(0) = 0.1, R(0) = 100I, furthermore the state vector was xs(0) =(
0.5 −1

)T

. In the first run, α = 2 was chosen. The convergence of the

parameters using the new discretisation algorithm is shown in Fig 1. In Fig 2,

the convergence of the eigenvalues of the Hessian is depicted. As compared to

the result in [14], the transient is improved.

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

pa
ra

m
et

er
s

Figure 1: The convergence of the scaled parameters with the new algorithm
using α = 2.
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Figure 2: The convergence of the eigenvalues of the Hessian with the new dis-
cretisation algorithm using α = 2.
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Example 2 This example was performed to verify the results of Theorem 1.

Since the state space model is of second order (n = 2), the matrix A(α, T ) as

described in Theorem 1 is a 2× 2 matrix represented as

A(α, T ) =

 1 0

0 αγ

 (33)

To analyse the accuracy of Theorem 1, the average root-mean square values of

the states were used.

First, the state vector for the midpoint method using α = 1 was estimated

and stored. This was then repeated for the scaled midpoint method for different

values of α. Finally, the value of α was calculated and compared with the real

applied α. The results obtained were then normalised with respect to the first

state of both methods. As seen in Fig. 3 the result of Theorem 1 agrees well

with the experimental results.

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

α

Figure 3: Experimentally calculated value of α using Theorem 1, (stars) and
the real applied α, (dashed).
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Example 3 This example aims to verify the results of Theorem 2. In this

example, α was chosen in a range 1− 4. The parameter values were then calcu-

lated numerically as described in section III. The model described by equation

(32) gave rise to the following 24 non-linear equations, from (26), describing the

relation between θs and θ.

h1(θ) = θ000 +
T

2
θ000θ010

= α2γ

(
θs000 +

αT

2
θs000θ

s
010

)
= hs1(θ

s)

h2(θ) = θ001 +
T

2
(θ001θ010 + θ000θ011)

= α2γ

(
θs001 +

αT

2
(θs001θ

s
010 + θs000θ

s
011)

)
= hs2(θ

s) (34)

h3(θ) = θ010 +
T

2
(θ010θ010 + θ100) +

T

4
θ110θ000

= α

(
θs010 +

αT

2
(θs010θ

s
010 + θ100s) +

(αT )

4
θ110sθ

s
000

)
= hs3(θ

s)

h4(θ) = θ011 +
T

2
(2θ011θ010 + θ101) +

T

4
(θ110θ001 + θ111θ000)

= α

(
θs011 +

αT

2
(2θs011θ

s
010 + θs101) +

(αT )

4
(θs110θ

s
001 + θs111θ

s
000)

)
= hs4(θ

s)

h5(θ) = θ100 +
T

2
(θ100θ010 + θ110θ000)

= α2γ

(
θs100 +

αT

2
(θs100θ

s
010 + θs110θ

s
000)

)
= hs5(θ

s)
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h6(θ) = θ101 +
T

2
(θ101θ010 + θ101θ011 + θ110θ001 + θ111θ000)

= α2γ

(
θs101 +

αT

2
(θs101θ

s
010 + θs101θ

s
011 + θs110θ

s
001 + θs111θ

s
000)

)
= hs6(θ

s)

h7(θ) = θ110 + Tθ110θ010 +
T 2

4
θ110θ100

= α

(
θs110 + αTθs110θ

s
010 +

(αT )2

4
θs110θ

s
100

)
= hs7(θ

s)

h8(θ) = θ111 + T (θ111θ010 + θ110θ011) +
T 2

4
(θ110θ101 + θ111θ100)

= α

(
θs111 + αT (θs111θ

s
010 + θs110θ

s
011) +

(αT )2

4
(θs110θ

s
101 + θs111θ

s
100)

)
h9(θ) =

T

2
θ001θ011 = α2γ

αT

2
θs001θ

s
011 = hs9(θ

s)

h10(θ) =
T

2
θ011θ011 +

T 2

4
θ111θ001 = α

(
αT

2
θs011θ

s
011 +

(αT )2

4
θs111θ

s
001

)
= hs10(θ

s)

h11(θ) =
T

2
(θ101θ011 + θ111θ001) = α2γ

(
αT

2
(θs101θ

s
011 + θs111θ

s
001)

)
= hs11(θ

s)

h12(θ) = Tθ111θ011 +
T 2

4
θ111θ101 = α2

(
Tθs111θ

s
011 +

αT 2

4
θs111θ

s
101

)
= hs12(θ

s)

h13(θ) =
T

2
θ110θ100 = α2γ

αT

2
θs110θ

s
100 = hs13(θ

s)

h14(θ) =
T

2
(θ110θ101 + θ111θ100) = α2γ

αT

2
(θs110θ

s
101 + θs111θ

s
100) = hs14(θ

s)

h15(θ) =
T

2
θ110θ110 = α2T

2
θ110θ110 = hs15(θ

s)

h16(θ) = Tθ110θ111 = α2Tθs110θ
s
111 = hs16(θ

s)

h17(θ) =
T

2
θ110 +

T 2

4
θ110θ010 =

α

γ

(
T

2
θ110 +

αT 2

4
θ110θ010

)
= hs17(θ

s)

h18(θ) =
T

2
θ111θ101 =

α

γ

T

2
θs111θ

s
101 = hs18(θ

s)

h19(θ) =
T

2
θ111θ111 =

α

γ

T

2
θs111θ

s
111 = hs19(θ

s)

h20(θ) =
T

2
θ111 +

T 2

4
(θ111θ010 + θ110θ011)

=
α

γ

(
T

2
θ111 +

αT 2

4
(θs111θ

s
010 + θs110θ

s
011)

)
= hs20(θ

s)
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Table 1: The percentage error between the calculated parameters and the true
parameters for different values of α.

α percentage error [%]
1 0.081

1.25 0.055
1.5 0.043
1.75 0.038
2 0.039

2.25 0.047
2.5 0.068
2.75 0.088
3 0.118

3.25 0.148
3.5 0.181
3.75 0.181
4 0.254

h21(θ) =
T 2

4
θ110θ110 =

α2

γ

T 2

4
θs110θ

s
110 = hs21(θ

s)

h22(θ) =
T 2

2
θ111θ110 =

α2

γ

T 2

2
θs111θ

s
110 = hs22(θ

s)

h23(θ) =
T 2

4
θ111θ011 =

α2

γ

T 2

4
θs110θ

s
011 = hs23(θ

s)

h24(θ) =
T 2

4
θ111θ111 =

α2

γ

T 2

4
θs111θ

s
111 = hs24(θ

s)

From the relationship between h15 and hs15, for example, a theoretical re-

lationship between θ110 and θs110 can be derived and used for derivation of the

relationships between the other parameters. Nevertheless, these result show to

be incosistent. Therefore, the numerical least squares solution is necessary for

finding the nonscaled parameters. The results for the least square solution of

the set of equations (34) are shown in table 1.

Example 4 To verify the results of Theorem 3, the condition number of the

Hessian was estimated using Theorem 3 and compared to the condition number

obtained by numerical simulation. The results are illustrated in Fig 4.
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Figure 4: The condition number of the Hessian as a function of α, where squares
represent the calculated condition number and circles represent the simulated
results.

5 Conclusion

This paper has discussed an improvement of the RPEM described in [14] by

a change of the dicretisation algorithm used. The effects of this new method

on the state vector, the parameter vector and the Hessian were discussed and

verified by numerical examples.

In the future, it would be of great interest to analyse the influence of general

discretisation algorithm on the RPEM and to apply the present algorithm to

challenging real world examples.
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